|
| 1 | +#!/usr/bin/env python |
| 2 | +from functools import partial |
| 3 | +from itertools import tee |
| 4 | + |
| 5 | +class Loader(): |
| 6 | + def example_batch_generator(self,n): |
| 7 | + for batch in range(n): |
| 8 | + yield batch |
| 9 | + |
| 10 | +class MPIModel(): |
| 11 | + def __init__(self,batch_generator): |
| 12 | + self.batch_iterator = batch_generator |
| 13 | + |
| 14 | + def train_epochs(self,M): |
| 15 | + num_total = 8 |
| 16 | + for epoch in range(M): |
| 17 | + num_so_far = 0 |
| 18 | + print ("Batch iter. summary: {}{}".format(self,self.batch_iterator)) |
| 19 | + for batch in self.batch_iterator(): |
| 20 | + num_so_far += 1 |
| 21 | + |
| 22 | + whatever=batch |
| 23 | + print ("Next batch id: {}".format(batch)) |
| 24 | + if num_so_far > num_total: break |
| 25 | + print "+++++++" |
| 26 | + |
| 27 | + |
| 28 | +class MPIModel_default(): |
| 29 | + def __init__(self,batch_generator): |
| 30 | + self.batch_iterator = batch_generator |
| 31 | + |
| 32 | + def train_epochs(self,M): |
| 33 | + num_total = 8 #number of samples per epoch |
| 34 | + batch_generator_func = self.batch_iterator() |
| 35 | + |
| 36 | + for iepoch in range(M): |
| 37 | + #print ("Batch iter. summary: {}{} epoch: {}".format(self,self.batch_iterator,iepoch)) |
| 38 | + num_so_far = 0 |
| 39 | + |
| 40 | + while num_so_far < num_total: |
| 41 | + num_so_far += 1 |
| 42 | + |
| 43 | + try: |
| 44 | + batch = batch_generator_func.next() |
| 45 | + except: |
| 46 | + batch_generator_func = self.batch_iterator() |
| 47 | + batch = batch_generator_func.next() |
| 48 | + print ("Next batch id: {}".format(batch)) |
| 49 | + |
| 50 | + print "+++++++" |
| 51 | + |
| 52 | + |
| 53 | + |
| 54 | +def main(): |
| 55 | + num_batches = 10 |
| 56 | + epochs = 3 |
| 57 | + |
| 58 | + loader = Loader() |
| 59 | + batch_generator = partial(loader.example_batch_generator,n=num_batches) |
| 60 | + my_example_class = MPIModel(batch_generator) |
| 61 | + my_example_class.train_epochs(epochs) |
| 62 | + |
| 63 | +def main_default(): |
| 64 | + num_batches = 10 |
| 65 | + epochs = 3 |
| 66 | + |
| 67 | + loader = Loader() |
| 68 | + batch_generator = partial(loader.example_batch_generator,n=num_batches) |
| 69 | + my_example_class = MPIModel_default(batch_generator) |
| 70 | + my_example_class.train_epochs(epochs) |
| 71 | + |
| 72 | +if __name__=='__main__': |
| 73 | + import timeit |
| 74 | + #print min(timeit.Timer(setup=main).repeat(7, 1000)) |
| 75 | + print min(timeit.Timer(setup=main_default).repeat(7, 1000)) |
0 commit comments