Skip to content

Commit c09921a

Browse files
committed
expected residuals
1 parent fef9946 commit c09921a

File tree

2 files changed

+25
-25
lines changed

2 files changed

+25
-25
lines changed

tests/v1/test_calculate.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,14 +4,14 @@
44
import pandas as pd
55
import pytest
66

7-
import petab
8-
from petab import (
7+
from petab.v1 import get_observable_df, get_parameter_df
8+
from petab.v1.C import *
9+
from petab.v1.calculate import (
910
calculate_chi2,
1011
calculate_llh,
1112
calculate_residuals,
1213
calculate_single_llh,
1314
)
14-
from petab.C import *
1515

1616

1717
def model_simple():
@@ -56,8 +56,8 @@ def model_simple():
5656

5757
return (
5858
measurement_df,
59-
petab.get_observable_df(observable_df),
60-
petab.get_parameter_df(parameter_df),
59+
get_observable_df(observable_df),
60+
get_parameter_df(parameter_df),
6161
simulation_df,
6262
expected_residuals,
6363
expected_residuals_nonorm,

tests/v2/test_calculate.py

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
import pandas as pd
55
import pytest
66

7-
import petab
7+
from petab.v2 import get_observable_df, get_parameter_df
88
from petab.v2.C import *
99
from petab.v2.calculate import (
1010
calculate_chi2,
@@ -43,21 +43,21 @@ def model_simple():
4343
simulation_df[SIMULATION] = [2, 2, 19, 20]
4444

4545
expected_residuals = {
46-
(2 - 0) / 2,
47-
(2 - 1) / 2,
48-
(19 - 20) / 3,
49-
(20 - 22) / 3,
46+
(0 - 2) / 2,
47+
(1 - 2) / 2,
48+
(20 - 19) / 3,
49+
(22 - 20) / 3,
5050
}
51-
expected_residuals_nonorm = {2 - 0, 2 - 1, 19 - 20, 20 - 22}
51+
expected_residuals_nonorm = {0 - 2, 1 - 2, 20 - 19, 22 - 20}
5252
expected_llh = (
5353
-0.5 * (np.array(list(expected_residuals)) ** 2).sum()
5454
- 0.5 * np.log(2 * np.pi * np.array([2, 2, 3, 3]) ** 2).sum()
5555
)
5656

5757
return (
5858
measurement_df,
59-
petab.get_observable_df(observable_df),
60-
petab.get_parameter_df(parameter_df),
59+
get_observable_df(observable_df),
60+
get_parameter_df(parameter_df),
6161
simulation_df,
6262
expected_residuals,
6363
expected_residuals_nonorm,
@@ -93,8 +93,8 @@ def model_replicates():
9393
)
9494
simulation_df[SIMULATION] = [2, 2]
9595

96-
expected_residuals = {(2 - 0) / 2, (2 - 1) / 2}
97-
expected_residuals_nonorm = {2 - 0, 2 - 1}
96+
expected_residuals = {(0 - 2) / 2, (1 - 2) / 2}
97+
expected_residuals_nonorm = {0 - 2, 1 - 2}
9898
expected_llh = (
9999
-0.5 * (np.array(list(expected_residuals)) ** 2).sum()
100100
- 0.5 * np.log(2 * np.pi * np.array([2, 2]) ** 2).sum()
@@ -141,12 +141,12 @@ def model_scalings():
141141
simulation_df[SIMULATION] = [2, 3]
142142

143143
expected_residuals = {
144-
(np.log(2) - np.log(0.5)) / 2,
145-
(np.log(3) - np.log(1)) / 2,
144+
(np.log(0.5) - np.log(2)) / 2,
145+
(np.log(1) - np.log(3)) / 2,
146146
}
147147
expected_residuals_nonorm = {
148-
np.log(2) - np.log(0.5),
149-
np.log(3) - np.log(1),
148+
np.log(0.5) - np.log(2),
149+
np.log(1) - np.log(3),
150150
}
151151
expected_llh = (
152152
-0.5 * (np.array(list(expected_residuals)) ** 2).sum()
@@ -204,12 +204,12 @@ def model_non_numeric_overrides():
204204
simulation_df[SIMULATION] = [2, 3]
205205

206206
expected_residuals = {
207-
(np.log(2) - np.log(0.5)) / (2 * 7 + 8 + 4 + np.log(2)),
208-
(np.log(3) - np.log(1)) / (2 * 2 + 3 + 4 + np.log(3)),
207+
(np.log(0.5) - np.log(2)) / (2 * 7 + 8 + 4 + np.log(2)),
208+
(np.log(1) - np.log(3)) / (2 * 2 + 3 + 4 + np.log(3)),
209209
}
210210
expected_residuals_nonorm = {
211-
np.log(2) - np.log(0.5),
212-
np.log(3) - np.log(1),
211+
np.log(0.5) - np.log(2),
212+
np.log(1) - np.log(3),
213213
}
214214
expected_llh = (
215215
-0.5 * (np.array(list(expected_residuals)) ** 2).sum()
@@ -263,8 +263,8 @@ def model_custom_likelihood():
263263
)
264264
simulation_df[SIMULATION] = [2, 3]
265265

266-
expected_residuals = {(np.log(2) - np.log(0.5)) / 2, (3 - 2) / 1.5}
267-
expected_residuals_nonorm = {np.log(2) - np.log(0.5), 3 - 2}
266+
expected_residuals = {(np.log(0.5) - np.log(2)) / 2, (2 - 3) / 1.5}
267+
expected_residuals_nonorm = {np.log(0.5) - np.log(2), 2 - 3}
268268
expected_llh = (
269269
-np.abs(list(expected_residuals)).sum()
270270
- np.log(2 * np.array([2, 1.5]) * np.array([0.5, 1])).sum()

0 commit comments

Comments
 (0)