@@ -12,9 +12,12 @@ Space(d::PiecewiseSegment) = ContinuousSpace(d)
1212
1313isperiodic (C:: ContinuousSpace ) = isperiodic (domain (C))
1414
15+ const PiecewiseSpaceReal{CD} = PiecewiseSpace{CD,<: Any ,<: Real }
16+ const PiecewiseSpaceRealChebyDirichlet11 =
17+ PiecewiseSpaceReal{<: TupleOrVector{ChebyshevDirichlet{1,1}} }
18+
1519spacescompatible (a:: ContinuousSpace ,b:: ContinuousSpace ) = domainscompatible (a,b)
16- conversion_rule (a:: ContinuousSpace ,
17- b:: PiecewiseSpace {<: Tuple{Vararg{ChebyshevDirichlet{1,1}}} ,<: Any ,<: Real }) = a
20+ conversion_rule (a:: ContinuousSpace , b:: PiecewiseSpaceRealChebyDirichlet11 ) = a
1821
1922plan_transform (sp:: ContinuousSpace ,vals:: AbstractVector ) =
2023 TransformPlan {eltype(vals),typeof(sp),false,Nothing} (sp,nothing )
@@ -131,8 +134,6 @@ coefficients(cfsin::AbstractVector,A::ContinuousSpace,B::ContinuousSpace) =
131134
132135
133136# We implemnt conversion between continuous space and PiecewiseSpace with Chebyshev dirichlet
134- const PiecewiseSpaceReal{CD} = PiecewiseSpace{CD,<: Any ,<: Real }
135- const PiecewiseSpaceRealChebyDirichlet11 = PiecewiseSpaceReal{<: Tuple{Vararg{ChebyshevDirichlet{1,1}}} }
136137
137138function Conversion (ps:: PiecewiseSpaceRealChebyDirichlet11 , cs:: ContinuousSpace )
138139 @assert ps == canonicalspace (cs)
0 commit comments