|
4 | 4 | "cell_type": "markdown", |
5 | 5 | "metadata": {}, |
6 | 6 | "source": [ |
7 | | - "# Continuing Numpy\n", |
| 7 | + "# More Numpy\n", |
8 | 8 | "\n", |
9 | | - "Carrying on from yesterday we will continue learning how to manipulate data in `numpy` before using `matplotlib` to plot our data." |
| 9 | + "Carrying on from the last lesson we will continue learning how to manipulate data in `numpy` before using `matplotlib` to plot our data." |
10 | 10 | ] |
11 | 11 | }, |
12 | 12 | { |
13 | 13 | "cell_type": "code", |
14 | | - "execution_count": 1, |
| 14 | + "execution_count": null, |
15 | 15 | "metadata": {}, |
16 | 16 | "outputs": [], |
17 | 17 | "source": [ |
|
29 | 29 | }, |
30 | 30 | { |
31 | 31 | "cell_type": "code", |
32 | | - "execution_count": 2, |
33 | | - "metadata": {}, |
34 | | - "outputs": [ |
35 | | - { |
36 | | - "data": { |
37 | | - "text/plain": [ |
38 | | - "dtype('int64')" |
39 | | - ] |
40 | | - }, |
41 | | - "execution_count": 2, |
42 | | - "metadata": {}, |
43 | | - "output_type": "execute_result" |
44 | | - } |
45 | | - ], |
| 32 | + "execution_count": null, |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
46 | 35 | "source": [ |
47 | 36 | "a = np.array([1, 2, 3])\n", |
48 | 37 | "a.dtype" |
49 | 38 | ] |
50 | 39 | }, |
51 | 40 | { |
52 | 41 | "cell_type": "code", |
53 | | - "execution_count": 3, |
54 | | - "metadata": {}, |
55 | | - "outputs": [ |
56 | | - { |
57 | | - "data": { |
58 | | - "text/plain": [ |
59 | | - "dtype('float64')" |
60 | | - ] |
61 | | - }, |
62 | | - "execution_count": 3, |
63 | | - "metadata": {}, |
64 | | - "output_type": "execute_result" |
65 | | - } |
66 | | - ], |
| 42 | + "execution_count": null, |
| 43 | + "metadata": {}, |
| 44 | + "outputs": [], |
67 | 45 | "source": [ |
68 | 46 | "b = np.array([1., 2., 3.])\n", |
69 | 47 | "b.dtype" |
|
78 | 56 | }, |
79 | 57 | { |
80 | 58 | "cell_type": "code", |
81 | | - "execution_count": 4, |
82 | | - "metadata": {}, |
83 | | - "outputs": [ |
84 | | - { |
85 | | - "data": { |
86 | | - "text/plain": [ |
87 | | - "dtype('float64')" |
88 | | - ] |
89 | | - }, |
90 | | - "execution_count": 4, |
91 | | - "metadata": {}, |
92 | | - "output_type": "execute_result" |
93 | | - } |
94 | | - ], |
| 59 | + "execution_count": null, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [], |
95 | 62 | "source": [ |
96 | 63 | "c = np.array([1, 2, 3], dtype=float)\n", |
97 | 64 | "c.dtype" |
|
106 | 73 | }, |
107 | 74 | { |
108 | 75 | "cell_type": "code", |
109 | | - "execution_count": 5, |
110 | | - "metadata": {}, |
111 | | - "outputs": [ |
112 | | - { |
113 | | - "data": { |
114 | | - "text/plain": [ |
115 | | - "dtype('float64')" |
116 | | - ] |
117 | | - }, |
118 | | - "execution_count": 5, |
119 | | - "metadata": {}, |
120 | | - "output_type": "execute_result" |
121 | | - } |
122 | | - ], |
| 76 | + "execution_count": null, |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
123 | 79 | "source": [ |
124 | 80 | "d = np.ones((3, 3))\n", |
125 | 81 | "d.dtype" |
|
134 | 90 | }, |
135 | 91 | { |
136 | 92 | "cell_type": "code", |
137 | | - "execution_count": 6, |
138 | | - "metadata": {}, |
139 | | - "outputs": [ |
140 | | - { |
141 | | - "data": { |
142 | | - "text/plain": [ |
143 | | - "complex" |
144 | | - ] |
145 | | - }, |
146 | | - "execution_count": 6, |
147 | | - "metadata": {}, |
148 | | - "output_type": "execute_result" |
149 | | - } |
150 | | - ], |
| 93 | + "execution_count": null, |
| 94 | + "metadata": {}, |
| 95 | + "outputs": [], |
151 | 96 | "source": [ |
152 | 97 | "e = np.array([1+2j, 3+4j, 5+6*1j])\n", |
153 | 98 | "type(1j)\n", |
|
156 | 101 | }, |
157 | 102 | { |
158 | 103 | "cell_type": "code", |
159 | | - "execution_count": 7, |
160 | | - "metadata": {}, |
161 | | - "outputs": [ |
162 | | - { |
163 | | - "data": { |
164 | | - "text/plain": [ |
165 | | - "dtype('bool')" |
166 | | - ] |
167 | | - }, |
168 | | - "execution_count": 7, |
169 | | - "metadata": {}, |
170 | | - "output_type": "execute_result" |
171 | | - } |
172 | | - ], |
| 104 | + "execution_count": null, |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [], |
173 | 107 | "source": [ |
174 | 108 | "f = np.array([True, False, False, True])\n", |
175 | 109 | "f.dtype" |
176 | 110 | ] |
177 | 111 | }, |
178 | 112 | { |
179 | 113 | "cell_type": "code", |
180 | | - "execution_count": 8, |
181 | | - "metadata": {}, |
182 | | - "outputs": [ |
183 | | - { |
184 | | - "data": { |
185 | | - "text/plain": [ |
186 | | - "dtype('<U7')" |
187 | | - ] |
188 | | - }, |
189 | | - "execution_count": 8, |
190 | | - "metadata": {}, |
191 | | - "output_type": "execute_result" |
192 | | - } |
193 | | - ], |
| 114 | + "execution_count": null, |
| 115 | + "metadata": {}, |
| 116 | + "outputs": [], |
194 | 117 | "source": [ |
195 | 118 | "g = np.array(['Bonjour', 'Hello', 'Hallo',])\n", |
196 | 119 | "g.dtype # <--- strings containing max. 7 letters" |
|
227 | 150 | }, |
228 | 151 | { |
229 | 152 | "cell_type": "code", |
230 | | - "execution_count": 9, |
| 153 | + "execution_count": null, |
231 | 154 | "metadata": {}, |
232 | 155 | "outputs": [], |
233 | 156 | "source": [ |
|
244 | 167 | }, |
245 | 168 | { |
246 | 169 | "cell_type": "code", |
247 | | - "execution_count": 10, |
248 | | - "metadata": {}, |
249 | | - "outputs": [ |
250 | | - { |
251 | | - "name": "stdout", |
252 | | - "output_type": "stream", |
253 | | - "text": [ |
254 | | - "10.9 ms ± 1.03 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" |
255 | | - ] |
256 | | - } |
257 | | - ], |
| 170 | + "execution_count": null, |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [], |
258 | 173 | "source": [ |
259 | 174 | "def python_double(a):\n", |
260 | 175 | " for i, val in enumerate(a):\n", |
|
272 | 187 | }, |
273 | 188 | { |
274 | 189 | "cell_type": "code", |
275 | | - "execution_count": 11, |
276 | | - "metadata": {}, |
277 | | - "outputs": [ |
278 | | - { |
279 | | - "name": "stdout", |
280 | | - "output_type": "stream", |
281 | | - "text": [ |
282 | | - "55.4 µs ± 697 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n" |
283 | | - ] |
284 | | - } |
285 | | - ], |
| 190 | + "execution_count": null, |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [], |
286 | 193 | "source": [ |
287 | 194 | "def numpy_double(a):\n", |
288 | 195 | " a *= 2\n", |
|
312 | 219 | }, |
313 | 220 | { |
314 | 221 | "cell_type": "code", |
315 | | - "execution_count": 12, |
316 | | - "metadata": {}, |
317 | | - "outputs": [ |
318 | | - { |
319 | | - "data": { |
320 | | - "text/plain": [ |
321 | | - "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" |
322 | | - ] |
323 | | - }, |
324 | | - "execution_count": 12, |
325 | | - "metadata": {}, |
326 | | - "output_type": "execute_result" |
327 | | - } |
328 | | - ], |
| 222 | + "execution_count": null, |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [], |
329 | 225 | "source": [ |
330 | 226 | "a = np.arange(10)\n", |
331 | 227 | "a" |
332 | 228 | ] |
333 | 229 | }, |
334 | 230 | { |
335 | 231 | "cell_type": "code", |
336 | | - "execution_count": 13, |
337 | | - "metadata": {}, |
338 | | - "outputs": [ |
339 | | - { |
340 | | - "data": { |
341 | | - "text/plain": [ |
342 | | - "True" |
343 | | - ] |
344 | | - }, |
345 | | - "execution_count": 13, |
346 | | - "metadata": {}, |
347 | | - "output_type": "execute_result" |
348 | | - } |
349 | | - ], |
| 232 | + "execution_count": null, |
| 233 | + "metadata": {}, |
| 234 | + "outputs": [], |
350 | 235 | "source": [ |
351 | 236 | "b = a[3:7]\n", |
352 | 237 | "\n", |
|
355 | 240 | }, |
356 | 241 | { |
357 | 242 | "cell_type": "code", |
358 | | - "execution_count": 14, |
359 | | - "metadata": {}, |
360 | | - "outputs": [ |
361 | | - { |
362 | | - "data": { |
363 | | - "text/plain": [ |
364 | | - "array([12, 4, 5, 6])" |
365 | | - ] |
366 | | - }, |
367 | | - "execution_count": 14, |
368 | | - "metadata": {}, |
369 | | - "output_type": "execute_result" |
370 | | - } |
371 | | - ], |
| 243 | + "execution_count": null, |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [], |
372 | 246 | "source": [ |
373 | 247 | "b[0] = 12\n", |
374 | 248 | "b" |
375 | 249 | ] |
376 | 250 | }, |
377 | 251 | { |
378 | 252 | "cell_type": "code", |
379 | | - "execution_count": 15, |
380 | | - "metadata": {}, |
381 | | - "outputs": [ |
382 | | - { |
383 | | - "data": { |
384 | | - "text/plain": [ |
385 | | - "array([ 0, 1, 2, 12, 4, 5, 6, 7, 8, 9])" |
386 | | - ] |
387 | | - }, |
388 | | - "execution_count": 15, |
389 | | - "metadata": {}, |
390 | | - "output_type": "execute_result" |
391 | | - } |
392 | | - ], |
| 253 | + "execution_count": null, |
| 254 | + "metadata": {}, |
| 255 | + "outputs": [], |
393 | 256 | "source": [ |
394 | 257 | "a # (!)" |
395 | 258 | ] |
396 | 259 | }, |
397 | 260 | { |
398 | 261 | "cell_type": "code", |
399 | | - "execution_count": 16, |
400 | | - "metadata": {}, |
401 | | - "outputs": [ |
402 | | - { |
403 | | - "data": { |
404 | | - "text/plain": [ |
405 | | - "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" |
406 | | - ] |
407 | | - }, |
408 | | - "execution_count": 16, |
409 | | - "metadata": {}, |
410 | | - "output_type": "execute_result" |
411 | | - } |
412 | | - ], |
| 262 | + "execution_count": null, |
| 263 | + "metadata": {}, |
| 264 | + "outputs": [], |
413 | 265 | "source": [ |
414 | 266 | "a = np.arange(10)\n", |
415 | 267 | "c = a[::2].copy() # force a copy\n", |
|
419 | 271 | }, |
420 | 272 | { |
421 | 273 | "cell_type": "code", |
422 | | - "execution_count": 17, |
423 | | - "metadata": {}, |
424 | | - "outputs": [ |
425 | | - { |
426 | | - "data": { |
427 | | - "text/plain": [ |
428 | | - "False" |
429 | | - ] |
430 | | - }, |
431 | | - "execution_count": 17, |
432 | | - "metadata": {}, |
433 | | - "output_type": "execute_result" |
434 | | - } |
435 | | - ], |
| 274 | + "execution_count": null, |
| 275 | + "metadata": {}, |
| 276 | + "outputs": [], |
436 | 277 | "source": [ |
437 | 278 | "np.may_share_memory(a, c) # we made a copy so there is no shared memory" |
438 | 279 | ] |
|
478 | 319 | "name": "python", |
479 | 320 | "nbconvert_exporter": "python", |
480 | 321 | "pygments_lexer": "ipython3", |
481 | | - "version": "3.6.3" |
| 322 | + "version": "3.5.2" |
482 | 323 | } |
483 | 324 | }, |
484 | 325 | "nbformat": 4, |
|
0 commit comments