You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+7-7Lines changed: 7 additions & 7 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -58,15 +58,15 @@ MATLAB® is used throughout. Tools from the Symbolic Math Toolbox™ are used fr
58
58
# Scripts
59
59
|**Full Script** <br> |**Visualizations** <br> |**Learning Goals** <br> In this script, students will... <br> |**Practice** <br> |
60
60
| :-- | :-- | :-- | :-- |
61
-
|[Antiderivatives.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/Antiderivatives.mlx) <br> <imgsrc="Images/adf.png"width="135"alt="Family of antiderivatives"> <br> |[Visualizing Antiderivatives](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/AntiderivativesViz.mlx) <br> <imgsrc="Images/family.gif"width="135"alt="Animated family of antiderivatives"> <br> | - see a graphical presentation of the concept of general antiderivatives. <br> - develop computational fluency with the antiderivatives of powers, sines, cosines, and exponentials. <br> |[Calculate Antiderivatives](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/AntiderivativesPractice.mlx) <br> $\displaystyle {\int \sin (3z)\;dz=-\frac{\cos (3z)}{3}+C}$ <br> |
62
-
| [FundamentalTheorem.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/FundamentalTheorem.mlx) <br> <img src="Images/Ski-Area.png" width="135" alt="Distance traveled by skier"> <br> | [Visualizing the FTC](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/FundamentalTheoremViz.mlx) <br> <img src="Images/FTC-generated.png" width="135" alt="Signed area under a curve"> <br> | - explain the fundamental theorem of calculus. <br> - see why the Fundamental Theorem of Calculus makes sense graphically. <br> - develop computational fluency for definite integrals involving linear and rational combinations of powers, sines, cosines, exponentials and natural logarithms. <br> | [Apply the Fundamental Theorem of Calculus](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/FundamentalTheoremPractice.mlx) <br> $\displaystyle {\int_1^3 \frac{1}{w^2 }\;dw=-\frac{1}{3}+1=\frac{2}{3}}$ <br> |
63
-
|[Riemann.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/Riemann.mlx) <br> <imgsrc="Images/animSolar.gif"width="135"alt="Better approximation with smaller rectangles"> <br> |[Visualizing Riemann Sums](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/RiemannViz.mlx) <br> <imgsrc="Images/AreaUnderCurve.png"width="135"alt="Approximation by rectangles"> <br> | - explain and apply the different approximations computed by a left\-endpoint, right\-endpoint, midpoint, maximum, or minimum method of selecting a height value in a Riemann sum. <br> | - explain and apply the trapezoidal approximation. <br> - explain why increasing the number of intervals in an approximation will decrease the error. <br> - discuss the implications for applying calculus in applications with values that are discrete or continuous. <br> |
64
-
| [Substitution.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/Substitution.mlx) <br> <img src="Images/SubstIm.png" width="135" alt="f(flower)"> <br> | [Visualizing Substitution](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/SubstitutionViz.mlx) <br> <img src="Images/animSubst.gif" width="135" alt="Animation of dx and du"> <br> | - explain what the method of substitution is and how it works. <br> - develop fluency with computing integrals of combinations of powers, sines, cosines, exponentials and logarithms that are solvable <br>by substitution by hand. <br> - see a graphical understanding of the method of substitution. <br> | [Apply the method of substitution](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/SubstitutionPractice.mlx) <br> $\displaystyle {\int \frac{\cos \left(\ln (t)+1\right)}{t}\;dt=\sin \left(\ln (t)+1\right)+C}$ <br> |
65
-
| [ByParts.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/ByParts.mlx) <br> <img src="Images/IBP.png" width="135" alt="Geometric integration by parts"> <br> | [Visualizing Integration by Parts](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/ByPartsViz.mlx) <br> <img src="Images/ibp-generated.png" width="135" alt="Integration horizontally and vertically"> <br> | - explain what the method of integration by parts is and how it works. <br> - develop fluency with computing integrals involving powers, sines, cosines, exponentials and logarithms that are solvable by integration by <br>parts by hand. <br> - see a graphical understanding of the integration by parts formula. <br> | [Apply the method of integration by parts](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/ByPartsPractice.mlx) <br> $\displaystyle {\int y^2 e^y \;dy=y^2 e^y -2ye^y +2e^y +C}$ <br> $\displaystyle =(y^2 -2y+2)e^y +C$ <br> |
61
+
|[Antiderivatives.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/Antiderivatives.mlx&focus=true) <br> <imgsrc="Images/adf.png"width="135"alt="Family of antiderivatives"> <br> |[Visualizing Antiderivatives](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/AntiderivativesViz.mlx) <br> <imgsrc="Images/family.gif"width="135"alt="Animated family of antiderivatives"> <br> | - see a graphical presentation of the concept of general antiderivatives. <br> - develop computational fluency with the antiderivatives of powers, sines, cosines, and exponentials. <br> |[Calculate Antiderivatives](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/AntiderivativesPractice.mlx&focus=true) <br> $\displaystyle {\int \sin (3z)\;dz=-\frac{\cos (3z)}{3}+C}$ <br> |
62
+
| [FundamentalTheorem.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/FundamentalTheorem.mlx&focus=true) <br> <img src="Images/Ski-Area.png" width="135" alt="Distance traveled by skier"> <br> | [Visualizing the FTC](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/FundamentalTheoremViz.mlx&focus=true) <br> <img src="Images/FTC-generated.png" width="135" alt="Signed area under a curve"> <br> | - explain the fundamental theorem of calculus. <br> - see why the Fundamental Theorem of Calculus makes sense graphically. <br> - develop computational fluency for definite integrals involving linear and rational combinations of powers, sines, cosines, exponentials and natural logarithms. <br> | [Apply the Fundamental Theorem of Calculus](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/FundamentalTheoremPractice.mlx&focus=true) <br> $\displaystyle {\int_1^3 \frac{1}{w^2 }\;dw=-\frac{1}{3}+1=\frac{2}{3}}$ <br> |
63
+
| [Riemann.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/Riemann.mlx&focus=true) <br> <img src="Images/animSolar.gif" width="135" alt="Better approximation with smaller rectangles"> <br> | [Visualizing Riemann Sums](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/RiemannViz.mlx&focus=true) <br> <img src="Images/AreaUnderCurve.png" width="135" alt="Approximation by rectangles"> <br> | - explain and apply the different approximations computed by a left\-endpoint, right\-endpoint, midpoint, maximum, or minimum method of selecting a height value in a Riemann sum. <br> | - explain and apply the trapezoidal approximation. <br> - explain why increasing the number of intervals in an approximation will decrease the error. <br> - discuss the implications for applying calculus in applications with values that are discrete or continuous. <br> |
64
+
| [Substitution.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/Substitution.mlx&focus=true) <br> <img src="Images/SubstIm.png" width="135" alt="f(flower)"> <br> | [Visualizing Substitution](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/SubstitutionViz.mlx&focus=true) <br> <img src="Images/animSubst.gif" width="135" alt="Animation of dx and du"> <br> | - explain what the method of substitution is and how it works. <br> - develop fluency with computing integrals of combinations of powers, sines, cosines, exponentials and logarithms that are solvable <br>by substitution by hand. <br> - see a graphical understanding of the method of substitution. <br> | [Apply the method of substitution](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/SubstitutionPractice.mlx&focus=true) <br> $\displaystyle {\int \frac{\cos \left(\ln (t)+1\right)}{t}\;dt=\sin \left(\ln (t)+1\right)+C}$ <br> |
65
+
| [ByParts.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/ByParts.mlx&focus=true) <br> <img src="Images/IBP.png" width="135" alt="Geometric integration by parts"> <br> | [Visualizing Integration by Parts](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/ByPartsViz.mlx&focus=true) <br> <img src="Images/ibp-generated.png" width="135" alt="Integration horizontally and vertically"> <br> | - explain what the method of integration by parts is and how it works. <br> - develop fluency with computing integrals involving powers, sines, cosines, exponentials and logarithms that are solvable by integration by <br>parts by hand. <br> - see a graphical understanding of the integration by parts formula. <br> | [Apply the method of integration by parts](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/ByPartsPractice.mlx&focus=true) <br> $\displaystyle {\int y^2 e^y \;dy=y^2 e^y -2ye^y +2e^y +C}$ <br> $\displaystyle =(y^2 -2y+2)e^y +C$ <br> |
1.[<imgsrc="Images/OpenInMO.png"width="136"alt="Open in MATLAB Online badge">](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Apps/CalculusFlashcards.mlapp)
84
+
1.[<imgsrc="Images/OpenInMO.png"width="136"alt="Open in MATLAB Online badge">](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Apps/CalculusFlashcards.mlapp&focus=true)
0 commit comments