|
| 1 | +/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#include <gtest/gtest.h> |
| 16 | +#include <vector> |
| 17 | +#include <string> |
| 18 | +#include "paddle/gserver/layers/DataLayer.h" |
| 19 | +#include "ModelConfig.pb.h" |
| 20 | +#include "paddle/trainer/Trainer.h" |
| 21 | +#include "paddle/utils/GlobalConstants.h" |
| 22 | +#include "paddle/gserver/layers/ExpandConvTransLayer.h" |
| 23 | +#include "paddle/math/MathUtils.h" |
| 24 | + |
| 25 | +#include "TestUtil.h" |
| 26 | +#include "LayerGradUtil.h" |
| 27 | + |
| 28 | +using namespace paddle; // NOLINT |
| 29 | +using namespace std; // NOLINT |
| 30 | + |
| 31 | +P_DECLARE_bool(use_gpu); |
| 32 | +P_DECLARE_int32(gpu_id); |
| 33 | +P_DECLARE_double(checkgrad_eps); |
| 34 | +P_DECLARE_bool(thread_local_rand_use_global_seed); |
| 35 | +P_DECLARE_bool(prev_batch_state); |
| 36 | + |
| 37 | +// Do one forward pass of convTrans layer and check to see if its output |
| 38 | +// matches the given result |
| 39 | +MatrixPtr doOneConvTest(size_t imgSize, size_t output_x, size_t stride, |
| 40 | + size_t padding, size_t filter_size, size_t channel, |
| 41 | + size_t numfilters, size_t groups, MatrixPtr& inputData, |
| 42 | + real* param, bool useGpu) { |
| 43 | + TestConfig config; |
| 44 | + config.biasSize = numfilters; |
| 45 | + if (useGpu) { |
| 46 | + config.layerConfig.set_type("cudnn_conv"); |
| 47 | + } else { |
| 48 | + config.layerConfig.set_type("exconv"); |
| 49 | + } |
| 50 | + config.layerConfig.set_num_filters(numfilters); |
| 51 | + config.layerConfig.set_partial_sum(1); |
| 52 | + config.layerConfig.set_shared_biases(true); |
| 53 | + |
| 54 | + size_t weightSize = channel* filter_size * filter_size * |
| 55 | + config.layerConfig.num_filters() / groups; |
| 56 | + config.inputDefs.push_back({INPUT_DATA, "layer_0", |
| 57 | + imgSize * imgSize * channel, |
| 58 | + weightSize}); |
| 59 | + LayerInputConfig* input = config.layerConfig.add_inputs(); |
| 60 | + ConvConfig* conv = input->mutable_conv_conf(); |
| 61 | + conv->set_filter_size(filter_size); |
| 62 | + conv->set_filter_size_y(filter_size); |
| 63 | + conv->set_channels(channel); |
| 64 | + conv->set_padding(padding); |
| 65 | + conv->set_padding_y(padding); |
| 66 | + conv->set_stride(stride); |
| 67 | + conv->set_stride_y(stride); |
| 68 | + conv->set_groups(groups); |
| 69 | + conv->set_filter_channels(channel/groups); |
| 70 | + conv->set_img_size(imgSize); |
| 71 | + conv->set_output_x(output_x); |
| 72 | + |
| 73 | + config.layerConfig.set_size(conv->output_x() * conv->output_x() * |
| 74 | + config.layerConfig.num_filters()); |
| 75 | + config.layerConfig.set_name("conv"); |
| 76 | + |
| 77 | + std::vector<DataLayerPtr> dataLayers; |
| 78 | + LayerMap layerMap; |
| 79 | + vector<Argument> datas; |
| 80 | + initDataLayer(config, &dataLayers, &datas, &layerMap, "conv", |
| 81 | + 1, false, useGpu); |
| 82 | + dataLayers[0]->getOutputValue()->zeroMem(); |
| 83 | + dataLayers[0]->getOutputValue()->copyFrom(*inputData); |
| 84 | + |
| 85 | + // test layer initialize |
| 86 | + std::vector<ParameterPtr> parameters; |
| 87 | + LayerPtr convLayer; |
| 88 | + initTestLayer(config, &layerMap, ¶meters, &convLayer); |
| 89 | + convLayer->getBiasParameter()->zeroMem(); |
| 90 | + convLayer->getParameters()[0]->zeroMem(); |
| 91 | + convLayer->getParameters()[0]->getBuf(PARAMETER_VALUE)->copyFrom(param, |
| 92 | + weightSize); |
| 93 | + convLayer->forward(PASS_GC); |
| 94 | + |
| 95 | + return convLayer->getOutputValue(); |
| 96 | +} |
| 97 | + |
| 98 | +TEST(Layer, convParaUnified) { |
| 99 | + #ifndef PADDLE_ONLY_CPU |
| 100 | + MatrixPtr input, resultCpu, resultGpu; |
| 101 | + input = Matrix::create(1, 4 * 4, false, false); |
| 102 | + float inputData[] = {1, 2, 3, 4, |
| 103 | + 5, 6, 7, 8, |
| 104 | + 9, 10, 11, 12, |
| 105 | + 13, 14, 15, 16}; |
| 106 | + float param[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, |
| 107 | + 9, 8, 7, 6, 5, 4, 3, 2, 1}; |
| 108 | + |
| 109 | + input->setData(inputData); |
| 110 | + |
| 111 | + resultCpu = doOneConvTest(/* imgSize */ 4, |
| 112 | + /* output_x */ 2, |
| 113 | + /* stride */ 1, |
| 114 | + /* padding */ 0, |
| 115 | + /* filter_size */ 3, |
| 116 | + /*channel*/ 1, |
| 117 | + /*numfilters*/ 2, |
| 118 | + /*groups*/ 1, |
| 119 | + input, param, false); |
| 120 | + |
| 121 | + resultGpu = doOneConvTest(/* imgSize */ 4, |
| 122 | + /* output_x */ 2, |
| 123 | + /* stride */ 1, |
| 124 | + /* padding */ 0, |
| 125 | + /* filter_size */ 3, |
| 126 | + /*channel*/ 1, |
| 127 | + /*numfilters*/ 2, |
| 128 | + /*groups*/ 1, |
| 129 | + input, param, true); |
| 130 | + checkMatrixEqual(resultCpu, resultGpu); |
| 131 | + |
| 132 | + input = Matrix::create(1, 3 * 3 * 2, false, false); |
| 133 | + float inputData2[] = {1, 2, 3, |
| 134 | + 4, 5, 6, |
| 135 | + 7, 8, 9, |
| 136 | + |
| 137 | + 10, 11, 12, |
| 138 | + 13, 14, 15, |
| 139 | + 16, 17, 18}; |
| 140 | + float param2[] = {1, 2, 3, 4, 5, 6, 7, 8, |
| 141 | + 8, 7, 6, 5, 4, 3, 2, 1}; |
| 142 | + |
| 143 | + input->setData(inputData2); |
| 144 | + |
| 145 | + resultCpu = doOneConvTest(/* imgSize */ 3, |
| 146 | + /* output_x */ 2, |
| 147 | + /* stride */ 1, |
| 148 | + /* padding */ 0, |
| 149 | + /* filter_size */ 2, |
| 150 | + /*channel*/ 2, |
| 151 | + /*numfilters*/ 2, |
| 152 | + /*groups*/ 1, |
| 153 | + input, param2, false); |
| 154 | + |
| 155 | + resultGpu = doOneConvTest(/* imgSize */ 3, |
| 156 | + /* output_x */ 2, |
| 157 | + /* stride */ 1, |
| 158 | + /* padding */ 0, |
| 159 | + /* filter_size */ 2, |
| 160 | + /*channel*/ 2, |
| 161 | + /*numfilters*/ 2, |
| 162 | + /*groups*/ 1, |
| 163 | + input, param2, true); |
| 164 | + checkMatrixEqual(resultCpu, resultGpu); |
| 165 | + |
| 166 | + |
| 167 | + float param3[] = {1, 2, 3, 4, |
| 168 | + 4, 3, 2, 1}; |
| 169 | + |
| 170 | + resultCpu = doOneConvTest(/* imgSize */ 3, |
| 171 | + /* output_x */ 2, |
| 172 | + /* stride */ 1, |
| 173 | + /* padding */ 0, |
| 174 | + /* filter_size */ 2, |
| 175 | + /*channel*/ 2, |
| 176 | + /*numfilters*/ 2, |
| 177 | + /*groups*/ 2, |
| 178 | + input, param3, false); |
| 179 | + |
| 180 | + resultGpu = doOneConvTest(/* imgSize */ 3, |
| 181 | + /* output_x */ 2, |
| 182 | + /* stride */ 1, |
| 183 | + /* padding */ 0, |
| 184 | + /* filter_size */ 2, |
| 185 | + /*channel*/ 2, |
| 186 | + /*numfilters*/ 2, |
| 187 | + /*groups*/ 2, |
| 188 | + input, param3, true); |
| 189 | + checkMatrixEqual(resultCpu, resultGpu); |
| 190 | + #endif |
| 191 | +} |
| 192 | + |
| 193 | +int main(int argc, char** argv) { |
| 194 | + testing::InitGoogleTest(&argc, argv); |
| 195 | + initMain(argc, argv); |
| 196 | + FLAGS_thread_local_rand_use_global_seed = true; |
| 197 | + srand(1); |
| 198 | + return RUN_ALL_TESTS(); |
| 199 | +} |
0 commit comments