@@ -4,7 +4,7 @@ author: "Guyliann Engels & Philippe Grosjean"
44description : " **SDD III** Exercices sur l'ADL"
55tutorial :
66 id : " C01Lb_lda"
7- version : 1.0 .0/5
7+ version : 1.2 .0/5
88output :
99 learnr::tutorial :
1010 progressive : true
@@ -16,21 +16,6 @@ runtime: shiny_prerendered
1616BioDataScience3::learnr_setup()
1717SciViews::R()
1818library(mlearning)
19-
20- read("biometry", package = "BioDataScience") %>.%
21- select(., gender, weight, height, wrist) %>.%
22- drop_na(.) -> bio
23-
24- # Prepare learn test and set test
25- n <- nrow(bio)
26- n_learning <- round(n * 2/3)
27- set.seed(164)
28- learning <- sample(1:n, n_learning)
29-
30- bio_learn <- bio[learning, ]
31- bio_test <- bio[-learning, ]
32-
33- bio_lda <- mlLda(formula = gender ~ ., data = bio_learn)
3419```
3520
3621``` {r, echo=FALSE}
@@ -59,14 +44,31 @@ n_learning <- round(n * 2/3)
5944set.seed(164)
6045learning <- sample(1:n, n_learning)
6146
62- bio_learn <- bio[learning, ]
63- bio_test <- bio[-learning, ]
47+ bio_test <- slice( bio, -learning)
48+ bio_learn <- slice( bio,learning)
6449
6550bio_lda <- mlLda(formula = gender ~ ., data = bio_learn)
6651bio_conf <- confusion(predict(bio_lda, bio_test), bio_test$gender)
6752conf_tab <- summary(bio_conf)
6853```
6954
55+ ``` {r ldaprepa}
56+ read("biometry", package = "BioDataScience") %>.%
57+ select(., gender, weight, height, wrist) %>.%
58+ drop_na(.) -> bio
59+
60+ # Prepare learn test and set test
61+ n <- nrow(bio)
62+ n_learning <- round(n * 2/3)
63+ set.seed(164)
64+ learning <- sample(1:n, n_learning)
65+
66+ bio_test <- slice(bio, -learning)
67+ bio_learn <- slice(bio,learning)
68+
69+ bio_lda <- mlLda(formula = gender ~ ., data = bio_learn)
70+ ```
71+
7072## Création de votre modèle
7173
7274
@@ -96,7 +98,7 @@ table(bio_test$gender)
9698
9799Réalisez un modèle avec le set d'apprentissage. Prédisez la variable ` gender ` à l'aide des 3 variables numériques.
98100
99- ``` {r lda1_h2, exercise = TRUE}
101+ ``` {r lda1_h2, exercise = TRUE, exercise.setup = "ldaprepa" }
100102bio_lda <- mlLda(formula = ___ ~ ___, data = ___)
101103summary(bio_lda)
102104```
@@ -121,7 +123,7 @@ grade_code("Votre premier modèle est une réussite.")
121123
122124Vous venez de créer votre outils de classification qui se nomme ` bio_lda ` . Vous devez maintenant tester les performances de votre modèle.
123125
124- ``` {r lda2_h2, exercise = TRUE}
126+ ``` {r lda2_h2, exercise = TRUE, exercise.setup = "ldaprepa" }
125127# prédiction sur le set de test
126128bio_pred <- predict(___, ___)
127129# matrice de confusion
0 commit comments