Skip to content

Commit 875a251

Browse files
committed
doc: mhe in manual finished
1 parent d7829f8 commit 875a251

File tree

1 file changed

+12
-10
lines changed

1 file changed

+12
-10
lines changed

docs/src/manual/linmpc.md

Lines changed: 12 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -139,13 +139,13 @@ Lastly, we plot the closed-loop test with the `Plots` package:
139139
```@example 1
140140
using Plots
141141
function plot_data(t_data, u_data, y_data, ry_data)
142-
p1 = plot(t_data, y_data[1,:], label="meas."); ylabel!("level")
142+
p1 = plot(t_data, y_data[1,:], label="meas.", ylabel="level")
143143
plot!(p1, t_data, ry_data[1,:], label="setpoint", linestyle=:dash, linetype=:steppost)
144144
plot!(p1, t_data, fill(45,size(t_data)), label="min", linestyle=:dot, linewidth=1.5)
145-
p2 = plot(t_data, y_data[2,:], label="meas.", legend=:topleft); ylabel!("temp.")
145+
p2 = plot(t_data, y_data[2,:], label="meas.", legend=:topleft, ylabel="temp.")
146146
plot!(p2, t_data, ry_data[2,:],label="setpoint", linestyle=:dash, linetype=:steppost)
147-
p3 = plot(t_data,u_data[1,:],label="cold", linetype=:steppost); ylabel!("flow rate")
148-
plot!(p3, t_data,u_data[2,:],label="hot", linetype=:steppost); xlabel!("time (s)")
147+
p3 = plot(t_data,u_data[1,:],label="cold", linetype=:steppost, ylabel="flow rate")
148+
plot!(p3, t_data,u_data[2,:],label="hot", linetype=:steppost, xlabel="time (s)")
149149
return plot(p1, p2, p3, layout=(3,1))
150150
end
151151
plot_data(t_data, u_data, y_data, ry_data)
@@ -186,15 +186,16 @@ under a past time window ``H_e``. Bounds on the estimated plant state ``\mathbf{
186186
estimated process noise ``\mathbf{ŵ}`` and estimated sensor noise ``\mathbf{v̂}`` can be
187187
included in the problem. This can be useful to add physical knowledge in the soft sensor,
188188
without adding new physical sensors (e.g. a strictly positive concentration). The
189-
closed-loop performance of a state feedback controller, like here, depends on the accuracy
189+
closed-loop performance of any state feedback controller, like here, depends on the accuracy
190190
of the plant state estimate.
191191

192192
For the CSTR, we will bound the innovation term ``\mathbf{\mathbf{y}(k) - \mathbf{ŷ}(k)} =
193-
\mathbf{v̂}``, and increase ``\mathbf{Q_{int_u}}`` to accelerate the estimation of the load
194-
disturbance. The rejection is slightly faster:
193+
\mathbf{v̂}``, and increase the hot water unmeasured disturbance covariance in
194+
``\mathbf{Q_{int_u}}`` to accelerate the estimation of the load disturbance. The rejection
195+
is slightly faster:
195196

196197
```@example 1
197-
estim = MovingHorizonEstimator(model, He=10, nint_u=[1, 1], σQint_u = [2, 2])
198+
estim = MovingHorizonEstimator(model, He=10, nint_u=[1, 1], σQint_u = [1, 2])
198199
estim = setconstraint!(estim, v̂min=[-1, -0.5], v̂max=[+1, +0.5])
199200
mpc_mhe = LinMPC(estim, Hp=10, Hc=2, Mwt=[1, 1], Nwt=[0.1, 0.1])
200201
mpc_mhe = setconstraint!(mpc_mhe, ymin=[45, -Inf])
@@ -211,8 +212,9 @@ savefig(ans, "plot3_LinMPC.svg"); nothing # hide
211212
## Adding Feedforward Compensation
212213

213214
Suppose that the load disturbance ``u_l`` of the last section is in fact caused by a
214-
separate hot water pipe that discharges into the tank. Measuring this flow rate allows us to
215-
incorporate feedforward compensation in the controller. The new plant model is:
215+
separate hot water pipe that discharges into the tank. Adding a new sensor to measure this
216+
flow rate allows us to incorporate feedforward compensation in the controller. The new plant
217+
model is:
216218

217219
```math
218220
\begin{bmatrix}

0 commit comments

Comments
 (0)