@@ -43,12 +43,12 @@ def model_simple():
4343 simulation_df [SIMULATION ] = [2 , 2 , 19 , 20 ]
4444
4545 expected_residuals = {
46- (2 - 0 ) / 2 ,
47- (2 - 1 ) / 2 ,
48- (19 - 20 ) / 3 ,
49- (20 - 22 ) / 3 ,
46+ (0 - 2 ) / 2 ,
47+ (1 - 2 ) / 2 ,
48+ (20 - 19 ) / 3 ,
49+ (22 - 20 ) / 3 ,
5050 }
51- expected_residuals_nonorm = {2 - 0 , 2 - 1 , 19 - 20 , 20 - 22 }
51+ expected_residuals_nonorm = {0 - 2 , 1 - 2 , 20 - 19 , 22 - 20 }
5252 expected_llh = (
5353 - 0.5 * (np .array (list (expected_residuals )) ** 2 ).sum ()
5454 - 0.5 * np .log (2 * np .pi * np .array ([2 , 2 , 3 , 3 ]) ** 2 ).sum ()
@@ -93,8 +93,8 @@ def model_replicates():
9393 )
9494 simulation_df [SIMULATION ] = [2 , 2 ]
9595
96- expected_residuals = {(2 - 0 ) / 2 , (2 - 1 ) / 2 }
97- expected_residuals_nonorm = {2 - 0 , 2 - 1 }
96+ expected_residuals = {(0 - 2 ) / 2 , (1 - 2 ) / 2 }
97+ expected_residuals_nonorm = {0 - 2 , 1 - 2 }
9898 expected_llh = (
9999 - 0.5 * (np .array (list (expected_residuals )) ** 2 ).sum ()
100100 - 0.5 * np .log (2 * np .pi * np .array ([2 , 2 ]) ** 2 ).sum ()
@@ -141,12 +141,12 @@ def model_scalings():
141141 simulation_df [SIMULATION ] = [2 , 3 ]
142142
143143 expected_residuals = {
144- (np .log (2 ) - np .log (0.5 )) / 2 ,
145- (np .log (3 ) - np .log (1 )) / 2 ,
144+ (np .log (0.5 ) - np .log (2 )) / 2 ,
145+ (np .log (1 ) - np .log (3 )) / 2 ,
146146 }
147147 expected_residuals_nonorm = {
148- np .log (2 ) - np .log (0.5 ),
149- np .log (3 ) - np .log (1 ),
148+ np .log (0.5 ) - np .log (2 ),
149+ np .log (1 ) - np .log (3 ),
150150 }
151151 expected_llh = (
152152 - 0.5 * (np .array (list (expected_residuals )) ** 2 ).sum ()
@@ -201,21 +201,20 @@ def model_non_numeric_overrides():
201201 simulation_df [SIMULATION ] = [2 , 3 ]
202202
203203 expected_residuals = {
204- (np .log (2 ) - np .log (0.5 )) / (2 * 7 + 8 + 4 + np . log ( 2 ) ),
205- (np .log (3 ) - np .log (1 )) / (2 * 2 + 3 + 4 + np . log ( 3 ) ),
204+ (np .log (0.5 ) - np .log (2 )) / (2 * 7 + 8 + 4 + 2 ),
205+ (np .log (1 ) - np .log (3 )) / (2 * 2 + 3 + 4 + 3 ),
206206 }
207207 expected_residuals_nonorm = {
208- np .log (2 ) - np .log (0.5 ),
209- np .log (3 ) - np .log (1 ),
208+ np .log (0.5 ) - np .log (2 ),
209+ np .log (1 ) - np .log (3 ),
210210 }
211211 expected_llh = (
212212 - 0.5 * (np .array (list (expected_residuals )) ** 2 ).sum ()
213213 - 0.5
214214 * np .log (
215215 2
216216 * np .pi
217- * np .array ([2 * 7 + 8 + 4 + np .log (2 ), 2 * 2 + 3 + 4 + np .log (3 )])
218- ** 2
217+ * np .array ([2 * 7 + 8 + 4 + 2 , 2 * 2 + 3 + 4 + 3 ]) ** 2
219218 * np .array ([0.5 , 1 ]) ** 2
220219 ).sum ()
221220 )
@@ -261,8 +260,8 @@ def model_custom_likelihood():
261260 )
262261 simulation_df [SIMULATION ] = [2 , 3 ]
263262
264- expected_residuals = {(np .log (2 ) - np .log (0.5 )) / 2 , (3 - 2 ) / 1.5 }
265- expected_residuals_nonorm = {np .log (2 ) - np .log (0.5 ), 3 - 2 }
263+ expected_residuals = {(np .log (0.5 ) - np .log (2 )) / 2 , (2 - 3 ) / 1.5 }
264+ expected_residuals_nonorm = {np .log (0.5 ) - np .log (2 ), 2 - 3 }
266265 expected_llh = (
267266 - np .abs (list (expected_residuals )).sum ()
268267 - np .log (2 * np .array ([2 , 1.5 ]) * np .array ([0.5 , 1 ])).sum ()
0 commit comments