11# -*- coding: utf-8 -*-
22
33"""
4- Exponential Integral and Special Functions
4+ Zeta Functions and Polylogarithms
55"""
66
77import mpmath
1212
1313class LerchPhi (_MPMathFunction ):
1414 """
15- <url>:WMA link:https://reference.wolfram.com/language/ref/LerchPhi.html</url>
15+ <url>
16+ :WMA link:
17+ https://reference.wolfram.com/language/ref/LerchPhi.html</url>
1618
1719 <dl>
18- <dt>'LerchPhi[z,s,a]'
19- <dd>gives the Lerch transcendent Φ(z,s,a).
20+ <dt>'LerchPhi[z,s,a]'
21+ <dd>gives the Lerch transcendent Φ(z,s,a).
2022 </dl>
2123
2224 >> LerchPhi[2, 3, -1.5]
@@ -30,7 +32,7 @@ class LerchPhi(_MPMathFunction):
3032 sympy_name = "lerchphi"
3133 summary_text = "Lerch's trascendental ϕ function"
3234
33- def apply (self , z , s , a , evaluation ):
35+ def eval (self , z , s , a , evaluation ):
3436 "%(name)s[z_, s_, a_]"
3537
3638 py_z = z .to_python ()
@@ -45,10 +47,12 @@ def apply(self, z, s, a, evaluation):
4547
4648class Zeta (_MPMathFunction ):
4749 """
48- <url>:WMA link:https://reference.wolfram.com/language/ref/Zeta.html</url>
50+ <url>
51+ :WMA link:
52+ https://reference.wolfram.com/language/ref/Zeta.html</url>
4953
5054 <dl>
51- <dt>'Zeta[$z$]'
55+ <dt>'Zeta[$z$]'
5256 <dd>returns the Riemann zeta function of $z$.
5357 </dl>
5458
@@ -62,3 +66,6 @@ class Zeta(_MPMathFunction):
6266 summary_text = "Riemann's ζ function"
6367 sympy_name = "zeta"
6468 mpmath_name = "zeta"
69+
70+
71+ # TODO: PolyLog, ReimannSiegelTheta, ReimannSiegelZ, ReimannXi, ZetaZero
0 commit comments