You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/modules.rst
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -9,7 +9,7 @@ Method
9
9
The approach\ :sup:`1` is based on shared k-nearest-neighbors (SKNN) and the Louvain community-finding algorithm to cluster the user-selected tissue network into distinct modules of tightly connected genes. The SKNN-based strategy has the advantages of alleviating the effect of high-degree genes and accentuating local network structure by connecting genes that are likely to be functionally clustered together.
10
10
11
11
This technique proceeds as follows:
12
-
(i) First, we create a subset of the (user-selected) network containing only the (user-provided) genes and all the edges between them. Given the resulting graph G with V nodes (user-provided genes) and E edges, with each edge between genes i and j associated with a weight p\ :sub:`ij`,
12
+
(i) First, we create a subset of the user-selected network containing only the user-provided genes and all the edges between them. Given the resulting graph G with V nodes (user-provided genes) and E edges, with each edge between genes i and j associated with a weight p\ :sub:`ij`,
13
13
(ii) Calculate a new weight for the edge between each pair of nodes i and j that is equal to the number of k nearest neighbors (based on the original weights p\ :sub:`ij`) shared by i and j;
14
14
(iii) Choose the top 5% of the edges based on the new edge weights, and apply a graph clustering algorithm.
0 commit comments