Skip to content

Commit ad18afe

Browse files
committed
Update Script table
1 parent 6c617ac commit ad18afe

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -56,8 +56,8 @@ Ensure you have all the required products ([listed below](#H_E850B4FF)) installe
5656
MATLAB® is used throughout. Tools from the Symbolic Math Toolbox™ are used frequently as well.
5757

5858
# Scripts
59-
[Apply the Fundamental Theorem of Calculus](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/FundamentalTheoremPractice.mlx)| **Full Script** <br> | **Visualizations** <br> | **Learning Goals** <br> In this script, students will... <br> | **Practice** <br> |
60-
| :-- | :-- | :-- | :-- | :-- |
59+
| **Full Script** <br> | **Visualizations** <br> | **Learning Goals** <br> In this script, students will... <br> | **Practice** <br> |
60+
| :-- | :-- | :-- | :-- |
6161
| [Antiderivatives.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/Antiderivatives.mlx) <br> <img src="Images/adf.png" width="135" alt="image_3.png"> <br> | [Visualizing Antiderivatives](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/AntiderivativesViz.mlx) <br> <img src="Images/family.gif" width="135" alt="image_4.gif"> <br> | $\bullet$ see a graphical presentation of the concept of general antiderivatives. <br> $\bullet$ develop computational fluency with the antiderivatives of powers, <br> sines, cosines, and exponentials. <br> | [Calculate Antiderivatives](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/AntiderivativesPractice.mlx) <br> $\displaystyle {\int \sin (3z)\;dz=-\frac{\cos (3z)}{3}+C}$ <br> |
6262
| [FundamentalTheorem.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/FundamentalTheorem.mlx) <br> <img src="Images/Ski-Area.png" width="135" alt="image_5.png"> <br> | [Visualizing the FTC](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/FundamentalTheoremViz.mlx) <br> <img src="Images/FTC-generated.png" width="135" alt="image_6.png"> <br> | $\bullet$ explain the fundamental theorem of calculus. <br> $\bullet$ see why the Fundamental Theorem of Calculus makes sense graphically. <br> $\bullet$ develop computational fluency for definite integrals involving linear and <br>rational combinations of powers, sines, cosines, exponentials and natural <br>logarithms. <br> | [Apply the Fundamental Theorem of Calculus](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/FundamentalTheoremPractice.mlx) <br> $\displaystyle {\int_1^3 \frac{1}{w^2 }\;dw=-\frac{1}{3}+1=\frac{2}{3}}$ <br> |
6363
| [Riemann.mlx](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/Riemann.mlx) <br> <img src="Images/animSolar.gif" width="135" alt="image_7.gif"> <br> | [Visualizing Riemann Sums](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Calculus-Integrals&project=Integrals.prj&file=Scripts/RiemannViz.mlx) <br> <img src="Images/AreaUnderCurve.png" width="135" alt="image_8.png"> <br> | $\bullet$ explain and apply the different approximations computed by a <br>left\-endpoint, right\-endpoint, midpoint, maximum, or minimum <br>method of selecting a height value in a Riemann sum. <br> | $\bullet$ explain and apply the trapezoidal approximation. <br> $\bullet$ explain why increasing the number of intervals in an approximation will decrease the error. <br> $\bullet$ discuss the implications for applying calculus in applications with values that are discrete or continuous. <br> |

0 commit comments

Comments
 (0)