diff --git a/.github/workflows/update-md-date.yml b/.github/workflows/update-md-date.yml new file mode 100644 index 0000000..96dc9d7 --- /dev/null +++ b/.github/workflows/update-md-date.yml @@ -0,0 +1,41 @@ +name: Update Last Modified Date + +on: + pull_request: + branches: + - main + +permissions: + contents: write + +jobs: + update-date: + runs-on: ubuntu-latest + + steps: + - name: Checkout repository + uses: actions/checkout@v4 + with: + fetch-depth: 0 + + - name: Set up Python + uses: actions/setup-python@v4 + with: + python-version: '3.x' + + - name: Install dependencies + run: pip install python-dateutil + + - name: Configure Git + run: | + git config --global user.email "github-actions[bot]@users.noreply.github.com" + git config --global user.name "github-actions[bot]" + + - name: Update last modified date in Markdown files + run: python .github/workflows/update_date.py + + - name: Commit changes + run: | + git add -A + git commit -m "Update last modified date in Markdown files" || echo "No changes to commit" + git push origin HEAD:${{ github.event.pull_request.head.ref }} diff --git a/README.md b/README.md index c5b1a47..279d557 100644 --- a/README.md +++ b/README.md @@ -20,14 +20,28 @@ Last updated: 2025-02-21 +## Workspace + +## Authoring + +## Assets + +## Manage + +| Compute Type | Description | Purpose | Ideal Use Cases | Key Features | +|----------------------|-------------|---------|------------------|---------------| +| **Compute Instances** | Preconfigured VMs (CPU/GPU) with tools like VS Code, JupyterLab, and RStudio. | Interactive development and experimentation. | Data exploration, model prototyping, debugging. | Auto-shutdown, integrated notebooks, preinstalled ML frameworks. | +| **Compute Clusters** | Scalable clusters that auto-scale based on workload. Supports both CPU and GPU nodes. | Distributed training and batch inference. | Training large models, running parallel experiments. | Autoscaling, cost control, reusable across users. | +| **Kubernetes Clusters** | Includes AKS and attached Kubernetes clusters for production-grade deployments. | Real-time inference and scalable deployment. | Hosting REST endpoints, high-availability inference. | Load balancing, autoscaling, secure networking. | +| **Attached Compute** | External compute resources manually connected to Azure ML. | Leverage existing infrastructure. | Using Azure VMs, Databricks, or on-prem compute. | Flexibility, hybrid cloud support, reuse of existing resources. | +| **Serverless Instances** | Lightweight, on-demand compute (e.g., Azure Container Instances). | Quick testing and low-scale inference. | Temporary model deployment, dev/test environments. | No infrastructure management, fast startup, cost-effective. | +