@@ -13,19 +13,16 @@ struct Jacobi{D<:Domain,R,T} <: PolynomialSpace{D,R}
1313end
1414Jacobi (b:: T ,a:: T ,d:: Domain ) where {T<: Number } =
1515 Jacobi {typeof(d),promote_type(T,real(prectype(d)))} (b, a, d)
16- Legendre (domain) = Jacobi (0 ,0 ,domain)
17- Legendre () = Legendre (ChebyshevInterval ())
18- Jacobi (b:: Number ,a:: Number ,d:: Domain ) = Jacobi (promote (dynamic (b), dynamic (a))... ,d)
19- Jacobi (b:: Number ,a:: Number ,d) = Jacobi (b,a,Domain (d))
20- Jacobi (b:: Number ,a:: Number ) = Jacobi (b,a,ChebyshevInterval ())
16+ Legendre (domain = ChebyshevInterval ()) = Jacobi (0 ,0 ,Domain (domain):: Domain )
17+ Jacobi (b:: Number ,a:: Number ,d= ChebyshevInterval ()) = Jacobi (promote (b, a)... , Domain (d):: Domain )
2118Jacobi (A:: Ultraspherical ) = Jacobi (order (A)- 0.5 ,order (A)- 0.5 ,domain (A))
2219Jacobi (A:: Chebyshev ) = Jacobi (- 0.5 ,- 0.5 ,domain (A))
2320
2421const NormalizedJacobi{D<: Domain ,R,T} = NormalizedPolynomialSpace{Jacobi{D,R,T},D,R}
2522NormalizedJacobi (s... ) = NormalizedPolynomialSpace (Jacobi (s... ))
2623NormalizedLegendre (d... ) = NormalizedPolynomialSpace (Legendre (d... ))
2724
28- normalization (:: Type{T} , sp:: Jacobi , k:: Int ) where T = FastTransforms. Anαβ (k, dynamic ( sp. a), dynamic ( sp. b) )
25+ normalization (:: Type{T} , sp:: Jacobi , k:: Int ) where T = FastTransforms. Anαβ (k, sp. a, sp. b)
2926
3027function Ultraspherical (J:: Jacobi )
3128 if J. a == J. b
@@ -54,7 +51,7 @@ function canonicalspace(S::Jacobi)
5451 Chebyshev (domain (S))
5552 else
5653 # return space with parameters in (-1,0.]
57- Jacobi (mod (dynamic ( S. b) ,- 1 ),mod (dynamic ( S. a) ,- 1 ),domain (S))
54+ Jacobi (mod (S. b,- 1 ),mod (S. a,- 1 ),domain (S))
5855 end
5956end
6057
@@ -121,8 +118,8 @@ jacobip(r::AbstractRange,α,β,x::Number) = jacobip(promote_type(typeof(α),type
121118
122119jacobip (:: Type{T} ,n:: Integer ,α,β,v) where {T} = jacobip (T,n: n,α,β,v)[1 ]
123120jacobip (n:: Integer ,α,β,v) = jacobip (n: n,α,β,v)[1 ]
124- jacobip (:: Type{T} ,n,S:: Jacobi ,v) where {T} = jacobip (T,n,dynamic ( S. a), dynamic ( S. b) ,v)
125- jacobip (n,S:: Jacobi ,v) = jacobip (n,dynamic ( S. a), dynamic ( S. b) ,v)
121+ jacobip (:: Type{T} ,n,S:: Jacobi ,v) where {T} = jacobip (T,n,S. a, S. b,v)
122+ jacobip (n,S:: Jacobi ,v) = jacobip (n,S. a, S. b,v)
126123
127124
128125
0 commit comments