|
| 1 | +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#pragma once |
| 16 | + |
| 17 | +#include <glog/logging.h> |
| 18 | + |
| 19 | +#include "TensorShape.h" |
| 20 | +#include "TensorType.h" |
| 21 | +#include "paddle/math/CpuSparseMatrix.h" |
| 22 | +#include "paddle/math/Matrix.h" |
| 23 | +#include "paddle/math/SparseMatrix.h" |
| 24 | + |
| 25 | +namespace paddle { |
| 26 | + |
| 27 | +enum BufferType { |
| 28 | + TENSOR_NORMAL = 0, |
| 29 | + TENSOR_SEQUENCE_ID = 1, |
| 30 | + TENSOR_SEQUENCE_DATA = 2, |
| 31 | + TENSOR_SPARSE = 3 |
| 32 | +}; |
| 33 | + |
| 34 | +enum SparseDataType { |
| 35 | + SPARSE_NO_VALUE = 0, // do not need value pointer, all values are 1 |
| 36 | + SPARSE_FLOAT_VALUE = 1 |
| 37 | +}; |
| 38 | + |
| 39 | +enum SparseDataFormat { SPARSE_CSR_FORMAT = 0, SPARSE_CSC_FORMAT = 1 }; |
| 40 | + |
| 41 | +/** |
| 42 | + * BufferArg used as the argument type for Function. |
| 43 | + */ |
| 44 | +class BufferArg; |
| 45 | +class SequenceArg; |
| 46 | +class SparseMatrixArg; |
| 47 | +typedef std::shared_ptr<BufferArg> BufferArgPtr; |
| 48 | + |
| 49 | +class BufferArgs { |
| 50 | +public: |
| 51 | + BufferArgs() {} |
| 52 | + size_t size() const { return args_.size(); } |
| 53 | + |
| 54 | + // add argument into BufferArgss |
| 55 | + template <typename Tensor> |
| 56 | + void addArg(const Tensor& arg) { |
| 57 | + args_.push_back(std::make_shared<BufferArg>(arg)); |
| 58 | + } |
| 59 | + |
| 60 | + void addArg(const Matrix& arg, const TensorShape& shape); |
| 61 | + |
| 62 | + void addArg(const CpuSparseMatrix& arg); |
| 63 | + void addArg(const GpuSparseMatrix& arg); |
| 64 | + |
| 65 | + // get argument |
| 66 | + const BufferArg& operator[](size_t num) const { |
| 67 | + CHECK_LT(num, args_.size()); |
| 68 | + return *args_[num]; |
| 69 | + } |
| 70 | + |
| 71 | +private: |
| 72 | + std::vector<BufferArgPtr> args_; |
| 73 | +}; |
| 74 | + |
| 75 | +// an array of arbitrary dimensions |
| 76 | +class BufferArg { |
| 77 | +public: |
| 78 | + BufferArg(void* buf, ValueType valueType, const TensorShape& shape) |
| 79 | + : buf_(buf), valueType_(valueType), shape_(shape) {} |
| 80 | + |
| 81 | + BufferArg(void* buf, ValueType valueType) |
| 82 | + : buf_(buf), valueType_(valueType) {} |
| 83 | + |
| 84 | + BufferArg(const Matrix& matrix) |
| 85 | + : buf_((void*)matrix.getData()), |
| 86 | + valueType_(DataType<real>::value), |
| 87 | + shape_(2) { |
| 88 | + shape_.setDim(0, matrix.getHeight()); |
| 89 | + shape_.setDim(1, matrix.getWidth()); |
| 90 | + } |
| 91 | + |
| 92 | + BufferArg(const Matrix& matrix, const TensorShape& shape) |
| 93 | + : buf_((void*)matrix.getData()), |
| 94 | + valueType_(DataType<real>::value), |
| 95 | + shape_(shape) { |
| 96 | + CHECK_EQ(matrix.getElementCnt(), shape.getElements()); |
| 97 | + } |
| 98 | + |
| 99 | + BufferArg(const Vector& vector) |
| 100 | + : buf_((void*)vector.getData()), |
| 101 | + valueType_(DataType<real>::value), |
| 102 | + shape_(1) { |
| 103 | + shape_.setDim(0, vector.getSize()); |
| 104 | + } |
| 105 | + |
| 106 | + BufferArg(const IVector& vector) |
| 107 | + : buf_((void*)vector.getData()), valueType_(VALUE_TYPE_INT32), shape_(1) { |
| 108 | + shape_.setDim(0, vector.getSize()); |
| 109 | + } |
| 110 | + |
| 111 | + template <DeviceType DType> |
| 112 | + typename Tensor<real, DType>::Matrix matrix() const { |
| 113 | + CHECK(buf_); |
| 114 | + CHECK(valueType_ == DataType<real>::value); |
| 115 | + // CHECK(deviceType_ == DType); |
| 116 | + CHECK_EQ(2, shape_.ndims()); |
| 117 | + return typename Tensor<real, DType>::Matrix( |
| 118 | + reinterpret_cast<real*>(buf_), shape_[0], shape_[1]); |
| 119 | + } |
| 120 | + |
| 121 | + template <typename VType, DeviceType DType> |
| 122 | + typename Tensor<VType, DType>::Vector vector() const { |
| 123 | + CHECK(buf_); |
| 124 | + CHECK(valueType_ == DataType<VType>::value); |
| 125 | + // CHECK(deviceType_ == DType); |
| 126 | + CHECK_EQ(1, shape_.ndims()); |
| 127 | + return typename Tensor<VType, DType>::Vector( |
| 128 | + shape_[0], reinterpret_cast<VType*>(buf_)); |
| 129 | + } |
| 130 | + |
| 131 | + virtual ~BufferArg() {} |
| 132 | + |
| 133 | + template <typename T> |
| 134 | + T* data() const { |
| 135 | + return reinterpret_cast<T*>(buf_); |
| 136 | + } |
| 137 | + |
| 138 | + void* data() const { return buf_; } |
| 139 | + ValueType valueType() const { return valueType_; } |
| 140 | + BufferType bufferType() const { return bufferType_; } |
| 141 | + const TensorShape& shape() const { return shape_; } |
| 142 | + |
| 143 | + const SequenceArg& sequence() const; |
| 144 | + const SparseMatrixArg& sparse() const; |
| 145 | + |
| 146 | +protected: |
| 147 | + void* buf_; |
| 148 | + ValueType valueType_; |
| 149 | + TensorShape shape_; |
| 150 | + BufferType bufferType_; |
| 151 | + // leading dimensions. The size is dims_.size() |
| 152 | + // Dims lds_; |
| 153 | +}; |
| 154 | + |
| 155 | +// sequence start positions in a mini-batch of sequences |
| 156 | +// shape_.ndims() == 1 |
| 157 | +// valueType_ = int32 |
| 158 | +// if a < b than value_.buf_[a] < value_.buf_[b] |
| 159 | +class SequenceIdArg : public BufferArg { |
| 160 | +public: |
| 161 | + SequenceIdArg(void* buf, const TensorShape& shape) |
| 162 | + : BufferArg(buf, VALUE_TYPE_INT32, shape) { |
| 163 | + CHECK_EQ(shape_.ndims(), 1); |
| 164 | + numSeqs_ = shape_[0] - 1; |
| 165 | + } |
| 166 | + |
| 167 | + SequenceIdArg(const IVector& vector) : BufferArg(vector) { |
| 168 | + numSeqs_ = shape_[0] - 1; |
| 169 | + } |
| 170 | + |
| 171 | + ~SequenceIdArg() {} |
| 172 | + |
| 173 | + size_t numSeqs() const { return numSeqs_; } |
| 174 | + |
| 175 | +private: |
| 176 | + size_t numSeqs_; |
| 177 | +}; |
| 178 | + |
| 179 | +// sequence data |
| 180 | +class SequenceArg : public BufferArg { |
| 181 | +public: |
| 182 | + SequenceArg(void* buf, |
| 183 | + ValueType valueType, |
| 184 | + const TensorShape& shape, |
| 185 | + const SequenceIdArg& startPositions) |
| 186 | + : BufferArg(buf, valueType, shape), startPositions_(startPositions) {} |
| 187 | + |
| 188 | + SequenceArg(const Matrix& matrix, const IVector& vector) |
| 189 | + : BufferArg(matrix), startPositions_(vector) {} |
| 190 | + |
| 191 | + ~SequenceArg() {} |
| 192 | + |
| 193 | + void* getIdBuf() const { return startPositions_.data(); } |
| 194 | + size_t numSeqs() const { return startPositions_.numSeqs(); } |
| 195 | + |
| 196 | +private: |
| 197 | + SequenceIdArg startPositions_; |
| 198 | +}; |
| 199 | + |
| 200 | +// sparse matrix |
| 201 | +// valueType_ == float or double |
| 202 | +// shape_.ndims() == 2 |
| 203 | +class SparseMatrixArg : public BufferArg { |
| 204 | +public: |
| 205 | + SparseMatrixArg(void* buf, |
| 206 | + ValueType valueType, |
| 207 | + const TensorShape& shape, |
| 208 | + const BufferArg& row, |
| 209 | + const BufferArg& col, |
| 210 | + size_t nnz, |
| 211 | + SparseDataFormat format, |
| 212 | + SparseDataType type) |
| 213 | + : BufferArg(buf, valueType, shape), |
| 214 | + row_(row), |
| 215 | + col_(col), |
| 216 | + nnz_(nnz), |
| 217 | + format_(format), |
| 218 | + type_(type) { |
| 219 | + CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE)); |
| 220 | + CHECK_EQ(shape_.ndims(), 2); |
| 221 | + CHECK_EQ(row_.shape().ndims(), 1); |
| 222 | + CHECK_EQ(col_.shape().ndims(), 1); |
| 223 | + if (format == SPARSE_CSR_FORMAT) { |
| 224 | + CHECK_EQ(nnz, col.shape()[0]); |
| 225 | + } else if (format == SPARSE_CSC_FORMAT) { |
| 226 | + CHECK_EQ(nnz, row.shape()[0]); |
| 227 | + } |
| 228 | + } |
| 229 | + |
| 230 | + SparseMatrixArg(const CpuSparseMatrix& sparse) |
| 231 | + : BufferArg(sparse), |
| 232 | + row_((void*)sparse.getRows(), VALUE_TYPE_INT32), |
| 233 | + col_((void*)sparse.getCols(), VALUE_TYPE_INT32) {} |
| 234 | + |
| 235 | + SparseMatrixArg(const GpuSparseMatrix& sparse) |
| 236 | + : BufferArg(sparse), |
| 237 | + row_((void*)sparse.getRows(), VALUE_TYPE_INT32), |
| 238 | + col_((void*)sparse.getCols(), VALUE_TYPE_INT32) {} |
| 239 | + |
| 240 | + ~SparseMatrixArg() {} |
| 241 | + |
| 242 | + void* getRowBuf() const { return row_.data(); } |
| 243 | + |
| 244 | + void* getColBuf() const { return col_.data(); } |
| 245 | + |
| 246 | + size_t nnz() const { return nnz_; } |
| 247 | + |
| 248 | + SparseDataFormat dataFormat() const { return format_; } |
| 249 | + |
| 250 | + SparseDataType dataType() const { return type_; } |
| 251 | + |
| 252 | +private: |
| 253 | + BufferArg row_; |
| 254 | + BufferArg col_; |
| 255 | + size_t nnz_; |
| 256 | + SparseDataFormat format_; |
| 257 | + SparseDataType type_; |
| 258 | +}; |
| 259 | + |
| 260 | +} // namespace paddle |
0 commit comments