|
51 | 51 | "load_dotenv()\n", |
52 | 52 | "CONNECTION_STRING = os.environ.get(\"DB_CONNECTION_STRING\")\n", |
53 | 53 | "EMBEDDINGS_DEPLOYMENT_NAME = \"embeddings\"\n", |
| 54 | + "COMPLETIONS_DEPLOYMENT_NAME = \"completions\"\n", |
54 | 55 | "AOAI_ENDPOINT = os.environ.get(\"AOAI_ENDPOINT\")\n", |
55 | 56 | "AOAI_KEY = os.environ.get(\"AOAI_KEY\")\n", |
56 | 57 | "AOAI_API_VERSION = \"2023-05-15\"" |
|
337 | 338 | "for result in results:\n", |
338 | 339 | " print_product_search_result(result) " |
339 | 340 | ] |
| 341 | + }, |
| 342 | + { |
| 343 | + "cell_type": "markdown", |
| 344 | + "metadata": {}, |
| 345 | + "source": [ |
| 346 | + "## Use vector search results in a RAG pattern with Chat GPT-3.5" |
| 347 | + ] |
| 348 | + }, |
| 349 | + { |
| 350 | + "cell_type": "code", |
| 351 | + "execution_count": null, |
| 352 | + "metadata": {}, |
| 353 | + "outputs": [], |
| 354 | + "source": [ |
| 355 | + "# A system prompt describes the responsibilities, instructions, and persona of the AI.\n", |
| 356 | + "system_prompt = \"\"\"\n", |
| 357 | + "You are a helpful, fun and friendly sales assistant for Cosmic Works, a bicycle and bicycle accessories store. \n", |
| 358 | + "Your name is Cosmo.\n", |
| 359 | + "You are designed to answer questions about the products that Cosmic Works sells.\n", |
| 360 | + "\n", |
| 361 | + "Only answer questions related to the information provided in the list of products below that are represented\n", |
| 362 | + "in JSON format.\n", |
| 363 | + "\n", |
| 364 | + "If you are asked a question that is not in the list, respond with \"I don't know.\"\n", |
| 365 | + "\n", |
| 366 | + "List of products:\n", |
| 367 | + "\"\"\"" |
| 368 | + ] |
| 369 | + }, |
| 370 | + { |
| 371 | + "cell_type": "code", |
| 372 | + "execution_count": null, |
| 373 | + "metadata": {}, |
| 374 | + "outputs": [], |
| 375 | + "source": [ |
| 376 | + "def rag_with_vector_search(question: str, num_results: int = 3):\n", |
| 377 | + " \"\"\"\n", |
| 378 | + " Use the RAG model to generate a prompt using vector search results based on the\n", |
| 379 | + " incoming question. \n", |
| 380 | + " \"\"\"\n", |
| 381 | + " # perform the vector search and build product list\n", |
| 382 | + " results = vector_search(\"products\", question, num_results=num_results)\n", |
| 383 | + " product_list = \"\"\n", |
| 384 | + " for result in results:\n", |
| 385 | + " if \"contentVector\" in result[\"document\"]:\n", |
| 386 | + " del result[\"document\"][\"contentVector\"]\n", |
| 387 | + " product_list += json.dumps(result[\"document\"], indent=4, default=str) + \"\\n\\n\"\n", |
| 388 | + "\n", |
| 389 | + " # generate prompt for the LLM with vector results\n", |
| 390 | + " formatted_prompt = system_prompt + product_list\n", |
| 391 | + "\n", |
| 392 | + " # prepare the LLM request\n", |
| 393 | + " messages = [\n", |
| 394 | + " {\"role\": \"system\", \"content\": formatted_prompt},\n", |
| 395 | + " {\"role\": \"user\", \"content\": question}\n", |
| 396 | + " ]\n", |
| 397 | + "\n", |
| 398 | + " completion = ai_client.chat.completions.create(messages=messages, model=COMPLETIONS_DEPLOYMENT_NAME)\n", |
| 399 | + " return completion.choices[0].message.content" |
| 400 | + ] |
| 401 | + }, |
| 402 | + { |
| 403 | + "cell_type": "code", |
| 404 | + "execution_count": null, |
| 405 | + "metadata": {}, |
| 406 | + "outputs": [], |
| 407 | + "source": [ |
| 408 | + "print(rag_with_vector_search(\"What bikes do you have?\", 5))" |
| 409 | + ] |
| 410 | + }, |
| 411 | + { |
| 412 | + "cell_type": "code", |
| 413 | + "execution_count": null, |
| 414 | + "metadata": {}, |
| 415 | + "outputs": [], |
| 416 | + "source": [ |
| 417 | + "print(rag_with_vector_search(\"What are the names and skus of yellow products?\", 5))" |
| 418 | + ] |
340 | 419 | } |
341 | 420 | ], |
342 | 421 | "metadata": { |
|
0 commit comments