You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -6,7 +6,7 @@
6
6
7
7
# Introduction
8
8
`mkl_fft` started as a part of Intel® Distribution for Python* optimizations to NumPy, and is now being released
9
-
as a stand-alone package. It offers a thin layered interface for the Intel® oneAPI Math Kernel Library (OneMKL) FFT functionality that allows efficient access to native FFT optimizations from a range of NumPy and SciPy functions. As a result, its performance close to performance of native C/Intel OneMKL. The optimizations are provided for real and complex data types in both single and double precision for in-place and out-of-place modes of operation. As a result, its performance is close to the performance of native C/Intel® OneMKL. For analyzing the performance use [FFT benchmarks](https://github.com/intelpython/fft_benchmark).
9
+
as a stand-alone package. It offers a thin layered interface for the Intel® oneAPI Math Kernel Library (OneMKL) FFT functionality that allows efficient access to native FFT optimizations from a range of NumPy and SciPy functions. As a result, its performance is close to the performance of native C/Intel® OneMKL. The optimizations are provided for real and complex data types in both single and double precisions for in-place and out-of-place modes of operation. For analyzing the performance use [FFT benchmarks](https://github.com/intelpython/fft_benchmark).
10
10
11
11
Thanks to Intel® OneMKL’s flexibility in its supports for arbitrarily strided input and output arrays both one-dimensional and multi-dimensional Fast Fourier Transforms along distinct axes can be performed directly, without the need to copy the input into a contiguous array first. Furthermore, input strides can be arbitrary, including negative or zero, as long as strides remain an integer multiple of array’s item size, otherwise a copy will be made.
0 commit comments