| [Riemann Sums](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/Riemann.mlx) <br> | [Riemann.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/Riemann.mlx) <br> [<img src="Images/animSolar.gif" width="135" alt="animSolar.gif">](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/Riemann.mlx) <br> | [Visualizing Riemann Sums](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/RiemannViz.mlx) <br> [<img src="Images/AreaUnderCurve.png" width="135" alt="AreaUnderCurve.png">](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/RiemannViz.mlx) <br> | $\bullet$ explain and apply the different approximations computed by a left\-endpoint, right\-endpoint, midpoint, maximum, or minimum method of selecting a height value in a Riemann sum. <br> | $\bullet$ explain and apply the trapezoidal approximation. <br> $\bullet$ explain why increasing the number of intervals in an approximation will decrease the error. <br> $\bullet$ discuss the implications for applying calculus in applications with values that are discrete or continuous. <br> |
0 commit comments