-
Notifications
You must be signed in to change notification settings - Fork 42
Open
Description
In the tutorial, loading the pre-trained model does not work.
model = load_model('./model/model.h5')Gives:
---------------------------------------------------------------------------
SystemError Traceback (most recent call last)
<ipython-input-26-5d87631adf41> in <module>()
----> 1 model = load_model('./model/model.h5')
~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/models.py in load_model(filepath, custom_objects, compile)
237 raise ValueError('No model found in config file.')
238 model_config = json.loads(model_config.decode('utf-8'))
--> 239 model = model_from_config(model_config, custom_objects=custom_objects)
240
241 # set weights
~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/models.py in model_from_config(config, custom_objects)
311 'Maybe you meant to use '
312 '`Sequential.from_config(config)`?')
--> 313 return layer_module.deserialize(config, custom_objects=custom_objects)
314
315
~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/layers/__init__.py in deserialize(config, custom_objects)
52 module_objects=globs,
53 custom_objects=custom_objects,
---> 54 printable_module_name='layer')
~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
137 return cls.from_config(config['config'],
138 custom_objects=dict(list(_GLOBAL_CUSTOM_OBJECTS.items()) +
--> 139 list(custom_objects.items())))
140 with CustomObjectScope(custom_objects):
141 return cls.from_config(config['config'])
~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/models.py in from_config(cls, config, custom_objects)
1212 for conf in config:
1213 layer = layer_module.deserialize(conf, custom_objects=custom_objects)
-> 1214 model.add(layer)
1215 return model
1216
~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/models.py in add(self, layer)
473 output_shapes=[self.outputs[0]._keras_shape])
474 else:
--> 475 output_tensor = layer(self.outputs[0])
476 if isinstance(output_tensor, list):
477 raise TypeError('All layers in a Sequential model '
~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs)
600
601 # Actually call the layer, collecting output(s), mask(s), and shape(s).
--> 602 output = self.call(inputs, **kwargs)
603 output_mask = self.compute_mask(inputs, previous_mask)
604
~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/layers/core.py in call(self, inputs, mask)
648 if has_arg(self.function, 'mask'):
649 arguments['mask'] = mask
--> 650 return self.function(inputs, **arguments)
651
652 def compute_mask(self, inputs, mask=None):
~/sw/miniconda3/envs/mcfly-tutorial/lib/python3.6/site-packages/keras/layers/core.py in <lambda>(x)
176
177 # Input shape
--> 178 4D tensor with shape:
179 `(samples, channels, rows, cols)` if data_format='channels_first'
180 or 4D tensor with shape:
SystemError: unknown opcodeThis is on macOS, with conda Python 3.6.2. pip freeze gives the following list:
appnope==0.1.0
bleach==1.5.0
certifi==2016.2.28
cycler==0.10.0
decorator==4.1.2
entrypoints==0.2.3
h5py==2.7.0
html5lib==0.9999999
ipykernel==4.6.1
ipython==6.1.0
ipython-genutils==0.2.0
ipywidgets==6.0.0
jedi==0.10.2
Jinja2==2.9.6
jsonschema==2.6.0
jupyter==1.0.0
jupyter-client==5.1.0
jupyter-console==5.2.0
jupyter-core==4.3.0
Keras==2.0.8
Markdown==2.6.9
MarkupSafe==1.0
matplotlib==2.0.2
mcfly==1.0.1
mistune==0.7.4
nbconvert==5.2.1
nbformat==4.4.0
notebook==5.0.0
numpy==1.13.1
pandas==0.20.3
pandocfilters==1.4.2
pexpect==4.2.1
pickleshare==0.7.4
prompt-toolkit==1.0.15
protobuf==3.4.0
ptyprocess==0.5.2
Pygments==2.2.0
pyparsing==2.2.0
python-dateutil==2.6.1
pytz==2017.2
PyYAML==3.12
pyzmq==16.0.2
qtconsole==4.3.1
scikit-learn==0.19.0
scipy==0.19.1
simplegeneric==0.8.1
six==1.10.0
tensorflow==1.3.0
tensorflow-tensorboard==0.1.6
terminado==0.6
testpath==0.3
tornado==4.5.2
traitlets==4.3.2
wcwidth==0.1.7
Werkzeug==0.12.2
widgetsnbextension==3.0.2
Metadata
Metadata
Assignees
Labels
No labels