|
| 1 | +#!/usr/bin/env python |
| 2 | + |
| 3 | +# Copyright 2025 Google LLC |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | + |
| 17 | +# This sample walks a user through submitting a Spark job to a |
| 18 | +# Dataproc driver node group cluster using the Dataproc |
| 19 | +# client library. |
| 20 | + |
| 21 | +# Usage: |
| 22 | +# python submit_spark_job_to_driver_node_group_cluster.py \ |
| 23 | +# --project_id <PROJECT_ID> --region <REGION> \ |
| 24 | +# --cluster_name <CLUSTER_NAME> |
| 25 | + |
| 26 | +# [START dataproc_submit_spark_job_to_driver_node_group_cluster] |
| 27 | + |
| 28 | +import re |
| 29 | + |
| 30 | +from google.cloud import dataproc_v1 as dataproc |
| 31 | +from google.cloud import storage |
| 32 | + |
| 33 | +def submit_job(project_id, region, cluster_name): |
| 34 | + # Create the job client. |
| 35 | + job_client = dataproc.JobControllerClient( |
| 36 | + client_options={"api_endpoint": f"{region}-dataproc.googleapis.com:443"} |
| 37 | + ) |
| 38 | + |
| 39 | + driver_scheduling_config = dataproc.DriverSchedulingConfig( |
| 40 | + memory_mb=2048, # Example memory in MB |
| 41 | + vcores=2, # Example number of vcores |
| 42 | + ) |
| 43 | + |
| 44 | + # Create the job config. 'main_jar_file_uri' can also be a |
| 45 | + # Google Cloud Storage URL. |
| 46 | + job = { |
| 47 | + "placement": {"cluster_name": cluster_name}, |
| 48 | + "spark_job": { |
| 49 | + "main_class": "org.apache.spark.examples.SparkPi", |
| 50 | + "jar_file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"], |
| 51 | + "args": ["1000"], |
| 52 | + }, |
| 53 | + "driver_scheduling_config": driver_scheduling_config |
| 54 | + } |
| 55 | + |
| 56 | + operation = job_client.submit_job_as_operation( |
| 57 | + request={"project_id": project_id, "region": region, "job": job} |
| 58 | + ) |
| 59 | + response = operation.result() |
| 60 | + |
| 61 | + # Dataproc job output gets saved to the Cloud Storage bucket |
| 62 | + # allocated to the job. Use a regex to obtain the bucket and blob info. |
| 63 | + matches = re.match("gs://(.*?)/(.*)", response.driver_output_resource_uri) |
| 64 | + |
| 65 | + output = ( |
| 66 | + storage.Client() |
| 67 | + .get_bucket(matches.group(1)) |
| 68 | + .blob(f"{matches.group(2)}.000000000") |
| 69 | + .download_as_bytes() |
| 70 | + .decode("utf-8") |
| 71 | + ) |
| 72 | + |
| 73 | + print(f"Job finished successfully: {output}") |
| 74 | + |
| 75 | + |
| 76 | +# [END dataproc_submit_spark_job_to_driver_node_group_cluster] |
| 77 | + |
| 78 | + |
| 79 | +if __name__ == "__main__": |
| 80 | + |
| 81 | + my_project_id = "your_cluster" # <-- REPLACE THIS |
| 82 | + my_region = "us-central1" # <-- REPLACE THIS |
| 83 | + my_cluster_name = "your-node-group-cluster" # <-- REPLACE THIS |
| 84 | + |
| 85 | + submit_job(my_project_id, my_region, my_cluster_name) |
0 commit comments