@@ -3,6 +3,11 @@ RandomMatrices.jl
33
44Random matrix package for [ Julia] ( http://julialang.org ) .
55
6+ [ ![ RandomMatrices on Julia release] ( http://pkg.julialang.org/badges/RandomMatrices_release.svg )] ( http://pkg.julialang.org/?pkg=RandomMatrices&ver=release )
7+ [ ![ RandomMatrices on Julia nightly] ( http://pkg.julialang.org/badges/RandomMatrices_nightly.svg )] ( http://pkg.julialang.org/?pkg=RandomMatrices&ver=nightly )
8+ [ ![ Build Status] ( https://travis-ci.org/jiahao/RandomMatrices.jl.png?branch=master )] ( https://travis-ci.org/jiahao/RandomMatrices.jl )
9+ [ ![ Coverage Status] ( https://coveralls.io/repos/jiahao/RandomMatrices.jl/badge.svg?branch=master )] ( https://coveralls.io/r/jiahao/RandomMatrices.jl?branch=master )
10+
611This extends the [ Distributions] ( https://github.com/JuliaStats/Distributions.jl )
712package to provide methods for working with matrix-valued random variables,
813a.k.a. random matrices. State of the art methods for computing random matrix
@@ -11,11 +16,6 @@ samples and their associated distributions are provided.
1116The names of the various ensembles can vary widely across disciplines. Where possible,
1217synonyms are listed.
1318
14- [ ![ Build Status] ( https://travis-ci.org/jiahao/RandomMatrices.jl.png?branch=master )] ( https://travis-ci.org/jiahao/RandomMatrices.jl )
15- [ ![ RandomMatrices] ( http://pkg.julialang.org/badges/RandomMatrices_release.svg )] ( http://pkg.julialang.org/?pkg=RandomMatrices&ver=release )
16- [ ![ RandomMatrices] ( http://pkg.julialang.org/badges/RandomMatrices_nightly.svg )] ( http://pkg.julialang.org/?pkg=RandomMatrices&ver=nightly )
17- [ ![ Coverage Status] ( https://img.shields.io/coveralls/jiahao/RandomMatrices.jl.svg )] ( https://img.shields.io/coveralls/jiahao/RandomMatrices.jl.svg )
18-
1919Additional functionality is provided when these optional packages are installed:
2020- Symbolic manipulation of Haar matrices with [ GSL.jl] ( https://github.com/jiahao/GSL.jl )
2121- Invariant ensembles with [ ApproxFun.jl] ( https://github.com/dlfivefifty/ApproxFun.jl )
@@ -71,7 +71,7 @@ Hermite, Laguerre(m) and Jacobi(m1, m2) ensembles.
7171 ` GaussianLaguerreTridiagonalMatrix(n, m, beta) ` ,
7272 ` GaussianJacobiSparseMatrix(n, m1, m2, beta) `
7373 each construct a sparse ` n ` x` n ` matrix for the corresponding matrix ensemble
74- for arbitrary positive finite ` beta ` .
74+ for arbitrary positive finite ` beta ` .
7575 ` GaussianHermiteTridiagonalMatrix(n, Inf) ` is also allowed.
7676 These sampled matrices have the same eigenvalues as above but are much faster
7777 to diagonalize oweing to their sparsity. They also extend Dyson's threefold
@@ -87,7 +87,7 @@ Hermite, Laguerre(m) and Jacobi(m1, m2) ensembles.
8787 is applied to the raw QR decomposition. By default, ` correction=1 ` (Edelman's correction) is
8888 used. Other valid values are ` 0 ` (no correction) and ` 2 ` (Mezzadri's correction).
8989 - ` NeedsPiecewiseCorrection() ` implements a simple test to see if a correction is necessary.
90-
90+
9191- ` InvariantEnsemble(str,n) `
9292 Generates a unitary invariant ensemble, where str determines the
9393 potential of the ensemble, see below.
@@ -151,15 +151,15 @@ Provides finite-dimensional matrix representations of stochastic operators.
151151In the following, ` dt ` is the time interval being discretized over and ` t_end ` is the final time.
152152
153153- ` BrownianProcess(dt, t_end) ` generates a vector corresponding to a Brownian random walk starting
154- from time ` t=0 ` and position ` x=0 `
155- - ` WhiteNoiceProcess (dt, t_end)` generates a vector corresponding to white noise.
154+ from time ` t=0 ` and position ` x=0 `
155+ - ` WhiteNoiseProcess (dt, t_end)` generates a vector corresponding to white noise.
156156- ` StochasticAiryProcess(dt, t_end, beta) ` generates the largest eigenvalue corresponding to the
157157 stochastic Airy process with real positive ` beta ` . This is known to be distributed in the ` t_end -> Inf `
158158 limit to the ` beta ` -Tracy-Widom law.
159-
159+
160160# Invariant ensembles
161161
162- ` InvariantEnsemble(str,n) ` supports n x n unitary invariant ensemble
162+ ` InvariantEnsemble(str,n) ` supports n x n unitary invariant ensemble
163163 with distribution
164164
165165` exp(- Tr Q(M)) dM `
0 commit comments