@@ -56,23 +56,24 @@ def top_k(x, k, /, *, axis=None, mode="largest"):
5656 over the flattened array. Default: ``None``.
5757 mode (Literal["largest", "smallest"]):
5858 search mode. Must be one of the following modes:
59- - `"largest"`: return the `k` largest elements.
60- - `"smallest"`: return the `k` smallest elements.
59+
60+ - `"largest"`: return the `k` largest elements.
61+ - `"smallest"`: return the `k` smallest elements.
62+
6163 Default: `"largest"`.
6264
6365 Returns:
64- tuple[usm_ndarray, usm_ndarray]:
66+ tuple[usm_ndarray, usm_ndarray]
6567 a namedtuple `(values, indices)` whose
6668
67- - first element `values` will be an array containing the `k` largest or
68- smallest elements of `x`. The array has the same data type as `x`.
69- If `axis` was `None`, `values` will be a one-dimensional array
70- with shape `(k,)` and otherwise, `values` will have shape
71- `x.shape[:axis] + (k,) + x.shape[axis+1:]`
72-
73- - second element `indices` will be an array containing indices of `x`
74- that result in `values`. The array will have the same shape as
75- `values` and will have the default array index data type.
69+ * first element `values` will be an array containing the `k`
70+ largest or smallest elements of `x`. The array has the same data
71+ type as `x`. If `axis` was `None`, `values` will be a
72+ one-dimensional array with shape `(k,)` and otherwise, `values`
73+ will have shape `x.shape[:axis] + (k,) + x.shape[axis+1:]`
74+ * second element `indices` will be an array containing indices of
75+ `x` that result in `values`. The array will have the same shape
76+ as `values` and will have the default array index data type.
7677 """
7778 largest = _get_top_k_largest (mode )
7879 if not isinstance (x , dpt .usm_ndarray ):
0 commit comments