Skip to content

Commit dd83f0b

Browse files
committed
docs: add links to Jupyter notebook tutorials
1 parent e31ba01 commit dd83f0b

File tree

2 files changed

+8
-1
lines changed

2 files changed

+8
-1
lines changed

docs/cxx/tutorial/index.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,9 @@ This tutorial will walk you through the process of *creating WebAssembly scienti
1010
6. Handle non-trivial data types a the wasm pipeline interface.
1111
7. Debug a wasm pipeline.
1212

13+
This [Jupyter notebook
14+
tutorial](https://github.com/InsightSoftwareConsortium/ScientificImageAnalysisVisualizationAndArtificialIntelligenceCourse/blob/master/10_Create_Scientific_WebAssembly_Pipelines.ipynb) also provides an interactive walkthrough.
15+
1316
```{toctree}
1417
:maxdepth: 2
1518
:caption: 📖 Tutorial Steps
@@ -18,4 +21,4 @@ hello_world.md
1821
hello_pipeline.md
1922
inputs_outputs.md
2023
debugging.md
21-
```
24+
```

docs/python/introduction.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,10 @@ At a system level, Linux, macOS, and Windows operating systems are supported on
1414

1515
`itkwasm` Python packages are *highly modular*, have *a tiny footprint*, and have *minimal dependencies*; they only depend on `itkwasm`, `numpy`, and `pyodide` or `wasmtime` {octicon}`container`.
1616

17+
This [Jupyter notebook
18+
tutorial](https://github.com/InsightSoftwareConsortium/ScientificImageAnalysisVisualizationAndArtificialIntelligenceCourse/blob/master/9_WebAssembly_Introduction.ipynb)
19+
provides further background information and related hands-on experiences.
20+
1721
## Environment dispatch
1822

1923
There is a primary, pip-installable Python package. In browser environments, this will pull a corresponding [Emscripten](https://emscripten.org)-enabled Python package. For system Python distributions, this will bring in a corresponding [WASI](https://wasi.dev)-enabled Python package. When GPU-accelerated implementations of functions are available in other packages along with required hardware and software, simply pip-installing the accelerator package will cause function calls to invoke accelerated overrides registered with modern [package metadata](https://packaging.python.org/en/latest/guides/creating-and-discovering-plugins/#using-package-metadata).

0 commit comments

Comments
 (0)