Skip to content

Commit febe733

Browse files
01a_reg_lin question sur la régression
1 parent 842e1c3 commit febe733

File tree

5 files changed

+182
-8
lines changed

5 files changed

+182
-8
lines changed

inst/tutorials/01a_reg_lin/reg_lin_simp.Rmd

Lines changed: 96 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -164,7 +164,8 @@ question("Quelles sont les combinaisons de variables les moins corrélées ?",
164164
answer("y-z"),
165165
answer("y-a"),
166166
answer("z-a", correct = TRUE),
167-
allow_retry = TRUE, random_answer_order = TRUE)
167+
allow_retry = TRUE, random_answer_order = TRUE
168+
)
168169
```
169170

170171
- Reproduisez le graphique ci-dessous en vous basant sur vos matrices réalisées précédements
@@ -260,6 +261,100 @@ question("D'après votre analyse, pouvons nous considérer qu'il y a ...",
260261
```
261262

262263

264+
## Régression linéaire
265+
266+
```{r}
267+
x <- seq(from = 5, to = 15, by = 0.25)
268+
269+
a <- x*1 + 3 + rnorm(sd = 0.5, n = length(x))
270+
b <- x*1.1 + 3 + rnorm(sd = 0.5, n = length(x))
271+
c <- x*1.2 + 3 + rnorm(sd = 0.5, n = length(x))
272+
273+
area <- as.factor(rep(c("a", "b", "c"), each = length(x)))
274+
275+
mais <- tibble(
276+
x = c(x,x,x),
277+
value = c(a,b,c),
278+
area = area
279+
)
280+
```
281+
282+
283+
Réalisez la régression linéaire de `value` en fonction de `x` sur le jeu de données `mais`. Vous avez à votre dispositon un nuage de points et un résumé des données pour avoir une première connaissance de données.
284+
285+
```{r}
286+
chart(mais, value ~ x) +
287+
geom_point()
288+
289+
summary(df)
290+
291+
lm_reg <- lm(data = mais, value ~ x)
292+
293+
lm_param <- broom::glance(lm_reg)
294+
lm_result <- broom::tidy(lm_reg)
295+
```
296+
297+
```{r reg1-prep}
298+
x <- seq(from = 5, to = 15, by = 0.25)
299+
300+
a <- x*1 + 3 + rnorm(sd = 0.5, n = length(x))
301+
b <- x*1.1 + 3 + rnorm(sd = 0.5, n = length(x))
302+
c <- x*1.2 + 3 + rnorm(sd = 0.5, n = length(x))
303+
304+
area <- as.factor(rep(c("a", "b", "c"), each = length(x)))
305+
306+
mais <- tibble(
307+
x = c(x,x,x),
308+
value = c(a,b,c),
309+
area = area
310+
)
311+
```
312+
313+
```{r reglin1, exercise = TRUE, exercise.setup = "reg1-prep"}
314+
315+
```
316+
317+
```{r reglin1-hint-1}
318+
#snippet
319+
summary(lm. <- lm(data = DF, FORMULA))
320+
```
321+
322+
```{r reglin1-solution}
323+
summary(lm. <- lm(data = df, value ~ x))
324+
```
325+
326+
```{r reglin1-check}
327+
# TODO
328+
```
329+
330+
Suite à votre analyse répondez au question suivant
331+
332+
```{r qu_reglin1}
333+
quiz(
334+
question(text = "Quelle est la valeur de l'ordonnée à l'origine ?",
335+
answer(sprintf("%.2f", lm_result$estimate[1]), correct = TRUE),
336+
answer(sprintf("%.2f", lm_result$estimate[2])),
337+
answer(sprintf("%.2f", lm_result$std.error[1])),
338+
answer(sprintf("%.2f", lm_result$std.error[2])),
339+
answer(sprintf("%.2f", lm_result$statistic[1])),
340+
answer(sprintf("%.2f", lm_result$statistic[2])),
341+
answer(sprintf("%.2f", lm_param$r.squared[1])),
342+
allow_retry = TRUE, random_answer_order = TRUE
343+
),
344+
question(text = "Quelle est la valeur de la pente ?",
345+
answer(sprintf("%.2f", lm_result$estimate[1])),
346+
answer(sprintf("%.2f", lm_result$estimate[2]), correct = TRUE),
347+
answer(sprintf("%.2f", lm_result$std.error[1])),
348+
answer(sprintf("%.2f", lm_result$std.error[2])),
349+
answer(sprintf("%.2f", lm_result$statistic[1])),
350+
answer(sprintf("%.2f", lm_result$statistic[2])),
351+
answer(sprintf("%.2f", lm_param$r.squared[1])),
352+
allow_retry = TRUE, random_answer_order = TRUE
353+
)
354+
)
355+
```
356+
357+
263358
## Conclusion
264359

265360
Vous venez de terminer votre séance d'exercice.

inst/tutorials/01a_reg_lin/reg_lin_simp.html

Lines changed: 86 additions & 7 deletions
Large diffs are not rendered by default.
1.1 KB
Loading
-127 Bytes
Loading
25.6 KB
Loading

0 commit comments

Comments
 (0)