@@ -1205,25 +1205,11 @@ inner-product-diff-freq
12051205; ;
12061206; ; But they make different assumptions:
12071207
1208- (kind/table
1209- [{:transform " DFT"
1210- :input-symmetry " None (periodic)"
1211- :basis " $e^{i\\ omega t}$ (cos + i·sin)"
1212- :output " Complex"
1213- :use-case " General analysis, convolution"
1214- :example " Analyzing recorded audio to find pitch, filtering signals, detecting frequencies in sensor data" }
1215- {:transform " DCT"
1216- :input-symmetry " Even (mirrors)"
1217- :basis " $\\ cos(\\ omega t)$"
1218- :output " Real"
1219- :use-case " Compression (JPEG, MP3)"
1220- :example " Compressing photos (JPEG images), audio files (MP3, AAC), video codecs" }
1221- {:transform " DST"
1222- :input-symmetry " Odd (negates)"
1223- :basis " $\\ sin(\\ omega t)$"
1224- :output " Real"
1225- :use-case " PDEs with zero boundaries"
1226- :example " Simulating vibrating guitar strings, heat diffusion with fixed endpoints, quantum mechanics" }])
1208+ ; ; | Transform | Input Symmetry | Basis | Output | Use Case | Example |
1209+ ; ; |-----------|-------------------|--------------------------------|---------|-----------------------------|------------------------------------------------------------------------------------------------------|
1210+ ; ; | DFT | None (periodic) | $e^{i\omega t}$ (cos + i·sin) | Complex | General analysis, convolution | Analyzing recorded audio to find pitch, filtering signals, detecting frequencies in sensor data |
1211+ ; ; | DCT | Even (mirrors) | $\cos(\omega t)$ | Real | Compression (JPEG, MP3) | Compressing photos (JPEG images), audio files (MP3, AAC), video codecs |
1212+ ; ; | DST | Odd (negates) | $\sin(\omega t)$ | Real | PDEs with zero boundaries | Simulating vibrating guitar strings, heat diffusion with fixed endpoints, quantum mechanics |
12271213
12281214; ; **The foundation**: All transforms decompose periodic patterns into rotations.
12291215; ; The differences are in which rotations you allow (based on symmetry constraints).
0 commit comments