|
| 1 | +# |
| 2 | +# These tests were automatically picked up from doc 2025-12-13 |
| 3 | +# The doc-xxx numbers are simply sequential numbers in alphebatized list as of that date |
| 4 | +# The doc-xxx labels correspond to test output so shouldn't be changed |
| 5 | +# New tests can just be added at end of list, disregarding alphabetical order |
| 6 | +# |
| 7 | + |
| 8 | +doc-001: |
| 9 | + expr: BarChart[{1, 4, 2}, ChartStyle -> {Red, Green, Blue}] |
| 10 | +doc-002: |
| 11 | + expr: BarChart[{1, 4, 2}] |
| 12 | +doc-003: |
| 13 | + expr: BarChart[{{1, 2, 3}, {2, 3, 4}}, ChartLabels -> {"a", "b", "c"}] |
| 14 | +doc-004: |
| 15 | + expr: BarChart[{{1, 2, 3}, {2, 3, 4}}] |
| 16 | +doc-005: |
| 17 | + expr: BarChart[{{1, 5}, {3, 4}}, ChartStyle -> {{EdgeForm[Thin], White}, {EdgeForm[Thick], White}}] |
| 18 | +doc-006: |
| 19 | + expr: DensityPlot[1 / x, {x, 0, 1}, {y, 0, 1}] |
| 20 | +doc-007: |
| 21 | + expr: DensityPlot[1/(x^2 + y^2 + 1), {x, -1, 1}, {y, -2,2}, Mesh->Full] |
| 22 | +doc-008: |
| 23 | + expr: DensityPlot[Sin[x y], {x, -2, 2}, {y, -2, 2}, Mesh->Full] |
| 24 | +doc-009: |
| 25 | + expr: DensityPlot[Sqrt[x * y], {x, -1, 1}, {y, -1, 1}] |
| 26 | +doc-010: |
| 27 | + expr: 'DensityPlot[x ^ 2 + 1 / y, {x, -1, 1}, {y, 1, 4}, ColorFunction -> (Blend[{Red, Green, Blue}, #]&)]' |
| 28 | + skip: pyodide |
| 29 | +doc-011: |
| 30 | + expr: DensityPlot[x ^ 2 + 1 / y, {x, -1, 1}, {y, 1, 4}] |
| 31 | +doc-012: |
| 32 | + expr: DensityPlot[x^2 y, {x, -1, 1}, {y, -1, 1}, Mesh->All] |
| 33 | + skip: pyodide |
| 34 | +doc-013: |
| 35 | + expr: DiscretePlot[2.5 Sqrt[k], {k, 100}] |
| 36 | +doc-014: |
| 37 | + expr: DiscretePlot[PrimePi[k], {k, 1, 100}] |
| 38 | +doc-015: |
| 39 | + expr: DiscretePlot[{Sin[Pi x/20], Cos[Pi x/20]}, {x, 0, 40}] |
| 40 | +doc-016: |
| 41 | + expr: Histogram[{3, 8, 10, 100, 1000, 500, 300, 200, 10, 20, 200, 100, 200, 300, 500}] |
| 42 | +doc-017: |
| 43 | + expr: Histogram[{{1, 2, 10, 5, 50, 20}, {90, 100, 101, 120, 80}}] |
| 44 | +doc-018: |
| 45 | + expr: ListLinePlot[Table[Cos[x], {x, -5, 5, 0.2}], Filling->Top] |
| 46 | +doc-019: |
| 47 | + expr: ListLinePlot[Table[Sin[x], {x, -5, 5, 0.2}], Filling->Axis] |
| 48 | +doc-020: |
| 49 | + expr: ListLinePlot[Table[Sin[x], {x, -5, 5, 0.2}], Filling->Bottom] |
| 50 | +doc-021: |
| 51 | + expr: ListLinePlot[Table[{n, n ^ 0.5}, {n, 10}]] |
| 52 | +doc-022: |
| 53 | + expr: ListLinePlot[list] |
| 54 | + skip: true # malformed test - depends on list |
| 55 | +doc-023: |
| 56 | + expr: ListLinePlot[{{-2, -1}, {-1, -1}, {1, 3}}, Filling->Axis] |
| 57 | +doc-024: |
| 58 | + expr: ListLogPlot[Table[Fibonacci[n], {n, 10}]] |
| 59 | +doc-025: |
| 60 | + expr: ListLogPlot[Table[n!, {n, 10}], Joined -> True] |
| 61 | +doc-026: |
| 62 | + expr: ListPlot[Prime[Range[30]]] |
| 63 | +doc-027: |
| 64 | + expr: ListPlot[Table[ElementData[z, "AtomicWeight"], {z, 118}]] |
| 65 | +doc-028: |
| 66 | + expr: ListPlot[Table[n ^ 2 / 8, {n, 30}]] |
| 67 | +doc-029: |
| 68 | + expr: ListPlot[Table[n ^ 2, {n, 10}], Joined->True] |
| 69 | +doc-030: |
| 70 | + expr: ListPlot[Table[n ^ 2, {n, 30}], Filling->Axis] |
| 71 | +doc-031: |
| 72 | + expr: ListPlot[Table[n ^ 2, {n, 30}], Joined->True] |
| 73 | +doc-032: |
| 74 | + expr: ListPlot[ToCharacterCode["plot this string"], Filling -> Axis] |
| 75 | +doc-033: |
| 76 | + expr: ListStepPlot[{1, 1, 2, 3, 5, 8, 13, 21}, Joined->False] |
| 77 | +doc-034: |
| 78 | + expr: ListStepPlot[{1, 1, 2, 3, 5, 8, 13, 21}] |
| 79 | +doc-035: |
| 80 | + expr: ListStepPlot[{{1, 1}, {3, 2}, {4, 5}, {5, 8}, {6, 13}, {7, 21}}, Filling->Axis] |
| 81 | +doc-036: |
| 82 | + expr: LogPlot[x^x, {x, 1, 5}] |
| 83 | +doc-037: |
| 84 | + expr: LogPlot[{10^x, Factorial[x], Subfactorial[x]}, {x, 0, 25}, PlotPoints->26] |
| 85 | +doc-038: |
| 86 | + expr: LogPlot[{x^x, Exp[x], x!}, {x, 1, 5}] |
| 87 | +doc-039: |
| 88 | + expr: NumberLinePlot[Prime[Range[10]]] |
| 89 | +doc-040: |
| 90 | + expr: NumberLinePlot[Table[x^2, {x, 10}]] |
| 91 | +doc-041: |
| 92 | + expr: ParametricPlot[ {LegendreP[7, x], LegendreP[5, x]}, {x, -1, 1}] |
| 93 | +doc-042: |
| 94 | + expr: ParametricPlot[{Cos[u] / u, Sin[u] / u}, {u, 0, 50}, PlotRange->0.5] |
| 95 | +doc-043: |
| 96 | + expr: ParametricPlot[{Sin[u], Cos[3 u]}, {u, 0, 2 Pi}] |
| 97 | +doc-044: |
| 98 | + expr: ParametricPlot[{{Sin[u], Cos[u]},{0.6 Sin[u], 0.6 Cos[u]}, {0.2 Sin[u], 0.2 Cos[u]}}, {u, 0, 2 Pi}, PlotRange->1, AspectRatio->1] |
| 99 | +doc-045: |
| 100 | + expr: PieChart[{1, -1, 3}] |
| 101 | +doc-046: |
| 102 | + expr: PieChart[{30, 20, 10}, ChartLabels -> {Dogs, Cats, Fish}] |
| 103 | +doc-047: |
| 104 | + expr: PieChart[{8, 16, 2}, SectorOrigin -> {Automatic, 1.5}] |
| 105 | +doc-048: |
| 106 | + expr: PieChart[{{10, 20, 30}, {15, 22, 30}}, ChartLabels -> {A, B, C}] |
| 107 | +doc-049: |
| 108 | + expr: PieChart[{{10, 20, 30}, {15, 22, 30}}, SectorSpacing -> None] |
| 109 | +doc-050: |
| 110 | + expr: PieChart[{{10, 20, 30}, {15, 22, 30}}] |
| 111 | +doc-051: |
| 112 | + expr: Plot3D[Exp[x] Cos[y], {x, -2, 1}, {y, -Pi, 2 Pi}] |
| 113 | +doc-052: |
| 114 | + expr: Plot3D[Log[x + y^2], {x, -1, 1}, {y, -1, 1}] |
| 115 | + skip: pyodide # abort exceeded iteration limit |
| 116 | +# skipping following due to significant numerical diff btw macos and ubuntu |
| 117 | +# i think the test is numerically unstable because of the / (x y) |
| 118 | +doc-053: |
| 119 | + expr: Plot3D[Sin[x y] /(x y), {x, -3, 3}, {y, -3, 3}, Mesh->All] |
| 120 | + skip: true |
| 121 | +doc-054: |
| 122 | + expr: Plot3D[Sin[x y], {x, -2, 2}, {y, -2, 2}, Mesh->Full] |
| 123 | +doc-055: |
| 124 | + expr: Plot3D[Sin[y + Sin[3 x]], {x, -2, 2}, {y, -2, 2}, PlotPoints->20] |
| 125 | +doc-056: |
| 126 | + expr: Plot3D[x / (x ^ 2 + y ^ 2 + 1), {x, -2, 2}, {y, -2, 2}, Mesh->None] |
| 127 | +doc-057: |
| 128 | + expr: Plot3D[x ^ 2 + 1 / y, {x, -1, 1}, {y, 1, 4}] |
| 129 | +doc-058: |
| 130 | + expr: Plot3D[{x^2 + y^2, -x^2 - y^2}, {x, -2, 2}, {y, -2, 2}, BoxRatios-> Automatic, Mesh->None] |
| 131 | +doc-059: |
| 132 | + expr: Plot[3, {x, 0, 1}] |
| 133 | + skip: pyodide # pyodide emits Real 3 where other platforms emit Integer 3 |
| 134 | +doc-060: |
| 135 | + expr: Plot[Abs[x], {x, -4, 4}] |
| 136 | +doc-061: |
| 137 | + expr: Plot[AiryAiPrime[x], {x, -10, 10}] |
| 138 | +doc-062: |
| 139 | + expr: Plot[AiryAi[x], {x, -10, 10}] |
| 140 | +doc-063: |
| 141 | + expr: Plot[AiryBiPrime[x], {x, -10, 2}] |
| 142 | +doc-064: |
| 143 | + expr: Plot[AiryBi[x], {x, -10, 2}] |
| 144 | +doc-065: |
| 145 | + expr: Plot[AngerJ[1, x], {x, -10, 10}] |
| 146 | +doc-066: |
| 147 | + expr: Plot[BesselI[0, x], {x, 0, 5}] |
| 148 | +doc-067: |
| 149 | + expr: Plot[BesselJ[0, x], {x, 0, 10}] |
| 150 | +doc-068: |
| 151 | + expr: Plot[BesselK[0, x], {x, 0, 5}] |
| 152 | +doc-069: |
| 153 | + expr: Plot[BesselY[0, x], {x, 0, 10}] |
| 154 | +doc-070: |
| 155 | + expr: Plot[EllipticE[m], {m, -2, 2}] |
| 156 | +doc-071: |
| 157 | + expr: Plot[EllipticK[n], {n, -1, 1}] |
| 158 | +doc-072: |
| 159 | + expr: Plot[Erf[x], {x, -2, 2}] |
| 160 | +doc-073: |
| 161 | + expr: Plot[Erfc[x], {x, -2, 2}] |
| 162 | +doc-074: |
| 163 | + expr: Plot[Evaluate[Table[x^y, {y, 1, 5}]], {x, -1.5, 1.5}, AspectRatio -> 1] |
| 164 | +doc-075: |
| 165 | + expr: Plot[Exp[x], {x, 0, 3}] |
| 166 | +doc-076: |
| 167 | + expr: Plot[Gudermannian[x], {x, -10, 10}] |
| 168 | +doc-077: |
| 169 | + expr: Plot[Hypergeometric1F1[1, 2, x], {x, -5, 5}] |
| 170 | +doc-078: |
| 171 | + expr: Plot[Hypergeometric2F1[1/3, 1/3, 2/3, x], {x, -1, 1}] |
| 172 | +doc-079: |
| 173 | + expr: Plot[HypergeometricPFQ[{1, 1}, {3, 3, 3}, x], {x, -30, 30}] |
| 174 | +doc-080: |
| 175 | + expr: Plot[HypergeometricU[3, 2, x], {x, 0.5, 10}] |
| 176 | + skip: true # hits iteration limit |
| 177 | +doc-081: |
| 178 | + expr: Plot[InverseErf[x], {x, -1, 1}] |
| 179 | +doc-082: |
| 180 | + expr: Plot[InverseGudermannian[x], {x, -2 Pi, 2 Pi}] |
| 181 | +doc-083: |
| 182 | + expr: Plot[KelvinBei[x], {x, 0, 10}] |
| 183 | +doc-084: |
| 184 | + expr: Plot[KelvinBer[x], {x, 0, 10}] |
| 185 | +doc-085: |
| 186 | + expr: Plot[KelvinKei[x], {x, 0, 10}] |
| 187 | +doc-086: |
| 188 | + expr: Plot[KelvinKer[x], {x, 0, 10}] |
| 189 | +doc-087: |
| 190 | + expr: Plot[LambertW[x], {x, -1/E, E}] |
| 191 | +doc-088: |
| 192 | + expr: Plot[LerchPhi[x, 1, 2], {x, -1, 1}] |
| 193 | +doc-089: |
| 194 | + expr: Plot[Log[x], {x, 0, 5}, MaxRecursion->0] |
| 195 | +doc-090: |
| 196 | + expr: Plot[Log[x], {x, 0, 5}] |
| 197 | +doc-091: |
| 198 | + expr: Plot[LucasL[1/2, x], {x, -5, 5}] |
| 199 | +doc-092: |
| 200 | + expr: Plot[Piecewise[{{Log[x], x > 0}, {x*-0.5, x < 0}}], {x, -1, 1}] |
| 201 | + skip: true # hits iteration limit |
| 202 | +doc-093: |
| 203 | + expr: Plot[PolyLog[2,x], {x, -20, 1}] |
| 204 | +doc-094: |
| 205 | + expr: Plot[ProductLog[x], {x, -1/E, E}] |
| 206 | +doc-095: |
| 207 | + expr: Plot[Sin[Cos[x^2]],{x,-4,4}, PlotPoints->22] |
| 208 | +doc-096: |
| 209 | + expr: Plot[Sin[Cos[x^2]],{x,-4,4}, PlotRange -> All] |
| 210 | +doc-097: |
| 211 | + expr: Plot[Sin[Cos[x^2]],{x,-4,4},Mesh->All] |
| 212 | +doc-098: |
| 213 | + expr: Plot[Sin[x], {x, -Pi, Pi}] |
| 214 | +doc-099: |
| 215 | + expr: Plot[Sin[x], {x, 0, 10}, ImageSize -> Small] |
| 216 | +doc-100: |
| 217 | + expr: Plot[Sin[x], {x, 0, 2 Pi}, Background -> LightBlue] |
| 218 | +doc-101: |
| 219 | + expr: Plot[Sin[x], {x, 0, 2 Pi}] |
| 220 | +doc-102: |
| 221 | + expr: Plot[Sin[x], {x, 0, 4 Pi}, PlotRange->{{0, 4 Pi}, {0, 1.5}}] |
| 222 | +doc-103: |
| 223 | + expr: Plot[Sin[x], {x,0,4 Pi}, Mesh->Full] |
| 224 | +doc-104: |
| 225 | + expr: Plot[SphericalBesselJ[1, x], {x, 0.1, 10}] |
| 226 | +doc-105: |
| 227 | + expr: Plot[SphericalBesselY[1, x], {x, 0, 10}] |
| 228 | +doc-106: |
| 229 | + expr: Plot[Sqrt[a^2], {a, -2, 2}] |
| 230 | +doc-107: |
| 231 | + expr: Plot[StruveH[0, x], {x, 0, 10}] |
| 232 | +doc-108: |
| 233 | + expr: Plot[StruveL[0, x], {x, 0, 5}] |
| 234 | +doc-109: |
| 235 | + expr: Plot[Tan[x], {x, -6, 6}, Mesh->Full] |
| 236 | +doc-110: |
| 237 | + expr: Plot[Tan[x], {x, 0, 6}, Mesh->All, PlotRange->{{-1, 5}, {0, 15}}, MaxRecursion->10] |
| 238 | +doc-111: |
| 239 | + expr: Plot[UnitStep[x], {x, -4, 4}] |
| 240 | +doc-112: |
| 241 | + expr: Plot[WeberE[1, x], {x, -10, 10}] |
| 242 | +doc-113: |
| 243 | + expr: Plot[Zeta[z], {z, -20, 10}] |
| 244 | +doc-114: |
| 245 | + expr: Plot[f[x], {x, -8, 6}] |
| 246 | +doc-115: |
| 247 | + expr: Plot[x^2, {x, -1, 1}, MaxRecursion->5, Mesh->All] |
| 248 | +doc-116: |
| 249 | + expr: Plot[{Cos[a], Re[E^(I a)]}, {a, 0, 2 Pi}] |
| 250 | +doc-117: |
| 251 | + expr: Plot[{Gamma[x], x!}, {x, 0, 4}] |
| 252 | +doc-118: |
| 253 | + expr: Plot[{Hypergeometric1F1[1/2, Sqrt[2], x], Hypergeometric1F1[1/2, Sqrt[3], x], Hypergeometric1F1[1/2, Sqrt[5], x]}, {x, -4, 4}] |
| 254 | +doc-119: |
| 255 | + expr: Plot[{Hypergeometric1F1[Sqrt[2], b, 1], Hypergeometric1F1[Sqrt[5], b, 1], Hypergeometric1F1[Sqrt[7], b, 1]}, {b, -3, 3}] |
| 256 | +doc-120: |
| 257 | + expr: Plot[{Hypergeometric1F1[Sqrt[3], Sqrt[2], z], -0.01}, {z, -10, -2}] |
| 258 | +doc-121: |
| 259 | + expr: Plot[{Sin[a], Im[E^(I a)]}, {a, 0, 2 Pi}] |
| 260 | +doc-122: |
| 261 | + expr: Plot[{Sin[x], Cos[x], x / 3}, {x, -Pi, Pi}, Background -> RGBColor[0.5, .5, .5, 0.1]] |
| 262 | +doc-123: |
| 263 | + expr: Plot[{Sin[x], Cos[x], x / 3}, {x, -Pi, Pi}] |
| 264 | +doc-124: |
| 265 | + expr: Plot[{Sin[x], Cos[x], x ^ 2}, {x, -1, 1}] |
| 266 | +doc-125: |
| 267 | + expr: PolarPlot[Abs[Cos[5t]], {t, 0, Pi}] |
| 268 | +doc-126: |
| 269 | + expr: PolarPlot[Cos[5t], {t, 0, Pi}] |
| 270 | +doc-127: |
| 271 | + expr: PolarPlot[Sqrt[t], {t, 0, 16 Pi}] |
| 272 | +doc-128: |
| 273 | + expr: PolarPlot[{1, 1 + Sin[20 t] / 5}, {t, 0, 2 Pi}] |
0 commit comments