@@ -10,7 +10,7 @@ using std::chrono::duration;
1010using std::chrono::milliseconds;
1111
1212static int dim = 20 ;
13- static bool rotated = true ;
13+ static bool rotated = false ;
1414static size_t budget = dim * 10000 ;
1515
1616
@@ -53,7 +53,8 @@ struct Timer
5353 {
5454 const auto t2 = high_resolution_clock::now ();
5555 const auto ms_int = duration_cast<milliseconds>(t2 - t1);
56- std::cout << " Time elapsed: " << static_cast <Float>(ms_int.count ()) / 1000.0 << " s\n\n " ;
56+ std::cout << " Time elapsed: " << std::defaultfloat << std::setprecision (5 ) <<
57+ static_cast <Float>(ms_int.count ()) / 1000.0 << " s\n\n " ;
5758 }
5859};
5960
@@ -63,7 +64,7 @@ void run_modcma(parameters::MatrixAdaptationType mat_t, functions::ObjectiveFunc
6364 rng::set_seed (42 );
6465 parameters::Modules m;
6566 m.matrix_adaptation = mat_t ;
66- m.elitist = true ;
67+ m.elitist = false ;
6768 m.active = false ;
6869 m.ssa = ssa;
6970 // m.weights = parameters::RecombinationWeights::EQUAL;
@@ -83,8 +84,8 @@ void run_modcma(parameters::MatrixAdaptationType mat_t, functions::ObjectiveFunc
8384 FunctionType f = Ellipse (dim, rotated, fun_t );
8485 while (cma.step (f))
8586 {
86- if (cma.p ->stats .global_best .y < 1e-9 )
87- break ;
87+ // if (cma.p->stats.global_best.y < 1e-9)
88+ // break;
8889 }
8990
9091 std::cout << " modcmaes: " << parameters::to_string (mat_t ) << std::defaultfloat;
@@ -109,17 +110,13 @@ void run_modcma(parameters::MatrixAdaptationType mat_t, functions::ObjectiveFunc
109110int main ()
110111{
111112 auto ft = functions::ELLIPSE;
112-
113-
114113 auto ssa = parameters::StepSizeAdaptation::CSA;
115114
116- // run_modcma(parameters::MatrixAdaptationType::NONE, ft, ssa);
117- // run_modcma(parameters::MatrixAdaptationType::SEPERABLE, ft);
118- // run_modcma(parameters::MatrixAdaptationType::MATRIX, ft, ssa);
119- // run_modcma(parameters::MatrixAdaptationType::CHOLESKY, ft, ssa);
120- // run_modcma(parameters::MatrixAdaptationType::COVARIANCE_NO_EIGV, ft, ssa);
121- run_modcma (parameters::MatrixAdaptationType::NATURAL_GRADIENT, ft, parameters::StepSizeAdaptation::XNES);
122- run_modcma (parameters::MatrixAdaptationType::NATURAL_GRADIENT, ft, ssa);
123- // run_modcma(parameters::MatrixAdaptationType::NATURAL_GRADIENT, ft, parameters::StepSizeAdaptation::LPXNES);
115+ run_modcma (parameters::MatrixAdaptationType::NONE, ft, ssa);
116+ run_modcma (parameters::MatrixAdaptationType::SEPERABLE, ft, ssa);
117+ run_modcma (parameters::MatrixAdaptationType::MATRIX, ft, ssa);
118+ run_modcma (parameters::MatrixAdaptationType::CHOLESKY, ft, ssa);
124119 run_modcma (parameters::MatrixAdaptationType::COVARIANCE, ft, ssa);
120+ run_modcma (parameters::MatrixAdaptationType::COVARIANCE_NO_EIGV, ft, ssa);
121+ run_modcma (parameters::MatrixAdaptationType::NATURAL_GRADIENT, ft, ssa);
125122}
0 commit comments