From 7bf08bd524185fafc0f4a122c045539a7b97f1fc Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 2 Dec 2016 15:29:27 -0500 Subject: [PATCH 01/17] Added kemeny, runKemeny, and example input --- input0 | 11 +++++ prefpy/kemeny.py | 102 +++++++++++++++++++++++++++++++++++++++++++++++ runKemeny.py | 33 +++++++++++++++ 3 files changed, 146 insertions(+) create mode 100644 input0 create mode 100644 prefpy/kemeny.py create mode 100644 runKemeny.py diff --git a/input0 b/input0 new file mode 100644 index 0000000..4aa9fbe --- /dev/null +++ b/input0 @@ -0,0 +1,11 @@ +3 +1,a +2,b +3,c +6,6,6 +1,1,2,3 +1,1,3,2 +1,2,3,1 +1,2,1,3 +1,3,1,2 +1,3,2,1 \ No newline at end of file diff --git a/prefpy/kemeny.py b/prefpy/kemeny.py new file mode 100644 index 0000000..7f02d04 --- /dev/null +++ b/prefpy/kemeny.py @@ -0,0 +1,102 @@ +''' +Authors: Tobe Ezekwenna, Sam Saks-Fithian, Aman Zargarpur +''' + +import itertools +from prefpy.mechanism import Mechanism + + +#===================================================================================== +#===================================================================================== + +class MechanismKemeny(Mechanism): + """ + The Kemeny mechanism. + """ + #===================================================================================== + + def __init__(self): + self.maximizeCandScore = False + + #===================================================================================== + + def getCandScoresMap(self, profile): + """ + Returns a dictonary that associates the integer representation of each candidate with + their place in the winning ranking. + + :ivar Profile profile: A Profile object that represents an election profile. + """ + + # Currently, we expect the profile to contain complete ordering over candidates. + elecType = profile.getElecType() + if elecType != "soc": + print("ERROR: unsupported election type") + exit() + + rankWeights = dict() + wmgMap = profile.getWmg() + for ranking in itertools.permutations(wmgMap.keys()): + # Initialize inconsistent weight to 0 + rankWeights[ranking] = 0.0 + + # For each pair of candidates in ranking, determine if edge/order in ranking + # is inconsistent with corresponding edge/order in the WMG of the profile + # Sum the weights of all such inconsistent edges + for cand1, cand2 in itertools.combinations(rankMap.keys(), 2): + # cand1 > cand2 in wmg + wmgOrd = 1 if (wmgMap[cand1][cand2] > 0) else 0 + # cand1 > cand2 in ranking + rankOrd = 1 if (ranking.index(cand1) < ranking.index(cand2)) else 0 + if wmgOrd != rankOrd: + rankWeights[ranking] += abs(wmgMap[cand1][cand2]) + + bestScore = min(rankWeights.values()) + winningRankings = [] + for ranking in rankWeights.keys(): + if rankWeights[ranking] == bestScore: + winningRankings.append(ranking) + + if len(winningRankings) > 1: + winRank = tiebreakRankings(winningRankings) + else: + winRank = winningRankings[0] + + return convertRankingToCandMap(winRank) + + #===================================================================================== + + def convertRankingToCandMap(self, ranking): + """ + Returns a dictonary that associates the integer representation of each candidate with + their place in the winning ranking. + + :ivar Tuple ranking: A tuple representing the winning order ranking of the canditates. + """ + candScoresMap = dict() + for place, cand in enumerate(ranking): + candScoresMap[cand] = place + + return candScoresMap + + #===================================================================================== + + def tiebreakRankings(self, winningRankings): + """ + Returns a tuple that is the winning ranking. + + :ivar List winningRankings: A list of tuples that represent preference rankings. + """ + return winningRankings[0] + +#===================================================================================== +#===================================================================================== + + + + + + + + + diff --git a/runKemeny.py b/runKemeny.py new file mode 100644 index 0000000..66cf01e --- /dev/null +++ b/runKemeny.py @@ -0,0 +1,33 @@ +import prefpy +from prefpy import preference +from prefpy import profile +from prefpy import io + +from prefpy.kemeny import MechanismKemeny +from prefpy.profile import Profile +from prefpy.preference import Preference + +#===================================================================================== + +def main(): + data = Profile({},[]) + + data.importPreflibFile("input0") + + kemenyMech = MechanismKemeny() + + # myList = [(4, 'a', 'b'), (3, 'b', 'c'), (3, 'c', 'd'), (2, 'd', 'b'), (2, 'c', 'a'), (4, 'd', 'a')] + # #print(rankpairMech.getWinners(edges = myList)) + # print(rankpairMech.getWinners(prof = data)) + # print(rankpairMech.getOneWinner(data)) + # edgeList=rankpairMech.getSortedEdges(data) + # rankpairMech.createNXGraph(edgeList) + + + +#===================================================================================== + +if __name__ == '__main__': + main() + + From 86b7209a50693c4078ad4b475fcc062b895f2fd2 Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 2 Dec 2016 15:29:48 -0500 Subject: [PATCH 02/17] Fixed issue with io in Profile --- prefpy/profile.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/prefpy/profile.py b/prefpy/profile.py index 34951f5..b4b1d8b 100644 --- a/prefpy/profile.py +++ b/prefpy/profile.py @@ -2,7 +2,7 @@ Author: Kevin J. Hwang """ import copy -import io +from . import io import itertools import math import json From ca80ea0ef8494613551985d68c69c6d4c69a7b17 Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 2 Dec 2016 16:11:12 -0500 Subject: [PATCH 03/17] Created input file control Created an input file. Added ability to enter name of desired file on the command line. Added photo reference for how to format/create input files. --- PrefpyInput-ElectionDataFormat.png | Bin 0 -> 174969 bytes input1 | 10 ++++++++++ prefpy/kemeny.py | 29 +++++++++++++++++++---------- runKemeny.py | 16 ++++++++++++++-- 4 files changed, 43 insertions(+), 12 deletions(-) create mode 100644 PrefpyInput-ElectionDataFormat.png create mode 100644 input1 diff --git a/PrefpyInput-ElectionDataFormat.png b/PrefpyInput-ElectionDataFormat.png new file mode 100644 index 0000000000000000000000000000000000000000..c6e3a5d12caf6d6fdcc07d0ad59ed41aa000f8a4 GIT binary patch literal 174969 zcmeEtby!qu*Egt$bP6gdAriv?N|%Jv&Cns;AkC0Uhk!^Up>#I`($b9xNP~1Y!vMp; zw>js1&UxO)=luEo_j+B(X77E+TI*i*TWg0YD@x&EKf*>sL&KAimQ+PU!=OV$yZ!3k zUEt1U+JOoh8ty|Y2?=Ex2?<(dCkJyYTQf8?>9BZBOm#IG@^nqrdooYo-IK;@!unA( zri_8U`I?>qT^#E%q5957roRn2QSnA$s2%8S@qHEBh__AlZ23>OjlTu=i86oQzFNIR zq(YCI1QGM+dp^(h2hcvRwGo9mskovY1-@LG{Qg42NtPvo0fXT)rt;@o9Qd`$q=Y0S zSf6p>eu?fA=ycmV{f-XLRf~}1 zx+F6OaWdRPi(zX|#x4f8Z({Gz)`mr!Nl@NFOYU0?eTM$If2k_`YcdDE{+)_|4@`vO zjSr0t?a4wgD@d1ApwM%|B9+H5*=u&iwFTo`g6@?!Tp<;7MeY}b%9qV_5zBb`541Ek_e7fuPHON-$ zS?iqxwPQXpBEoi^OnDha@wdc+jvY>hmeH@U!rPYP`Seq1irz<);W%f}#XFLj9kz!Y zyz(`AGy6dyn3jRkxbDYy2}bQh8SHdRn+jS^Y-52Asvv$xBH0BbqxMezV~Pp}jjk!& zrP_x}AGCt-a$`05;>gX1S9{ifyqj!!$|@qi7{Pdq6H6b$cW@^54IBSKG+18Qsr}a$ z_It=hLYR|D-09>iUwg~q%%RDvwxznq3#D{*t)#B4)aK4zT~E(U_9b6(9%9?`;nSg0 z+(9S%(3*gMB*sHnjo>+L}oPn0Y z0|7YN>upc&`uk-?ycMP~XIiGC>|4|oY9kS6T710tNKCd4gZP^Xlr(3YRIK0(bB&Dy zU)rde(9CUGl%tkVH0GNrF-#M)O`Kv!_d_Q3ev;8`@KAO1P!0-v-J$H7-O`G za%J3SUzv_J=I7_DN2f)$u=>(CBpqGzv^5?mXucsv8+OVcxXfKny7guS3+=u8f=h1M z;;9aPYXyF(q+ap&#Y#+c<+qP!AJ(@LCf#C9iY0k-d%l(CPCy0iqmBSlj)xk;I4fd5 z)xODd5X8O1E~hL;AAe0UiS6bu{0q(Uj?_2iH)MKusD3@FyFKxW*8}~cRgmK??LDk7 zk8vf*ImHKvbUUyPUwFs7W*`oGsrunL0|^lwvFQ^ont~S^bmKi_+4$%8`TbMHhv?IK zKr84!0vcb5e0d=IvPSv#*e$9^&(G+VcOFG6ia#5a8L({Izo!I=}v z%on$IyU}vPIXO)R@Q+(3wVo%0o4q!+<1-9y&1+l>U*vY&}guwZw<;(U*jKgcA>KBZSDhLPZt47E0m zDtJgS5GPB@WeU!IV(zeA!d)U>y1OK@BxB5UNK}y_Nw@jYRz@V-k~l?t23Zmz z^^m(yACbz16ELQKR7jR8$lS?E{W6==r~-j-tH9N%%2<@siga@74dJOdF>nrRC1$`Fwu1aeDGbAX+5EK*Hg(`-ov- zL4I-(M!tdut4fi&V7{AniKhO`Iq|fTA(f00gDhW3RIq2uU5R!TdL4QtldvxK$m2)D z&t+1`Qof}K4PvC|ax2-07{A6aFL=jRuR3qF=O+(UDepJnhUx!4} zYy>h~wClgs^VhSwP`K`IE_(8KF2i%T?8XGMCInS&vJujIJx4K^ujYSB!R<~=;1(MW z<1N_>4zDcz3;gDokH+@iN6iw9LGa>!DdU_*p#5sY7^=*8Ap>a*+ z#d~;U`+LSN-S;z*nDT52#PYHVr^&O=a*{lg%#%ua>^OIyJ>#OV;2ABR-+_G%{~7{K zIM+GmIYy8rkjaqYfF6O;wYRi_brZCH>dx0>YM*Q0*BaN+uX&>5rM0f*P`+0#W~XOY zX=`oEK9dQvhuxaNgQaEN%My~pk{XYyHn5LLJ z_#O{82%q8$QJ$smcBXfVJPgDLx*LyKgK2Y@>5eAm0s$vhFKz+BCXOp!8j&a0dqOfI z7~RgRIx#-pM)pRBV&tT@i7tIUkt5MK5dpm&U1!YT@^?p*?vh9DynRBl55^zhWwvK& zzFdf?c+VVqZYSjEJ#dzCsANoKV$lWb@nJCT+zOp3O_srrxiy z(F!V`+LE0(B0nU=!B}^nF{P;WZz>Te8D`9Pn>kN786I3hi=e{ZG*_}$qqrIG;~x%l z`EY5PotmDTLCoRUlm6D!5bhIU6D}&Rkm~s+rR(`(wcMy( zE;#+Fnjw27@!=Wn-ur~)u4n6m-W;s2eI<<6P&_;7&SvjiB}Sr_KW@A&o2IsCpat6S-qmUiXQNTFlVBaJGJ#4_Io^S+eh zc=q^DKUIIq{**1ED@ys9T%y~&=j^HhuSsc5@!5t?fDNvFZ#zg#yt8{R;a?f?|5f9WU-(i@zD?Q$N$El(=V9>4ll`?S-LJI;rCu1>qLl=i0+_hQFpM1xR>hr*oM{I zvpfqaFL6(SbR~~@l=zA9=h_{mNYROwYES3}__~E1&WLbrA#Qo(-Lw+9_le3ue;#(y zeX`(}h_L_VbB;MjASmkTZHtUM+1zX$8_phv7#6oY_lrF9bmwq*qufE{yds5;%k!N6 z_S*?Tw9h%MRks_vRW`zriF$;cX(~~zer@4`DSE$p%|b-cu$<9D11;hr%abMKgPL~E zsP+kzE!G!v;ZJTtHRw)&C3!{t~9Mba8nj00z6eyR*ALV|Q?} z0CV#5^Mg6Kz+7A);0=&7)ZWF&17z<^|K}wCnn%*i*~H1}jf<6oJ?+iBM#c`VF2Zzl zHw*ps@6Uajd073ulD+f)kOdG3zIg)XWaj|?H8(I+=;p3~vXzIKt(K&foteEeu!acd zGtTEie+>BT(ceq{+fePlhw?q+`}dLm_T+y?3W0AZ_&19FWY-^e0e*>K3xWUQy$H5w zp1e9B4oWLYrJLWkZe#;UE(`eY>7T!WYjpHfq56(!G_)6JGLmBI9_Tx1SYx2k#vq6UA3Z&0bwpx{q6$+Pe38Lv8c&l#P$!c)@ggLq=1P;`n}}*S;h4-b3_T zgm2OA(4wK=dx7@9FI%4yKL{b@4|nN(^uHhc{rb~;w30uF{@dW2ciyQmy(Q$|3T6I} ziT@t|A~c)eKbQUMX_g||W2Z49wZCrs=SJTW%Fz77-qG&7N<$N0$*0dn`;D%D&G-1D z$bX^w&!_JN&;xr^q~y{6bIrd-h%@;7BUukzZ{3T@ib}fmPnknjDO_Jy_l2V#q~e)y&l7&m5dTF#{Ngn5Ylbl{wK0p^GP=3LWPcc=&NkXns`2O z7`27sULGa3q*D2wEl%k<55}X;hy8|lW^Ai$H**r%kG=Ps5S22qPt0(@jc=f~T5jnc zOJTMX`tE~k8GculvguOLH_~ofr^#TSO}VMF!{w^l1z$mAh~HU=?P|Q{kcO5~5SgNc zziG#~$6^q9+`;l^u7N^@fIPl+gV@aZq;&>V5#C2 z)pBvm)y33Ha{ahLVZ>~5;Mdgz-BQNpI|))WKF@VcV_xb+@xlW-sxYZNJ`?^J=u#3z zJ=e9$iLbmyTwi5SvA`_STs2N(GcL1Nlh#L^jPHrOuO6oKKKM2jCAgR5vxsAuWcS?D zYIw>#j#YZ1tF{GY=bnw2t8j~i8?^I(T8dQ?>D_BQ9$M-qtCH*<1Is@zV~5gr`!d{y%=VreA$h!zx;73!$_E59J3zFkyTa0A`LIA zEyFm1MR7BSLs#JwhN8xYCG1@W(^dBA0q+y*%{>QO3jIz~2o6W@tc-)A=kqdr>lxeZ zYUdJ4>bD9(-DiKD-M`fRf!i%-y-><0(LHe->Wn9;eplzofl@R-wM-&y`{I~`Lh?mL zaFGFobdl|I?h9!pbxYx=j$^Q<>h=7GBafHke5f*+lpye7Q&ap?`CkD9B0U<~X7RSu z)m9*@RYqndt6P69^{?aj>sa!26n2c@PPv5J$%vH2a#tip_?M|aX$GVf4&|}SKSb`g z7hWR!Cyz6fZrvuK zOVoFpl5fXjWU(IVwii3j1~s28t#Yiy<#YX%{AiRfQR}vi@Rkid@p*+qR)6&dQXT=hjp+HD9ltjT{IL@cAw$X0Fz-w22A}PrYJG`ocSk5JKf|+0l zLXuBRXOXDsP-B+*?l;vQ@V(iKlt7D-ta<^x!Z|6*G77UPIN;p$Q&-`V{YKJE~6P-ak za9Pu-&Z1Qj&wZPkG_rd{^kEK$$mxlX@U2?m5RWsTLpQQyz?Gegj$_ytgZdA zYCc;MBoKo<#4{PEdxw1q?SxjE6qMG%?ZNHkVj z8=$G`V{_fwmS2MUqWch6$o*jhANcsvg$|&b;m(IOoJMVdPDD?0RH#Z6T8`q&Oc#*z zh-q8sdYXH%M=?I3h4sqn4zM_)+O|zM6O(M>Wr$LlE()I=krN&8PzJYEfCU=O;Xo z7Fv-NV4ntZ!T~+woRLapsB#@QqqfyV!}$dE0itBg3N9;S!dJ(j+Sy8wLh3cO*G>%P zH-=;>LhEDTrDjHg8ePIC$A+jaO;Go;ceL>7q)=!{ulF{kd<`T`B+E@huvHoQp>K@!#j>_1nH?YeHu;d4Le+N)5kongZaKjSKrc) z!%6O-mud+6C#8na+*(>$T`#GfuMY~^y4-8nU$dV0RWs!@bm6x(eJ?_A72JGgOiku% zC9^!^Ts!B+dQpi@5FrBTQcJlp#j67B!0}Pk(tEOC->@sNW@LtW_}uT;JIp>d7h%_i zL@gb=PD_Rf4Q&p=-(1nVV3H3ZO2dyCS!6yW>5H!b9zjozwmcC8WK&+G9a$~V*c4;J^{rLKgvYvm# zq?t`{XSotV?!;D~Zxxl5#)}Lc*Ke1y9>sotgmdMncdZRCy+Eh4qQ!jtn^iW6Yi$jb z4s$-bi_^|)gX(Nl%?$7OFiEdU9d*UnymuwTltxOf?Y$>er=raHM4XY%kOn_Wgy%QJ)|13mCTPt>-EZ3acyPu; z+rW5C$;$u;crY3g+S)@n^!R4XKiP#trg0IxmYjngBF6vbu{C5jf#Z^8y$A07PefY_9M3WaFN4p)tGkY1%?|2*Sa~?; z9$lv`)QU4^rFh=Rdw*g$YqFPKbw03}J<-6^imL^PV48Av>Sp%uELazn^f5CQmPRMVa>ZlXT6;ie7oO|C+?wYkE*q~@-T6J_?|Sg=9o`^}99che zwkpC{=;4@eU1u_m<8$!dhJ>1d(sCnPJpN72OLkSGqm|y?OMfZjhfTUveW6B7j4+Qy z*-UBc{4#PiA7A1+o@vW09tt~j!p;(69R{*avGbfjovF!TZ#QPKz6oA-(W_M1ePjrk zDAv3;^gx8|nt@c;3wi0!WJJM~k=VJLBdjEHzG7V09AEYYsWbWXzN%|jS%`Z5nO0wO z{Y1u6r&$+H|I?^D!lIXRGaoLDUQog%-Ug}bgBA*3#;Z;Q|Hv+dOW^Zomw@i`7Qc3Q z5~n-pSm=B;jIanR5!`QduJCwYlQk4FKGiQ|D?e`r}Ke@e+KIg}BM3ps#US8jR&y%?0PrgxgtEB&n?mXde&OP5qonl2vnMW0Zz} z)MRNY(}jF>(_1Q71DEKi2*zuIcdb^{?b-=vjeQ3>c4{LFCc83ULqx7T`b2E<1au9} zAq$~R4nF4)))cQ8(71hy&B>HS23)&lC$AI_YpX&tm$)~At909`ACyR{q~_?g8Ni}6 zKUiOzy~QZ#J$Jt)+=f!g5$kvNXvD<9@mN*j3nQ)N(>Jv(&cnjI(d4Q!VJrrevVglo zQ(3PHj$_I0h%$H?R_E+e6cD{oa%pf>>8)nfST|kt^vB>U*4iN+#@Vq|(Eh+KY=)hg z4;rmrC1G57#{!Rc!7NeV36won;&9e%exB`-yQJ+sV=a~;irQ4_wBFH)(X*-S+$NIg)w^OF3K?ppa3wb=gzhYEqH01ce zYPL}1>7tf@R!2Wax6R_NP9BxXy9%08N2+t&|BT-WACTPy&CBP+UKnx2kj9NzVoG_J zO*5|n&Ti7&G^ajhyCvoE^7VSxO%2Qpr9u${Qs~)Y$jr{@_oKK2^K*@oSzFfId6GoK zlSdVHyc8gVG&|W3NATS^srX;_Bh-w(BsW^;+t-SGT>38O)prGirh?1^uB^K2n9P!0 z##&4;w^Hk^fV_0izRYU7qTv00n@RD)xrXtYL|@)Vj&KRtG#KIj@Znm!~{-W08kwM9a6tE&r)O!X%Hp7AtnqiJr^upt`HH%_mVcX`$ zvGX`I3pcl_k)`pe+&j#M3yRQL;E>1|NiWqxd#xtzwGIUz4kNIjm>0vajGN7CfKH6h zXEf5oVf(dn9bZW^;(Yq5Xku6yC3BNH+_I;+i|-k}l1n3C?N3}+6KpzZ5bG|{q3x@M ziD0%RoGo zPP*UtE4~uqAAQkt*iB>T!D_82ft4^UbS$sy%Z%?jL(907td)b|$Iw_XY#AjRG=@Fn ztP`rfAdOd*kZ1wzIjJBP5s!#0LHHJLxa53Lxe23lt8GF$3(3M=~p( zDELJG+1!@$D_p_3J8^MZPgFW0ghWJlH9@T=uGT4pQzgTe8)a)A&pCS>d=`}F)SRWQ z?WMzBIevJ%bNs_MHRH#a-LU$CdODCqYU{Zi@-y}gSv^*5pH^#2$&lhIm50#4#Z3xJ zE40YhXLhF#4ly6{#wT6`U5HVtPJEmeD%G9yaJ=#k{w<-zrGNJhE9OY+$1Q@3*nAbl z@Mkv?pTfqWM$OdK96RfGB!d-aLxTIHBZV3{r^hqrmqS9w13ZT;2EDwH5SEJPjGi84 zV5|qs1l*t#qxP64pCd&%D1H~Tw7d-)1eeBoli=_#jVauEM(kd5%fq&aoPYp`yc3Mo z&NF;3HbIU%0c0N!p;n@uU+lepM&=!@#w1(k@q;A$V5AcI&m3A%FvZ#+AVn=>?N(0* zNVJ%hYoRcmRX2b*FEk&t;n=zEzYN_u2@oF$82&HH^B7PbE;6?*@6#nE*@44#jLSe0 zMd{|t{^NnNwxTaREm!cenWetl!)sdVmq3!x2#VT)#n+U?!1*CGgG}oZh4`}WL;UM2 z&&&sU3;}fI$57nH;!BCuB1neXsk7z;XZ7}{?mJ}-I@s&St8YWZBCPjB0DMy zpG!p~vlt7cR-oJT7)aixRrOe|$Cf0H@D;F9Z%*j5`%3ebI>LhZu}>6aVQM6SJpiUe zYxPM;u4%ojLw&F&#hMkaK%=_Ll@QniIGmbQ9kn@^{rvj*rTUywe#cSeeIP7h&H(bV zZj5{(xzqoW2&A^FPr+8FhMGQ!o--J4^)1sf9BUYXEyRu~Cc zQD|68v3asxR_8b;px@qA(zngE)@JcruF$H*#E}~){jIb?prUDI#w~=(?P(K{PZk8~ zrd?mS3*@yMRm`W1@*17B%TM@nB%^_}DA^jFT5hIaBlG*HlIWcAGJv3|8wWU>i&Q+4`tIPPd3w~f#zuRx}oSX4Q{M?ntj!bc->Ma*u zh7bGpD#|A5z{p1ysFs zDED4A3=Pu#L@`yX*lGLt0QpEjKc2@`@36=}*e37CBqs?=Az)8v9j{RcP0u6kW?$Aa z6;LTjh(VAvl<>m4W}(dTBXRapqo7X$Z+b9HGsu44JM9SOd=qBsp1RIdS!-3T&e>6T zmBAi<NOqQaCnzGCo!?*2s3j%e}tlIH-i`fj9(uH`(CzdM5OK;$*%FDt4i1-RE znK)6u9Q)VoN}7IO1p-=g->aUATKlA`{zl_9G2yz5J2^|a7sqkTYAktgm7C(P zpA8Ge=8*{(5^r&XI>>ZwM}F@0DOstuSuwpz4fxIezJGaZ+0@13A$8T`##RfXk&vBu zO@m&4kB=Bc?8qhZmL#85R>NL01CPb@?fV+2A^*uF43&K8qDx@r3btb3G*Ef#E#cL? z>OO~g==z}lhondvQ4s)c7gvI2(_xPA;6&(=Lbor;n-79^9In+I)&@Vx3ww=);W^3bgw<9B4ofG-ksmo zvz+9?vG__kFCqMQp8Ro?S~&<`gi;1;WaIy4(f^DuEct-SN-!_sn%Hk{`HyPJ>jywh z315O$^>-lQPboZ4MH4q|r?_|g55*M@T%dds^5uTP?cb7yKUaJN)Rih1@dBa$u)_y; zf$B~B_wccQDvjX*Wv!`$yKO?h@#oJS;@$>GG_riT^&7PF=ZXNp^&-^P1ibsDg+5Q43ojuTr5%^ub|KQr^MSw>X^DmMx ze+&BlSn{0_El|0`Es>`B2PS`i1MmpXfp*~kj=}#Oga11Q|7Q*U&l>#ycM30*#8&{+ zbHY81Nj~WV0MANIb<_Cit$Z0)z#bO8_C8(vq zQ|3kj^;zt_<}wW`n#j99;F&Fs%Ux#k!6Q#?7@*-{dw4*0;hwcytSdFX4j`q2YiaKD zw$0~jMW2ct59fgr`_%LkaN~iv8-QP%^|LqF!hY)5a7Rh?(fSD&HFZbRWQ6m~M4j*V zJehnp!=flgxFOzZSagMaqv&_7=Qd?F_5R_rN(Y~9-KoN&(&-$s)PGBApWa*Hmhj*l zZpSgFCWc?uu6&eRb7(w#C1Uj>o36yCRQn|VmDf@j)6snmtuHx>KvFQ7pD;Bx5Fnk3 zd066b92~al;CuYZ)UZTgp0_$Y&^lsV)3B-BD3beUkLdYIY^*31W(g&jPv0V5W!^rDF$eC0iZjkU|as`T86w>Kc z^szt$n*A$#zXo`2;zl}Efs2f?4Hu@0OdDhpoC`6pVkYIqyqDeV_2~fRd_2fI{L^cf z@`X~&Us1;EUw10&`SHa=g@7^>1-uog>gx_1xRnBp4>A>% zjAHGgXBU)SI~BJpU?eT?NI&$Ly1~_0FWx^Jk~RRlH5bePXQr`S7jbn1xki1m^2uR7 z9dM)_LNm#t;aWz1i0In;KrB5sdWrH>^ts-c>P}C)DY!k(QL6bX7-)TsHAY6qD6j84 z$PInqnRtB|?Zr0vV$>gpJt@O|9=ggOK^|O6N)5SsDNg;-S>P;W(se?g z_oh&ML~iKq7!@w!{IM6{_+)JoKx&beIu(seL(}yYGAFOppge_Ea_dosfUC6}WPERp zxg?RZDK2vL*H;3aQ29d&kjANTF)W$e=BMR-wUzBMlo&K7s_+}TbD%V4)?&lyC5K>H zRxtg!UUK5ao?RbexCt?@d-eH?7xupecAuZUn-({P@I3lxA@M0u+dNrl;J)U4?ppG& zT-?Fa%yyt+rDcU!UzOYvYq6gTi8Q+(QMl~NKOVUb<&g=MhemFiDf=~fj{G#^6kLYx zWj&V6J&SyWa-q@qTT}JT;WyO-N^fv-XbE7$q;hvQr;**O)IE zH}J){y8}tH--*N*g-y;qeZ~;}S9^sv;e)DwwX{qx zZMI^N>wQp2<*NuKUn3c4KI;UV?>8PRk~Pv-(V~&!bh0&_{Lm-Iy+`0Pb+S474Ak|x z9OzsyjR3*4Dhv@BN8fKz+*I67584SVjHDG#BMdJyxz2$`grp{*b{dqX^Zhl@n=?cP zpeTK3eTEV4XP;l{sjuC%EEuDI{B8hp^|{#0dlnBQQOBgvB3v2+-}BWSpnA;m!-dsw z)3hBxP;}mW1nGFthhj{LhCqcEhH z3;`S`bGQgKPQ7*PcrXDWq^pVmH}k1cbc(rdt?MX@s{6rszQainysIU?BzNAj;Szwu zn-9AvsyHmnY+sFpEM4u?gEi98s}CD5xZr+OnmDrO7&zYAuBXDh`sDQ%1q9(p zL^GmkDV;E|#}>I;t7M+%^%KZbalEQq5n_r;nHs>EHC)SByQ`q)=Xyph_Hj2?Mp zQ@Ixkv(#H5sJJXQZ1ArspveExuCn*Z6wr^6ypzWQ_V`2|0WM&7CBIYDJ~er6mv&Wh zc0sLU5AY{jY_?BB$111ol|IFmb3J)A+_1*xY=nI(_mryOxq0;Ivhq50 z=JTz9ER=AT(<|fXW}LAh?0U?wS^|`wl!%YD;ptX`I!bf*3s;Q-MyE=-jq+*Z$q%_s z_pec#{It#PxksBW#S6aF>-c&nw@H>$u-I{U-2 zVKJCu?FKl8R3kT z5O#+khrx*RbF9C63jhw>$wJ|o$H*Q9|{hVLAgR!iKd2Y2n`C4 zfNqQ|(~Vs%pi$)r=-|n#ZokNnHbIKHuuMxxRM=Id#HFG1M1SUWyhK8LwA)O>osPCLD)oTc=QOBg%x0RZi80k(?-1++By}%`#(-~)WU5K{9p@uWZDc4Su zbwvv8cgXy(i-RhE6G!}<`8H#sp7A(yZCan2D6X;c!-@TqwyC`B96#1HIQRG>0CDy! z3B$)KMKr*6$X%P1{_?GK_oH5>+6vgdbbRvB#r7(7=7ly5W#s}OYQTf z+T*#EhL6z!%2-Z+#8`Y~`>WeT6&(1T+93FVic>A$wFejXbqWGed}( z;TbM$%)3T5b5~m}87`t@KJ%D!5<6aEwytTNivWuIw3K^}w>?_^a1%CMus>h8Pt#B; zbwu^UW`Rs_JMkjw@SEX8!M+SlqR(F`_5qZZW9iG()jM?pAL6M(f4>J+n6N^-gGTG# zR|KhmkF-1gtQo%tv9Q43_30jfK2 z$3rD8#z0g!_k& zNr@r^v)FdQZ#?g0IcQb0Cf*XlYiR^t%|e=AN{Ao0up(bUwCfRf2)-vQd9K=qdF?L9 zS|GMqke7!B7b!uWrvKdFn|JgXczb4BxO=Xa>jS1&vfop?-ES zZ}&4d?24H3xK3Z~xwmXjQ?qD_;_4hA7S+$Ml59t!4O}H!P>n3tG1JpFen430BbN?< zdxjC(7h*5iB8U0cQ%9W)#B)$}gUt1!^)!!o;D&fn8{2t4SB3iXS^ zJlhF6$ppnre=;iKh%=1#2h%WoIV{zLT3BI(L8T#}@Ww^MZU$zeh*{?ZAO5oZvc7WXSd3@zI*d}M566r9%5$U3bvXmbVPb7 zX9h^c8Dz<>2^P09bSpqrOULdH7gk9!gtgT_vBlRK7c)Kp!q_xJ_c>P#B#R)X4+=m< zshPIAje5L$ONW%(n(I4 z@-{fIu|@LQexQxZU=}mZ!8=1m^j(74iIgVt#g%9UWeNo;o?8OImuT>BYW zHRrYL_Fe8=$EF0rMMML)8<#^3A(&T<5Es6D{XS*zmr3~g_IP98hjx8R!wKBcwbSlbXS5vcWsDL7P;NnY`EjA>z-q^-7jk)+I%5^-0zLin=o&vu}Ryv8JGF? ziekfeqp68WAw~U^1nXzLDDmIn?0Rx5B?%q;mjglUPc(zZ12F99eR;@FmMDpYCos$xkg@hVbOi4IE3{vfg?LX-hvG!TBUUj-$~s;V;R= zD&YgPr5yDeURAzd4w;h8uBxu!&^KGBEz4-wt1rSU3$(226(XFW`+B=_6sO`5@k7ie zN-wcCL(OK90%U}N0H{PMk4xY%77;(*K0QB^W795_>UEec16T6{b*iD~%Tus0d!5j~ ztfkF;LfHvBzam?6v++8_cXotbem6lB`tl=>JU15(n{*6}95-spn4219OY|8{I~J2U zd_t}jtF}jKW9BlDO(FU6+nAMR$_vi|Dy1?ly}^iyfFZAMxudS6$M6iZvTK!*JBlmN?zI%UXT zkbVZ{Eob@AI9_9xo=?&QrB_CyqO%a;YR|{=;LbxF#X`1gLW&5?)9bDb_$RXQ`bJPH*Ba`}Zy{Lb9M zmuEg0k^B-?y7pg%cI;X}b4xL*W)Nx-4nPu3?uH8c6r^aTF}2xG(F@P=R{iExqV9OG z=`HB8C1tR4u$x0JQxmgR1DD_}!PN&t#7&uei7)-&MTYk$iY@HVWkY9y4zvi77390L zvgt>Del+k=NomSB_e_E#w)oF^qWaNu{^WEk;~OvOKTRm1zFO}IL5-(tj70Ci`=_>M zY_3lcBVurFzu^cBo#C;C<=qDQaZT?9xX+LE9Ml?=H^lku_xT!I3iaV_s z_wUBa*7ej@N+P<|hq*=t1+T#rR~XaRI^cZ)Xp*IfFf!I6^K>`oXP!d5QTL@pvEN4A z2NP=2N4Yt}kZ&!spLiqv?v^CxTeJ`9dK=K)vUlQus2@BG z^cU`bjM3`66*Z-vm=XWQ?!H{p8|{W2plx47W~LeM_+*s=b5(`Wvc_y|@r6D$gsm`2 z^Zr9GYb(C5aNU_c`mUDpO^mMN6R;La52vsSYUZ{*T;O@e6N;4Y8xk`R_3gXu@X62U zz1`8Fts!dRVlgMtz&d0GmL^2uV;W|YA}b~_244=lC|;#8j7~c{7pegpsg9~kla3rX zG!QU5ED$WY9ImU2Dh$3X_)_uc5nId)yD7PY()f9Z(`*8mSR8;k~OU%ei6H;86|k8ezO*;Zd*xB zmQg1c1xG9e&XJJu$E!xRjy^t@!eZ<2qauDTO?}t#D7!~_+Z{^hveKh+MTk;G`27Wf zxKg$Jt-N_0Fr*9k!Y1}|ksgxZaNE!Vypi1}O?51;U6$$tZ8~)@3;`7HI_*QD%~sN( z96a84|FQM6ZA^$>aic-A#j8j}$rJ`U#?0V~gS`5?x2XT5>1UUlL-)+dYZIrLYU+PmQpwO0f{&c0UQ^|Kp8On2{7r9roF&9tZ(4TG z^Nb)V0mZrp1Ql0bRJt)4v(=k8rX*_oJWfx$C@=YUHK+F0DXPg0#$V3!>MWiDcqRMG zxJjO>-pOt=w+lV9;Z!m@?tl zH*u_~*_QFYyEsyagI!K}-N`2`anf&?Gu&>6nEo=rBt7WqaMQ@*&!U^b8N)>=Z$A`(zHbbhW zix;l+^JvDyOysNKdSeM`Tcys0Escivy+v#OP?2+O(flnz4TEuEQCH#jxx#6-Ji6m~ z?<1GoaRP|xd}t76xev~d3sAlnP!<}$;wY*DKKjivmW2*otdB>*wO`HQl)3wCpZ3Jp zU0bT$iiul%(k`3fW(%4=KHfBC&V#v2@3S5HHNce`aB@SYzq?3U*W+I-2T5}eICfKM zHgasEKVPMqbXYzQ(YpT5*YhO@0+v5j-la+R5#BMH6LmozGtZcyzlc5RJ_bXLIADXe zg)F0qH2ZlwDyd?4gL~b%F$ej^Dy~9nMj5D76;6kU*lEx7=I9e=&{^a2SvGF>eB1AG znZcaaH7=rwdGO9Sv|qp%kZis6Am=gSL&FERPUvJIvbv;Vm`Jf5t;|_|f?~)HKR!cDC>-BmamN-bH z$wX5m(~{~#vs2?Yu_@)cq(xOdp89T$kqm)B1Fp%~VnxkM#I?W!3f;<&3iry=OUBKf z?{1n_O{LTm}0ipw96;p#@M1$DN%1KLz9S)pyk@V-N5#AnlYUxA_~{EakwMy-1b12X$r6yKY6T zt}mr-L^mEloD43MoJ>!|ph zM%>M}#qq`e){ZYYfbUNFqj2ZBVwNlF3|2yaaN$O%)N=2Y_DH!2c)W6E56j?tDRKSf z>_>w*wfUbR@fNm4H4&weW0{cpvMFP3NV`oF3g&Q$swp-KsTbX=nK0-@W^KKmC=7g# zr?5+USp!lLgXtWs+Tho#f7oF48lxs|k!qXbJDqOXKFJbr^hRBBtBf0x`T<{$bs|Ex zz)CDZ>V}6twTWJ#M^$bI2tumb*Q@8g#_QE^*NSbU=esJ&5S~vZ1>4e_h5iUtie6)G zjqAEp(k#BHYoU+6d&gmj?a7$%|=9D{mG1!*WwGkzmNx@p`a^}koi!SAj1=V1gDbPd->N(Qml`z z{(hm6hFp#0L4B#5Ca-i8j`-pfE{?%`1(>sZ6~gMs5DS`aYD<(vt!PH&96^OF=wsG- z%1NdXkIiHr!6{c6*ZtbW50%|NkQf@UY3m{$BI#RQ092zpy=n++a4hFioryUpKMgzA z{6mz)MRt|GjyGtyt~%JbplmROyXYm_flu~=&9`A6#zQ@Dh)6zOG0H5De878JtMPPq zZ7m#dC1pQX zc?*IL7W+qiXO+ydpezM!czBTk(?9M6s0%NjU4=Y=Gw)k%3kSFiBApY4dzmuyekvd` zW8R#;_u5==y--Qx(_os}>gKSi)k@N!T%ZoOV3nRhDR%EX+CflfIu+BL*{F4cw4jGR zLqo`IAWQ~uh*gcLof*Dng5;(GJMZ0XFG2hZU*31}JG+>}>Zs*v*QK-P^qcD<86GWB zR1n9D-LlHZd;Lom&bBF$Fj?5prVWj55*khF&3NuGT#7r+cxtHIpN#c zTm77W%XQ#Jt_63$i!)t4)`(!YB*I7aei|6E(nTph~2SduA^*Zhca&6P~kp>-B&0u z-;3WuoX1D$I;Ijt$N)RSJ_NV&qz)dxM@oxM`1_s5<2|~|_C*5xtKMKG+1!rQtJ4F? zXl})*a$Hzk>0DiwAuype`^10}qCegpKMZ^bqv|1ESQ7aT23X&1y8V`JYOiAHysPag z=Cn!cRU4eNGiZzf-DfgSXxJT9$cH-Btor7)6;bBvT`p3> zci1#RR$6i53i}E6{(tPfbySsWyFR*>ji8j$-O}Bm(ybyP-915?NlG_}bSo(>-Jo=L zr*wDs?|J>cz1H4);TY$SGtM~UoNo;NSPQ4l_j%qY?)$o~`?@s_4|k!xt@4y|i^e9O zjiGfM*&`IFjH&p zzq|mbzA`YBFcfrn`ziA!TF@k^;H+~bY~Xc4TU!6<9D)<4Bix4i@@Ue^Tnv{hVa|1{ zjXfhNDv7r0+InRl*D}^PrfCNE0?G>2_A7@FruX|04J5L8=LiMn3J=CK_DN?aWv`De zbk1|HzzwQem%ywiF;Yu0eC2~FU|?t}n}3Wl#*8z=qR`U!O%$#&b6Ec=*se0zx>lvv z{dwlqa)|ho@_2+A=U}H=s2_nO_h>*P*OX}=Z}UDIPd*{f#i>23 zchh=tiOcMEZeq=KVvbdpt^a`R%+W>Jn0{PjCbg5JBM;9|l-1vSX*2@TTi-!RGv0-P zh9ZroLrZ10>uA1jt6tw7*Pjt0NCIiTalo-V-(>sz5}>}1nrx-(v5sX?4=#h0Wn@Pveciij91wL*G+odJk@3>qh z{CviqZL>d$D1Bu!*=;x8PD)FDCo@Ux!_MXR{Xn0ytUz$z!fTcAc@a0WHQsj3!a;Q} zMxsk(^AgR5zJb6<$eEuyyL=??ZMh$LOidM_fbY#~>JTG)RSBYj!<_YQZ^{D0M- z4Z zZ4e*YIXrWF-cf}4hX!(RYEs4?zGrR?*qeegqU=$*XXZ{bN9vyoPR!ue6Uucv$E-cm zuCkBkDz{3^&k0}7-R;}p5;4`yu>ado;yVE5IOX|y@q#K)?u60udScl6M3tKM31i|9 zao-80as&eX0A_&yZb|9U7x%tQQC<>bz6LBNqGJQ%b9Si08R9tEL75wK$Ijw35z>bx9^a z_Fw%l_JE8C%yBEpP3I2LT~?^ZzeKH%jR-p1LCh$HRP-wafzG>;nXc>8pRH={jG=qh znC4Y18CTVL5}Gj|;;KWkvMMUKdD{JNH3s>pZ2mu!ap!;xwN)Y}virR%@=&n!NQ}XP&JO`=mSsqk$;r=5KU)9TrMb(Zcq?jyAA&2 z^QRAtc{^DvU#QPY(iSvg72vV_9ZAO%11X|Gxg0fM#NECS zf1VAX$t`{}i~3|~wgaNWzhvS*g(~h}2|sTbb=~nG)YS@ZrKME}ht*vk$-m}${MYb^ zb`*hX(faPM6CaDo4Jz{&IO_}H?taQO_p%jIhd%ds5Y3^hq?>)DIB&B7rZ%Ds+LP0?wDK(7!7&TsDT@suWwEr}8`R%SGHVo27F$i+>-fzRGO|L-;`C>k4}LSrv64VpTmkdY z`^^*nXBj{{_&>|wKc~TemccEQ|96}Qx>4yD2LrN2$owat1KA*Jl{#aC;hcBx5|^7+ zxp%YoV(?pLfaEFa*`{*BhWV%oh~N{s2FFa6+(g0a=ZpGY1s%BC1^{R zO;SHVU))_}aOFB*;;4%Ofu%OzGDimb*Sb2OOc(?HNO7QE&nbFOY341f~xbQKGqV)_{hTS+nvtuCU4T7hts*bzw7ir9vgNaH}BLyXa7(I7JRfilU7 zdBQLysL*I2J%StvOSQ)Gs3*T}@f64TMBU{?JEt`F zF8C&0;F4u)3!+d1pduAI+E2Q!X50qQSBCUh$DH9*92F$eR4!IY@~?^)BIcU)ZHBA5vCG49YXobeRNY-&HA9U_@xIR zKA<0!dzt!)7q}XY0p2c23RW*U;G^$2YxIibHJX^m<1_9g;9nNw-8b@xq3*(x={lt; zil_#d0zpPqMS_b8fn$Ou zk^%&9Om1<%gjF~eb73G4>Rp_@$nwFL-1uYZ5YyistC8#+|RE zCPXma^94RmL;kZZppsSdmj+Y@RX84~FIXplFvp zB^$<_35(`SOO6ziRKZFu0@ZERoO&aIl*EOPZ;$0x*C?)m0Vs9y8L>C2XecIR4@+}CcF!=D`*_3GI*gGw(QgRUu>N!-qDSFIu?I6%a$&QJ>6zgKY71!ul7Qf^EgTYW zqf+|H!cmmkIYF_jng#CzW;lvi`@Bob9G-RWi$$%X7pFigCwB_W*%Zb#OYattAzPs? zy%6hcxCn7WEi_zmGw1#rSboSdN@z?W&*GfyPn|-yT zQ@|jAZa4QacLuO-xjNRH=6Bv1G&M3v5|6&mI@bKdkp{_Wv_3<@D{;w8NV?nRnDs>f*PJZXJg2rv1gKU)Jwhq4D%{xqn$ zGAC2pE+ZwX2(~|H3R<_oO_LdzZ+qZwk>!-6o~#z}FW6J7*=_=*9 zd&?gasp~O1I{AvdTSst-?WHv!8U?enDvzQJZ_ba4df>m;Z5%F$C8CpkyB_Eq0rX+`WO*Bbi(NiOYm z1L4&xhdUA|(A5+$uccJTkPOqP?owaB4+}LWcp$jeQ5~MqsAcigsvycPD`L@WtelW4 zc>LXI=GHVidk$HG&zF%jVJ%Lpn2dh$R{2V77X1Z9RSV&^#`Z&-gGB{=MedU9Id83{ zQ+&J0P)H<7r+4NugM1tQJ*%cOKv9nXC@W7Pg`1BN+Cy_q`IE0H!PFg3@52|f5-Sy| zqcdH!1M7?L=;0uIl0f%1z$9qp7f>6}mi}LPBb3a3w!5Vx;v4>x>d$^pw28G*L;uic zs3I>D3DNKzFJgMxL49=NcOYjkPfJSzmnjB4DC$t@fWxPb-=d6v|1yT6w$^ES~4jA`chO6iYI(kN=P9ic#M#1DPsvi~XBwMSi4lpjhW&F}K zu`nQy5FHuSwf^-0ST3|GO)cU(0ALTp>P0)x;MD?bi4VQYv1{#X^@87s0`D{E z*nC5^Z)JJL-Lg5>_L$*)8t+4%v`yPB5ZuywKQgf|I14YwQZY~2zOSeb*JD;;;8xbC zxY+CHxZq~Wp7%34vS*kChK`g*0gu~LhO0?<4$mu*!ZXYfvr~d;3?GZ?WIRJ)Rr_!# z3S$dbQwh)+X#l3Cas)+IvFSf^in^(*orlaH{B>bWeZrlXw|M4)wAEDR40-Z!tXO-Uddc|i9$~|yvrVWF=^Rm&+=D>r?kT#@%M{Zkw`cRk$Z&Mbqx!bn&eStd9aOzBrQ~F856cL2%#>ED`wLvwU5=m*8sl?e>r6%K8(r*t}L&&#jTLqSuT-dRu-WO z2n#rekEr*7+ZvUr*yaA^mn>DDEqH1=;?60s%;KK{Yk7TrKL5U7j|&ryGzZa_vMkxP za^9HBm%?bGz&dg6!a(5s-Pk<~6&o}w=b9Vumk4Mv#}z9{)70~hyu_zaFq{^66f$hU zaP}++fm!}mJf?fK;ehmqy;UhHe;Dhpf!d&tND)QYeQAt^q;NS!m>zSMa!ElR`8w3< zYoqbN;)8fW+hFrzR3{{@(}ascs}tkkHFt>)ZKP3NtG#_?^*xwam3fcZ<#Vr$IeUG1 z!O94QO=BxJg$R=t4G^e(5-$5PhBKFQrs5dl>9$c^o5MR_Yd2}p@>DM~mvzvI?8S7Y zvW@!UX=#~5Aenjp%fA=pzi~tUkY6lYb12rc9 z-6v)#}}F)x@B9oQ{-0C z+V;8s(y-LxEd2b-(bSonsd&>ajJ!(DS=Pu=EvLEh%{qEJ>Eld(KD2x7GiR0(zVRU3 z9usjXu{MwLe1-6REy@SaQjGYqN!Fjv(;yf0@8PdK8louWlpQjjw7}uN;dJhm(3C<5 z%}wt~lvN+iL_5{>!%UD047`i8Pdx}rCqYko5Z|afZ4M?{B%W>D z_R1_Q{#Gc|Jw?q``+HF5Gt!K55qi&t8nq zA$=Tng8PTKamegLW)@C2jvKOFND%J`rAAFB@7E9*o%~2a(gczw#n;PZ>JqGB~XbU zzXw&Mt!$ktMooNM_haXQ4*jage`_3>yJ@$fNH46KXDE_dG4W$!4A3a|9SgWlBKIiZ zJo*voQ+RgpS3r{^<%@@Kd#JCh?v7CIXx>rT&kTuIHN_8tOox(qt@W}mV?M4f?-jEe z%cWHu4y&k)3-3!vRFmBRq4(lK$!YaPGM>7pIQc%o2Q+RnL&Ir4pw8h(f0 z>Hg+r>M>(>VV`%ALmX`aCQ|lB->xJ>&0y9Wvywfl3|4MTN9EY^Om2lo==6wRN4Zv0 z!zv@QPiZwkIbI~52(=J(ky7BsTUP|X{JJZLfJeg^3H_&5!}?(5KU{qxiimdV#It$s zvao;9B0mkhQH+;Y&#mi_-Y&72DgTk}QT-&Bp-r-6U``>jc|_Q#IwQBqugn zBjSNZ)Oqo$XYk`NX9cFdsTL-oD2c?zGl~M81e@VDw(BpCIt~%X#ZEr{k!-(L9^k>- zIjmw{Ggo~FD1;QF`yJ!LyYIvS*H@B}_u2xJ<3d9aZVv(32XQvRH=c5l=_?|xK6 zCt=&LCri}Bd2DtRms>hC=?YRX^|&^5--CUIQsE8D=X3Fd66TBJ3Y+9h@`w90Ix0A@ z#n}vg?aeeD3L)F|`^;kj-kGOz`9LrqNjwU)I46KjruQLqWasY*$I9KuH7nPOBYIYq z4{WrZfFmhg_bES}%DL8O>xUpKGb>YaZ1FI=viXJfLZ2w%lmfCO zV3OeHe-|47>geD6%Sy<1PI5$sanCU+&85zmF;I|8O3aDqu2u?^myFM z`@Aa!>9zqPUGXa$UAyKHBLI(dxT8b_;c|30VI`=U=eMhw7Bm&^&bNffXuZyRvC&z- zGbP1-XE*z6{@UeGzDtS8l*jY9yXI}QzA0Wc+I#@#EA(Wn)55?ge+HyLM1nirbmR7b zmZm?`m}1}3^*Ad!`*3z}3z7C!v0%mtHwO=vCn5U7X6pRz5{kG+(M=NmtblPn+rwvL z;{S}tkx0R-*D{q~yYmkO?_XSyH-Pa>l{_?W$|0e6#yb?SRg9(7HW1Nv6I;~)s2uj3 z7mW9R!&WtjK?W!)5!}Dwf<9|O1}MWs(GZ>ak2?wwjap=YrU=ZHNVw_i!9(>j0=DXr z2}N0p6vk$h4o-FUK(9uGe?61;gh_W|@nDtuV@@4=zjr;e=8^t+XY?jS* zLl#A*^_~c6e!z&%=m_W{OMU^!pcY&K!oq%eA4ElW@#daE_-UF&qBNXw{B^=UFGKLK zA0hcN=}l7-O$R3Iys;WwD0(e;R#LW8HY0kFcv#mA)=jV8!=~5rVG06#)j$uwiAs{D${9?N)WD_SXtMjHf zCf^H|g4j|Y7*zf8Kh_VREfkwdjo1a=s$o)dKLI+ff^G1TQui2i7uaO(06`1GIVjFk zago`)fV`8(T|XYmL^S*@WczO$gb@wAGv{8%-6qVUr;4gfj)y~vh)kB?u3I6E+7j3A zj1IkAue&l~hm99+g$f1&kd2cEBv>t;b_+lplLT%y3$HGyMwcC!BRoy~2%$+ukR!bc zKqHEvb_OU^Ci473+`z*i;Nl*6Ya7eJ1{W~NE>yFdD#?51+!8hdS(+-Qk6Zz_u;?yO zw!2th-y*d8Vu+_Z>7PD-&{9VM6YrRM(#g`J3-R$17CRt5?IO#1#4UE`{0FkjtH_iK z^2tj8ysMOgy7ebbeCHcQV<1uagm2kOthWm=8x`A?FFuh;ag{oAF?U)((RcY15=GEj zVgs0Ucb85(tZy`;%Wkwa>;oXX75K7oGKPpf3RTyOkoRX_5yjf{ai$fb4uS5PbI{*H zJtm<*$Tvr*5#ffVjRVY;3MEMm4Yz>hd=yk5KL(ry;-q6)Gs&9_5kes?dFgiTIfkCN zW-O3vGGXdU&bnT{2WPoKc3!11T!O%Q=Cs?cy+?WyWFLs3g>tuY+`V6#5Ok{78$Jx( zV`uB>Qa4>=GXutZ1ju{`uS!AANLj=Z`5;uB7tiybN8)E5tNmkd|PPc2j=pr5L1E`UK@h+~%)gT&^I9*v89F9}Ec@qCCtH>q17088@Piy&TNp;4= zeREXI7h{Ya;hDy@Zyup4;%3n~+XLtPA_$XSVW>@Tj<=sFOF5fk?w}p$pP4(k!36WU zW+3{5WP~rb-57Z}kYCE~mI0i8`D{WrOuAUeVi!}W?s4Wh&r@&BsMBpwh*QE004LEs zBB7_N?&VSUWxJWxP>}bbn(fX3)3Qx)ro`O0C=AR`0G7CUzSnUx7Zk{dUl+7cqe~AU zcm?e+~B$j%vT^ z{p5>$!+{^(3$Uq(MIqB#0vPFb8@Hce!Gns8!j8zJ*pE-l%YYO) z(wf4oX?Ly%ZNi;HH6Tcf%5h{bTo%hX-jR3@jGQibRTb;u6p5JET~p)5%;Ex+XQ+jk z_tcRB*Ry*dXzkq$R3DwKrX^;FT{jWTa6Tv}+tpAnrgw#=>S3U*f-$T>np>u4dYZO2 z-BIv!c9i0Qq~}(osM1Ad+GZF1Kdp3uPzZKQN5Z!nXyYD+R6x|@NK*B(wW;lW28>6_ zzTpPR@Xt;4Zv+mJ_N5~0d$`wg!e+qsgkvSD*@G4aX6;rM?+UO=`b2P_CVqg}ic&OG z=~thy41N^#!533>B_kOe8PSwgzLWYCR@>R-4ledmOcFSi+=z`DvFT5+Xc z0A_4NOvw<@+U9-{Gx?hi8ih-dxv%(Tn-Cl!u=D-)Dd6W~W&j>dm%I(}AHy7=a<9fV zLIISTDP(}0$LDT<@*dxMPEot{4PN0yjCfFT{p`oE%4Qwi{xyX{?slcXq)@UdfHp@ocJeN?A&L2h$@U3 zMhpgqilFm^db0+oa@_+9l&YH@c*4(jaMse3YJIjOd!Chu6P*8L9wR*ek$7Z=c67^t zOvD7(C6&eE>Mk}fv&>JqTO&ss`p1o59hP3ajr8t4cgTKR8?;zKeeMJp2HbXsxah2X zoHdxUNHPp>!6=8DN=Du_XkZ8XpMi&4fgl8KvfF(|z;?;DDq=|mRyf9nTL&S%vv6 z8x-HFHpCi9)3{elSDipDw@;{yUp=aSG-?YqwwUu1Rf=zVtZ0^f7D*VJcXm3v(`@kS z@aXi^veOXmr95@XXv33~<*|*Ma8}Y&m6e-|cjNk{gK#S;xL_<+GW6J)HHdQ z+AUkvfV(k@+LS8cwGwZKxDaa?#m00_4N-B{U5zt9Gp27lZ^O%yFTLceJG74cRYaB6 z2g`yv=X?vL;D)i7StWv#-ul_4HG>m-a=48R-y=rArqUQCmhA;m%^M$OcaSrYY=Y$S ztpiWHOaYTj>5#UdGFE#z)ZdBjbnm|v;r&{cKRZpM(Kbux^@P&G+31{WK&NM$rH zWHefG6!Af>`9PLEP$-!nm<&IYI$;T=oNm^O!5V6F?3#-z!(p3wG*8fh91*>BPuW{-)RTR59lQeLmDdC~E`q1))_u9K6NE zZZQ9OEx{N!yR1|`o-TMEr@adh{4w19!JQZ!nFos9L{rm-NS;$rZv)PKF>6-c7f-xK zRM2!t@=_J9D(Av`qF#mlc;#D^J|V>Q~P8(&E=o~hTp*k6t5P0jUw zYWFafrdQ#;f>W2`SItBdZd(v8QxtuZFPhgXoob}g!)V#9Prz)Na~CaCl8*2(9MWbZ z)%v+ksx{aXwX)o>v2e)+T)~_``;OD}II~#Q5?+0|40AZc>vhUKjKfaRH{0cEI=FP^ z8i^tE6)`I-AvUq+)}W-QqT0Gi1@YG3+Ty>%C@cc#YB7Cy#H}4_8i5H}R4HCaCvcZg z?!(G+5v1i;7f;K| zSa1?&OemnLZrc;f*6~TvZ2gFC`%e>R-B*V)CD|P1gv4)Fk+~K=76!dR?DO4@R55$k zES@{OwW&#X(GO;bxFRL8QDE*YxIM2mG4D_>SB-kqdD4D3Mbe24A)IR*YHkG>xoQrj2HRuXc;4DKN#SzP2OHwqR zR^zgC-+-kuvI898s87b_iVxQzw!Qfdt{;v1d&wqgd?@kRhwS2>7)YgNj<=up+=m|= zeo{Xr01_Wzj8e3sjU&NN&R6p8LlDk2u~E_ZGL=EGp@O_verSsD*nLtA>uVlJ_~cY# zT z{ju-Q5B?81Ka=>*eMlyH;6Jdsk9W>@IenPV7jM;5ab0ojsyI~Rm{c>eO@H#Yh^FNyx~qq&YciV)E(@}Zm@70X=S%;mhywF=u+xDtL; zlvI=VwppY=zk0I_0%R$7H-O|RtlZr7eB!v7$HiRNYCedAT}Q`|<*HYfh22)VAyD9; zALSUd%Icq7q_>N~%itJ+zpR|MUN=vQ)Z-ZAW`e%A~nU`v2HiVhdw+YYv?)+qu}Z8xr3z1Q;x zp8xpC;dH|yiHd%KrTm!xHmM5$=3{&8Xt z+HSD}V>Cr8fC|Ve+@WWx5W>GjjB@i2jUP0W~OrBJsY_djO( z-`{iyebX8I3BvCmW&qun*mA%?>&XK*l;8XeQKASgtS!GLL;CGUq-DXgNhf)|{@tL7 z?kFTZM+(hO5)Ebi&C?RyVdn!A%HfP5^4sr0QF6Y;B$VeuAYA{ur$re(xTEbmdGHSF z?hQ-u|ML?gO?I&=3tCtKmvf^$&=qnC+{MPg;nBLCMS$L6ir%u}u*f4R)} z-TDp%oG+I93|T9<8(mR(1#Vtpnt~4+QMgc8M2c9tIa9a*juwYVU#^K}44443BapBz z^@X@tTZK4I>S#(8!K=W|kCT((N;`$RWDS2PtD4%39jQGk>6!tZuQ;GXKf6x8(gGN) zasUy{Kpf!cGq`}EB89gol5dE8BWWyv6CAq^zgR-Ke%Eb+oexXhcC}Vk0Knj=+r_P8 zVl~XJOS-;Te$@N}!o`MqNX&_j`L^LbM&U`98wPO#SMvgiS9u8+^WeY8t}!$1=n_;B zZ(fjxC}8jWQ3GAgKUPK;)sHJj*h1i)I+fL(PTL@JG`U*7zDViED%txG^B zI`Jf%^!iZax&+=tquxifk2}5Ny~JKt(WOhikaV@0#IA8tj~VO3fAFPiV*04m&&~4V zo{p?JyhDXzm#&?trCqAc3Y?AXvha2}Z-3@80ficn^5A;76=2V1Iv=UNMlc#p(w&(=(IdUQGqAkHInN2ZI^> zC2-J{mGiPDi;_7}>pd^XjnlowkZK{t#eR7UUmhGd-tY}PlvT*t0va4dmevB{v!1Js z9tt>Ph?X_MQ5x|lPW6LiOg5m#u&0{#j45Ipu`_jzS<_yI#CP-vKz!OUv!fT1fa4#Kd3KwSgVz{ve&^xhU z5?lsUay~cMSGLPEvv3HJFx*qZQ~3f%UZORN@fOpl;0ll`I?Kf-@tX&-VkfJ7$Ej?b z1f^z_cTHgdH=f=!FTwE`9H=Qg=?vacn}Sv#FV;yh&g&ocK1AE(x_S%ANH22g53DN# zUw!g8rrVnqp6pORD)i3nNt;ihXuJe+LVN86Ac~x#Ags=G{^@y4qHSoSLzMjzDyx!8 zUKHfAt65j;AS*q+1WHbGH1CjplqGP1%{PVw8i09>OAWeaZ#n1oJBHK^4d+bTwq;e) z3NnwGgdXdCK*AEfzUaAj`gC30vFAZ}@l$t^VxrYVrn3G~h0A)GOZHOkzH%H0a~)l% zND4NnT?G#*x|OGkBqEL@3Wei&$rz@b&nITgTuvGYW!eLli_V|*@DV->u&Xd;uWF5x`(kU&p^qt(MPAMp`k;bZ@0sf%)p=Mn{itmHBKwO~MpbGlWqyU=*Q%mG`E#CR! zPv%300tt@3`M|8yc3tOjXR!E=3PPqRx(oWutwGb8!0D4_4w&2;a7U12Csy#?c+4cFDURb@vmY;cVo7%N#CAT%=cz&oh1#17v zI!!MS@dB?|Wm!~5aEI)AqP=G%iO(hdap^mT902dFwV;j_qK_H z>xK?t+#1i7*z0`N`H)?y%i{$5@p*>gklNEObD8;;pWNy(<wzlD#eu9 zb;hgTNM3nI>>iCNxR!h?G0Bk{d|2H7?d|@I9qb~pEz=3vq1Qts>0*IWbbfOzEW&Ia zc}i+K!YHEoEBM#!8YRB3=hwMd4obYXZo#5l_GaBeMIL!@>?iA_eenH0|NB^qV=(l} za~qCVX!;lYoqhz3r=UfLQDx;P$BT%{&IZ6J(MPYOalX4e&9kd9VZHiv+{o!$JHL5i zVhtaNn`UKd4;CO{b!d}RFI<|oSE)m>AxKCHoXJ58$9r!f$P)T2ALC0|O9m^`nN9Q7@ywCS4z$iah~32Bwl zw*g(k|0pW##;_;%h2{Vj2@|KbQ~0i+Xdc}J)>!1wyd8y1nHgyhEzQjMTq71GsYchz zAV!|;l%jPZ$@`1M@387NtamsCx|1*SElbEkzv(H$zdPq@?$iCmik0xGYvEmD8u(`R z-jqcMwCvrEKXYvrBw#)R(S@=I502|w!?hNhcgVN7~(LPB9h}0L8=ZD*H4=} z;Y+M!;{!26g5=U1Kv`pNv5_wd-QkJ>{VKbm7%D4j=DLTx`isNZ+WO+8;N4Bs|*d&`WK)+Q$EMI3Kx+c|QY2krz}NU*H)njEE3Wue1= zc>!GgWV+%Epf4jZ@fPDfAGSW&-`triqN?HJmlb_kME$n%oZV(BfAyzcO17%wBn+Nw zZFyrDJ*s+#J&3rl6z5Gd$`&jf*Hs*T5Wmc8VC?(ip2BK@vps5ekVbWqC2F&D8{5^| zuC5A`N-8{L{?Ge(j6*4`+HF`M2ym2FBtpx$XfOPii1BM%iv7uhAZzj@r~_G>zmh`Jn)$`k?NxTii^ohkLxJ`Z`@#$k zeXP<7hV37+ov8L-&2n}pm(7tPx5Ium9!8c`>yg~2d68c}_mDo-`OWrFRg@0&H0jayfV zB&l}?iO%Ll5QIPJ~J4BwJZpG*;Jn)L(bMJ*P7MS zPeW5d$46I(SbB#&H>{c>i`Nb#dm;{2rt`D{-O|lM47fR|8`@2L*6=P9^%N?ro7dYd zXuVlFy5ubRk_JcPxH3}h5>)AN&$#m(kWyaVHK^C@wVp@z#;?7jhO^fV8YX*TlU&|r zcUCDneaJzp_uexD_nS37eC#YxBe(>4h>8IU7h%@#kUe5~CDxMz=wnm8R0S2dsa0nR zOoUVG_fU!Y7q{C$`f!jvYv!vOGTp%_wAW;c-L4lO&d=q2Q-rXA1wG`ajqg}(YogN# zZG_7mSK3FQsd#N>pHJ>rtcl1?`=mr9X}mFo$;DBeJOtFv`W6RXoO7b)kZQ?o5}WEa&lnfUn-AO$pSTYe;beDY}b9a zxf`?1(#LMndcKo}8(3w2Va|r;bRVal{4eQ%kQ0lOO9Sz2jnpqRiz1cFK;@{=PeAwI(&W*3Wwa{Eu&&RP>*ybP&$ahfIS0VFB)C z1U^_K2pcq-@*)^%c61tQKjBEBo&q3vPlvxfM|tE#cs|-9b2(T$yk)t-dt(S7p;5-oVvLFPw`5bS86Z$#o*h5#>4;ZAFZFsBG!)QZ#jw51CKO5IeA@bWyDQc7 zz3$@Iy}r7K)9J2xH%G7Z0Ew_&z-$)A7V*ZD)JZ{N_q6d)5&dLh=6qZ=gTD!+2OfHw zheI4nl=EieiS)Y5$-J}8?`x!HSWFOfx9r=@P`_N zCd2vPG}>E7GCJ(6xJ3ny?Rbu`Nt~O=jp!w|YpX}71?px zu>1aUF&2&4zcEOldk!TbQlOA;X3Rv_G6nq}<&3{74$0KF;n0m(6|8SEpayEyho6@( zK?kK8lt_(u4j?OhIhA1X((;;F2loDbP#15uW(n-z#KRl|Y3pUg>AbMHMJhqvOparv zv18C>!U@*}D`pxTd4Y+0;Tcj}a3u~Q2-p=WY9?ME0A--CIUz~~`$VU`wlGK2l$QL- zYNQ7tFE&2heypT(hi*o)orkx?OT&q)K04o|Y&XowrSSxbw7%$NNl%5A`D=&c#Y@m? zP-&6&9Uq~I$~XA`!;s^Q*Vum`$NxZ%|9gM^{~L1r4;K5sVp{-G$F-xt0jST>1Mjwq zg&H`$Jj%aX%Z~**w&aQ)=dGf%R8p;*g3MoG(8hNt?m;760Abg_1rRB!hpB-s*p5~| z?qW7#Rd`Fd{F9CN_iw%%qmHtAx7M9k)tNw18+DBj@Dc5T*sGeTo6)I%W#tnf4QCSC z0<6nKj`tIO1>tER7Cei&F%te)toGd>L;#je%w%)Fe;NfcC}bXst$7-tVg2xC5E5nd z^#fBJL0x`@qLe3XE7&*Vd&J+KB7jek?J$Y(FLU)6b%Tm4arKKKjZ1l}MpV&-fH9Q< zU6G9cy*2;q)zArR%3+g~VV(k|q~RV@yvD^GW)~qSQ|GX&97sq{{uf{liVoYhtELb0 zx*$k+wFb~Xd5{2$qV9CGJLz&PNqT#c?51ew7q4JT210_Pg(Fa9Hn{<=|1MAz&9!@4 z5aOIu0b(7FM~BGQJIGx?zqZu24U|iz0K!dVuCW8HfZ0M^4pJ!VjzPS%1azh*wjelI zy^R0;#0Eo1D4Ee=&SwVj4qmAzVi0#@H47^4}vW#U(MftD2CWmOJ%vJ@FZM zW#$WVMwU2H-Z|6(NAN#DW*Q3^=E^Zpnw@@Zh4!0Qh;obPA)t8d!sCMzZ^VM2Uw*@f zSS$Ql%GKY!OK8D>kEASEAKaMR{Cek`Vqk(c9|(xw7`;Ig`~BA(;*)2j82ol8nu>x~ zY9@Lj{yUBh%+V9@ku54Ne7>7G5U?~fc>vCC$x|=e|NBv=KxBew+v;!EKgz9%P(Yzg zpt^ke4Vn+;3*QTTghxU~wCDGe7Yy-Z!8>8rza8}k74(tUmfQ|Ere(h-&z20Zg0`MX zslOk!C^7g*@TY-3mfvofQc|!U%1AHBe$RXU-?(JP!UpO<3$9oQE0ohHtJ#EQEW;>4 zLL|w86GTzwb7CG~K$-_ieY*y971V|^KO=IVHgnYWO@dBGU7$zD^yFcl9SkCuhoeCo zyk>pSjoS=Tqw9k<@GwiD82mUz#9o~`GbLnNFxFTnR)SZ7@Tp_O~; zA#mcc#NoQnali4~y!|Q2W=Ei)+z6s>av?TlaB}vsouRxsY=BnJGP?v7%9G-tT%ZeJ zJUm7dnaAO|0v8Pe8@eM8ZSGg?g1EXEGQ?)@b1>u@m(nv#snj5FKtfrU#3T;d8esxHW7jt3?X za&4eJK+2~hxhyJicR=s5#*<~mh5uHca zkL-6O&}(kq?Gv~h5XjXUk`IBh@=T43*Li30Wv*%#$4w2Fn`*(}%X>lyKr1|1?6171 zyWejk9KpeNaDk4wP1wY!($GW;EZs%_;-`)>Kg2xcIuS5Pe1{TF(qf>qI-ikO$uN(+OyIa6r|rohMdM;z=W=ng5^T z5H*$gVk>^kAF&#h*X(}(EHj$_L zk>%ju-h&#D{7gqR7#5s6HHfgjVrjVx^otaV#3C`Vwxs*7Q{!_8IMnz&owSo*Xv|3X zbs75VqSTRMkvPxQw^!!79A>9LO(qj6b?j@mows=s{%`^;+d3^_KqwS$qtqE>cT- z6x3zZ32=i2KN3!NkOmv=G<#P)6-}0|mc2ZwS+aH+czn#`Pu#D_C$JyWgBPTs#<+@p z-hRbBF-aai&wff$t zC@IQ6oxN9p^ab{9hS;865{{EB8Aq6JAVoW7t7?TsR&vYRq1?C4lrEv`z4W5H{6|5` zpQb)%TUDu`~8y4vR~@Wv>A*uZhAU2C?%lZJl{8ODK(d75%%CcixS)f|wI_f_PZ zK5pbEu9_^Xkgin_$FLXjZKFOb`|F-zM+J9=BXh_7RsP*Ihn8_>iVsMIm-xY^8QOXT z+1NlXkPlPv-~ckZ%=>>L$hN-n8ffY#`$OiU>Ee?jz?JQmq<1>s(9EFXkOr{ZX|-J8X|h z=IB-PtwrE!w-16aVf|$E>W1pvrB6_g*TG@c zwlD|0#*(}f78~eSR3xLyA&H3Wy9k<98!3(z@e z%_W809b7~3rdL?%T*Hv3H@r=?>>OMw?2rI7ukzcqbhv6$KfSaTfPG7B^OthY!nEli z?C#;q)oR)n-seUEaj-?H=RVv>DdVLGarv&7>oqT)?f2L>v!qu>pr5?6R@9z83g3-z z(cHAm60pD8PZD6FJzYm^L|MWjws=;OD%9VDU2t_Oa@i z)(IDl_KvN@K2nEKQY+6V)*oXZ{>-NkRH^$~ju<0qV@v0`fDf3{lrNy|itkqVE z(CdZF0=6;d;qlxX^+oT4%M<+e;63lYa_bH(%zi}z(BpC<{L$znAQ}>@EmOit>;5`> z6vCjZ=yVP}EKHUk&MbE1X0fUFGxi|-Hmln98DroD&3C)iAne+f#=KIFX%niEmZ2aoaVzfc-%Sm> zx*jQFIvS2Q?>MsCflT9aSF2Rd#O~dr!+w2H+dZWTl@cB|2ZiRaBQ)8c&SBQsOWR|U zFtJkCl#;sm$OQf$=FT&!skU3!`q~wV$}5625d|T1r8gC&7ePtrMTpeUTY!MRNK=YP ziFA=BEkPjE08*p`0jZIM4k2_%=>4p?_xF8!oHO?S^T*-9C^0;1t@%9jy07Vg^DGve z*7~xicrm9$)V#sCQ@U{AZA?Rpe2itn-=#&Qb7|X zeFcT40_LoVulU=FQs*7ttL+1YtdE{akJ-8U&}DLi#INJpN1TadKgei8C<-oBKd0Cx zsk8uU!7i&MwarOha?uS+^cdu}vHCGa-%Q&h3W}Mx_sF3f4QQG^zIV0_W@jzFQNyO2 z09sqR6q8YU+$JhH6MXxKo5eGGq#x9qk?3XFPRQXeJo-?s?cK^LKsY+H*w?W4T3qR% zk`hHJq!T9NIN_a5{Y2U}UF2_H9`8dHXfvqqD~rrJFxz4+@PVcFzis2AJ+H`o@7xy8 zC=N2Z%+DIDO#Z#ew1}<`Qdm+8Vx4X(Yz5uw3@ALDwR&m#uMN@n1*YFGLe=UOfA+5e zkQ$QKw(HlRHiCMZ{7H18*CyintD7ehf}c(GfA2jP6jMUC)?8X^V%-S zTA{-$^Q$jr(t{?R%K90mziLT*~sdyw^&4YkM!{b~AGJtRzaJcodv^YtA!yqfW>$Gcl zN}lPn)-j+S(#3~BwDpd~&i3-&a>-a9j23W#u~=MCk!fihUq5fAjuLMd5V086I=bp? zC)297g9_S3^^3P%gcBKd`nv6&a!?r$@12o<5jyCN@?$(yh*^0@BDwtcx`UbIZ?Ren z!e2*<&gEa9RVH56^&bLOU*8ih{2liQuiX!=i>PhKz&fEI;z1Qdwm+~NLcVQ`rZrs@ zcgd*gaX~jnDfW|0Im0^;ifS1=Z6F&vP((^acM>WTijiu6l3eurjyBTto$q{BIhpA7 zBAML^FC5A3McnsoqJ58*jN2k|eRk6YcO%Frkrx6Jgh4sJCr^Bn|Xio1WkcL+6L zy=H`i#PS>@iL_L@d}7;&&vfzlqkwBxk_Ntu@Z^ zD(^GXULW)eU%-EX#G#6M$M*vvp?<6x38SU0Aycn$@`g>HdcZ6!d3y?6)7}X`M*a;d z{;vOXf*8zmR*g&Ey&DU=$%B0Pr9)qaUkG|&|E%S^+tpwb)SHt$x`m@=2J-yE(5GV3 zLy3y0j&szTBMF7oEI%E<5`i0>qAd4xYzp88uO4R|ynLFTx-&N>H%4U~T~J6|N(w+R z&N^4E@y)PUdFrm705?}2hK5wU;r7ojV-rB$4bihP_eSX2i_@t&TJidsLJCa$`dv+g6ixA3!XT(BX@hTr9dz~r?3JRMVM`jvCH1*es@EQPWEfP?LmLp5yY zK_~8MVz=A&ydOp;4nV8X?n@-laH0{~T=4Q>e2-!tPDOXTY5WG-J4m6%-^>Bb1`mvH zoBKXPTD<4}(oSD7u~4zrm*C0n*Hx{-g*t^e7_BmI7%7=1IC@<~(AQG@({YHVG+gN^ zGf|ttc;( zX(Rg_KxeDobIiOydasZ<;NbH)Q`ipC1w~rN&O!58mlmd}8$7bTzycvTEd^l}c>t}6yms#8wCqaHFQ;j72_{XaXo1(vsJnEMA z3C+$)(~p<4AI+AoS~=y0amTxG-fa0d)Lta{M%y~v^VEm4F|zJ1M%{e8ibk|zFvClv zC8lxw%h^g{W&7;MtL~3Kt0&yg@0gin!F_vNILmS%F7sL{*oyaMQSOx>ihd~SYCj+7 zW5`|-oJBx-rnmZITQXgSU0lsLYQv? zxntV9InQRW7aD5+W!_JkD})L!E(*7N8Y6f1Nc5GX7}-NF+E?ts9^t(~H=f6@I!@^B{7|2@a%x_KHW# z>-H84L=LT0Ap}E?;Z2G^tN>1A15JO(Wsk1O=L6w>`>%0J>vJnbB)m!rm+p;2&2uiB zQ7}aTrzjuR9>IpR!o}(33<3|v!W?qwH=L-EE~z9O%<$%7bL{mR0Wg+;^gUd!=wHu# zknMkPw28oG2*-I)U5}mxd*=I~dBl5+Aqr*|qx19bD`a48eX`_HAx9N}EJG=)^ribu@FwvGL%gAAIMP z4^<1I^;n_|Y>J9#N|1n^i&EO>Ti#R=89ZQnd&}Us8i@YhkYI*gO*br1APUVxyDf!S zVKO+27e8NRUT^%=WQsUNc$l(QPisW%dNH(p4B^40DN%5d;}!>)3tx3r98~Vo3|nmn z?^pDceT*K2DUbIPau+`=7X4#A$WQ7$CR-fA91K6mv-j%h$R-?kW>|Oid=Sr+w*gaF=x_`UeNb|KakW`IDB${K zE8j{1Ft|?edGujj33B;*={-zD*;b%Q2g%12vw~cfny=iwS|&V8d!Bg8Oa!q#Px2YB z_A}ZRKjTr%n=J%Unh8wJ?EU(f<=IrY+;&F z<_gRZc2n{|-J8&Rxk{sOwSDnHc#PjqW||}g#4-SyAb4#ZIK5XTm^s^i-N$CpE+Z6# z%v8^rFY9~Ic$|0gJ03PG^ORR8dXjGL+#Ti3ylx_JtU> z+)4(*}&9S>1L(EU41UZ0|O8+CVQ#RDe!zi=v%hE?; zr>Ha>4`+s~K790Eh* zFOc6vGUh}gy~;Nl+TD94jD-6)$LphRDsy#1FIa^q_Fh+USQJh495fL@9X0Zb33h%{ zdSC~3Bzt+Td^~9uPk3ukP4Ua91%wBDt0pbsZ@IneYC!zJ9lxchcqH@vK|J{(L30eb z2b`^;9r~}gc48T<bHbnhaaN zA#+T@Mwergf7(6MmPIn1;fk!(u5t`k0THk{msmA;l8$*nzPn1`S>n-J)`iToL&|(2 z*&>y7mt)%}Eh4VFP$o^zAYayNDc^}ZlH97%*&PtbF-BamRx14wVZaoS8nTAn+b)3C z;e&q$bPF&jzSy8ESmKKJw4`g;S38!7?z3@d@$}>|b5MK+Ogg~`gIdYMMAuk!-!Kv; z+6eRu2Gvqcy?Ud1{Lm=dTv26yE-3w6_fHYQ@fJ;=a06{kNoNO2L$3~364SmjMybF=U~&!d}XJo^^NeHq6p%p#2@)9?bc5kT%mOrkf18!i7^!Ytx{MhB+7!TrH>aLR!OO?_#cvT|fN1 z2h}Y}-W2tXbXjttXY=Gen`D^5&=tm)CUVX_#lsGjBwA)XAqs2my+@1lbqGvNqxE)j zkw5H_X6Z)P{M1ludU{>~f_p8Lmvy~B}%>>|b?NKEQ?Nw~@!4FT`3&^{5i$k7E zZy3Iin{9ox!K$xvkoM#4q*_s9+OyjPoP(8hNInf@ws^U5IzbPS{UHe$Ou?V5z|LS^DqUx#$kTc^V~7bC=s$ie;g*7EAjq$}V;b zJVwvk1UmYynEbUl=nJ{G*5p@jj-XS9M}9djlqb5p`tWXOxaC7A@hDJ0G5v)sp<{6t zsGT~DOp=xhvvLFv%w4MI;_?$;A&N~UzRF_;FIz-uA#>9cqW8W^A9!%)4dQx)_aY#Mq8=pthtYk^Y=A^8d^WF_6SnCFsUJ612l*UPKJtgcyq2ZS?YLQHW*wXPJ*iD zV`%qQt5r;%9u&=bWr+sjy|dz7m`6J+{(&M&_R_A;9d*lp+m;MeJXT*lh0`7O*?m%(jg`XNLBG z1`hQ-^rAtQM#HHZJXU+CE>c5g(J$0;g{0?$9?^vVhv-NP&bA8uZwV1UZ(CZ5KfIVoe{bwBhIe0Qe&MJ{7&aMi$Pf8 zQyYG0x0q3{9EfBy=!MeWeC-d1JqFu+MPbDk{d&ZcEOe{a{L0hec4P-OPaAP#kN8Y( z#0!%&5;R(@`?5WkqgOU>p#?Z9R^S|#hl{l_T)$>>4(-!B*ayZScIUx9?Y|+6d%j@y z`O1X-k0%?DxTUZH2dHgL<|7hp$*}=9?i|-UTyXT2vtQAdi1pySIXTV& zKHjMBH)b*OFk|lJ)3ewNvB}YsON8^5YT6!DeskyO^k@Q2-bENbH3FuAwgh#>lz~aF zh;f(PVfYkzu2iiJvVaoD$M@Z6ydO1qDa`u)DzBiX5@-u7olz&(rpSqDi}Il)cPYQYJb^#0OF>>IQE0^iv8sord60bC64IsPB|iW^T#NXL6k%%jH zO$tp%fu8LVWmwh|JVdNz2@d1NL}k2K>5hZRkIt(+8t|M~Ld8T0d~T#JC#IX9r##LK z-iNE<0eL~}cVi_hg;X{$haa`)6( zTL{mPsYT#56=Y)NXm>RA$vjJt0)Sj(Br0_@#rlQ)Oy$|W-Rhtbl(hW&F3PlzNXWW0 zeVX&}0PW^(%QwvGsIfs4cvz7noRgtZ^L+;BRC^Pv;3yH7`qKB=JMG5;0hw>Vx5f^R$dnC1br zQ86oMB_++9*byK|86e*sl>-2xF2IaYn%csAW%2hK;Sa#{drmTz2@&gm)!FG@Qj7Lj z`Z!5v%jTB zA}vHj^Lci1qL+YCQpm=$qj^q|mG>pf*{rjAv!lKg?~RThjy5h2;%aKm2YPA&s|N{N ze3Olse0|!|pFM|EsjE;jD zyJO!@27JsIXftpS2`!Ci`0tap-?4Ovk%toK33_ve$#QD{9TfM4-ktvy2?a?`4@Lz? z$z5W;+Y8+2J+H7}x?TQ6=~;tDzOZ7PoR8X$ceps}J;0|cINxxGwioAlJ@_B+>@wZ9 zv7B)(_SWeNhBs75SHz>>1fCmao_ZbtK;_Xn$NcoMW#N^HH;wc#_bfdTet)cw7-=#7 zYXndY3=1qgjk&_|1o%fDeVXF`7iDwnG_wxyr4SzNx7;Pu*MR;aph6mtR7(9dvh3_b za(nb-{feR6U(?$(ZFB#%%Aoy9BP?zTah;l|4E!~+t9H@9?}gmIRDmxkKCb5a*O?QY z>&!X7w(#M2J?Kc6B6qtozDbYwKi?Yi7U-*jKVH51KjY4p*5}uHnG`L9+4fF;iHa4> z{|^rPeTWxe3x~SL?f$)q{(rP7;77olNN5i||GyXmfVXRs0(@H&xu7hwf3^Pp3vK=% zzZRVap1{!CY`35MuPM(&B;Ccz{P4pe)7M-;j*hxpaexlWxD2ELX_pGW9w# zADRc>TkUjZOVH8Y0;a*`>;nAWF#V?H=DSZs2D*lHziJlsyVJ)5`tI-#joGnzqi*i$BD4K4+1IH&JrPCM85h&)$wDry zMg8>bwO`{UbI}?)vL3bn2-scB0g7HzL&O0c+l<(!!-(fq)@7T%Yy+B7rG!nuB{4b& z#ObHztby1dt~a_KXkBYfXX#wCHM%hl^nYVG|Bzvm6gqSXh$>cZMxAT+$TK^O1ANOW zhnAi0`L3MXQg2#I~Ow(ul7;YvTi156GH7mSITP z2aNP-wOX+*0DRfZ`x9rzlI-2Z1;2z$B7REFFsPe_*b0J;7EVIK7a~aivq41-m60yJhJ$<_mJ2t5oHJr1i1=g{T6}vbnz-OoCsd%Ftrm zun&RBV!v;a-9sope8*{qz1}fZBJe}aFU07xZniGVuclOj&TGC9 zH*V1{y)2leB+rj+0O88`XojAC^R(=oc->G7e6m?od@#r3<0wd9=O<80JwPSvte{w3b!bc>A5#^O+!|UEZV9%87W38&-kgy_7E>OLXT zoIyv%=Fq18xKUuCSuwT)POZYR8K8(Z9h=4KmUEx3EZ4!00TV;X-Pct*ooMTH2w}%x z^L3iu1=}(`j~%qzkniT69iR+K-yn1f-*}8wV7a%VYHM)srQk`E@x7tmKNYu*EPW87-uo|`$)H>5z~Pqj^lH^~vuVRQQ_LbN0Hlk*~OcW;U7?F2M^XWB=pU z?jB&y4zzc71{VEa0+l)3?glj5I>`Ufen2RUdnpkT)oSUis)#I0hbeYH_}@3B|f4c9!YEF?rQlzr`vZBci$8!822T zd9Gc=Wy#y?^BAM;j8Akw(c_+g{XBQo^Aiitj>%h-TyA|g`V`JAs=q_-RH@%8a2UwN z;Ww8_VhJ@R*uSP;ID5n5jG;4`qrn2!B{^XvyH4E)^U>JdTCVmBwTiz;h%-gyFOEdz z4kS_cuMm8>8syvx_KWO&hwsT)K1k3@~79IGEwGqHTB9XEp?KS z65t>xlPjFsAa{e9^$2F;M%@a_nO?+Zrx#|)PxE$04^9(X-@=o3!DnkK+$uvXu#0TN z76@bb^n$^3nI26#B`UeOu%RHT%rrg9!C#>(>Sc-EZf!z;1h;$Z2u%OylTQYwP+%mf z<@5y-GO6lX^faKa6t%`T6hEvGxB>7?rTFFrRKmakwJLONL>AlE^DH1iz?}}DDy_K%^?^N8_U|-l( zw;f5zCjN%7xnVMezPtz4Ufk@Q+ZbV)p-7mixACb14a)gdfz%x9O`p_i!BkY-h;Z6r zdeyZy0M4>%kWdH$LcvmGQO{B}OA$8m=N}fCYc+&A=j6l;JCcmoE)XxS8NV42%|P_- z-k14NtPSdE=mTwPEzcJfDu-SCxi5Zqnx6abRX=vgc?vyZh)UTz!eWqc<8d)r)N;&} z`!qZS4f}1JVhBFg2%i2>q3QM&ZXt4MDr?N2G(M=qoo6$_uFBT(ZkU$9wews_%_2wa zB>5REujo?4J1X=zY{QFYLE{UuKi-YYY7p5EXhIm;#$Je7J&0!i$wZ?2_om?>~K2m;T(ze^sbe{JM zvSimfuhHr4fK@gr{?r(W5AXM0XW{bez$B9pp_nn1!k(=i3P)%B{Ll52(wvGjGQJ^i ziLVh;&p$;aXT_7*%?vrzNYB9j=DN6_n$8>%ghdW=+*X_~Kd1mqTlHYaWAN`+2+>P{ zebS$#_h)ZmrK^S{c%3c<9~e&-RYOw7(TimRCZGHQ8wsR$+{@BdL;V(B^HXkdJ@DN} zV-B@0q^e}kSNYRydSjsrVM{sk=Jot#?>{wTDr25-nG&Qs*YRy)W3!j}eddAyeW&i8 z;YQxF;pyOrzjiC>g)RH1%SEDofc;64M5lxp#5BuulC!8$f*fK_YbM&p~I3|tbP-xxTL$7f)Y-xvK0U53Pas%5b%eY z-6}TPlRYTZp}FzzJz@~=Q{_5WfMobV8lYE@JY)7lydEhh$@Jj^>tc6vI#sKESK+Ai zc5_(~4_F!-5gP9{6j+&)wdiX7(}&LG8fi%3+vp?O-d9Mh{vAraO8w5-9AzpLMmJE1dx%*6H_j(s=Y?8eKl&jDcVPatN)A>XM#-OnX&v(V2aheN(B24>gqe6p}F@px*j zz1<^YA2`Fq6-#*3h8DAeo(?e8ov)0tCpPuyyF^%DUEcBAE0k35tP^r3=DG(iA)Vkw zzXn4GX2G4pE_2fF1BF2p_;L%*W9R8+ta7VSIy6$o5cj!4AC|#mole|&bA*9+Ye+kt z%zncp6+`GDIJSMd^D#)12PkY#l-HAgU8>CJm+5n>sRf1%<)uaK3-#EukJ$fG&Dm_U z%gCt5&&@mh8o1HQr<;EC%R@p%T&0Eq>v8tt%D@EoY8GHslaRNMbkp*7aNEW5$xmMB zf1^%VkdShId9WevK=Bk`32m3t#bMu=YIEYXs%5WP`xc+N*L;82v+a3VeSq~dshNCc zYJuPfH0U;w!TpG_ULVlni}23Mb33wGP7&4zz1aP_KSNg!dD0Y{uaPSD(?|CDH!A!> z&GDx`&8yEms~*k3KZDjz9d&vX%WmMnhjx~X>zQ#+r`AgKZd!b57yU+wF;L2xu4luZrJUUFKoT3fV!WN4T^wPH1$cWuBGYgpc z-sU*VKdxqesM7BH^_g9ep!xaAH2*Q((@wj2k~djNQ+-|szs4rM=J`oC9ZFiqdhm0- zBs{rouJBO52FuerTJbGNXlz+RHNQh~QDT)X!J@2HZ{0#MKzRJn^ingHE?5usO>r!X zzM$}zl%-=1dfY`W13PxD$B#(e+=9aWT+^x!-yD88a5clb&B?DPz!EDF8!1oIjVNpH zmv{!b25DN>7kdhml^P(?Tz304vmO`UUyYN|<;I$%4Q>S}|H1c@7owOd|88eN!}+~EEj{}YG{rq3^E?3A^z zD~FwZ>ip>zqvEUPi8ptrL=YXCLoJKolD!$T7r2+o}%k4N2AhCn7QB25Y6feemXyrfhY4Yw{caBJ)4Lpv( z8rv!uD%#_c@J85(B|sFBbD7zec39HPxOfp#M+xTC{;hCKJLdJtUF_LITMS1zDqe%{l{=z4l;+mL?LysqQGM#rYJQ_ z$UsJ~8t4a(h57@73X}4dzliW4MVMH|KYd+)y2`yg07NyH@)g@Js_s35NbliIR`PKt z`Zrz8>;e-x zw(_zBGMXK8Gk2ta_19QU(GitJWPc~qTtE6(oOpi@pLnGV;i(roz6^u0dr!g;`X=iw zR7Ex{4Q?Qs1tc>*_v(JdAxLV{khiy$*u~r%+l>4aKR62oRp|uYV@KdWMR}w4j1mXw zd7sls@-|elllEm;Q<4Ev>mf3`n8TPr;TWH@3i;F*_&r`0YOLCA4-c_3euhNBdGQBM!(5E{mDxrWF>~r1EPc_a7k8fm{w2fe7@nsC5nnIN^1rrMy-NpraB;Y(3TU0mh~i!8%Gu;up|!+f)j*-9_f zi*CeanC5b1K>|JCZhy$`>8q`(7t4;_;7P4&#edz_KD&|wmOFP=T6*;gt4#tpiKS(y z|CW^aSL(I~B-dp9x#UX;;kjFZM>9Q}YbQOER*D)rTh(+$-bG>&?cZo$qM7|RF2Av@%NgshmheV2Pm;=%Ph~y-{1S!qjTDP zlSr%TRdQvI9mUDOSw@_Hpe0Bxd8e^~x3L`LxBWG*S8{$+TyI~z3^kb<2V@OvonR@m z>_~luJLa4GCD}))?x+k!^(}RCq16{F@lY7s%ARlS1pJpE{Dyn&)kh$d2GXIy?8Xf2 z%**)zgNuj33@hk!R{6F?|HMt#^Ja{QK#!+m&OMsRH_TU<8N(sdC}3(|gP*_p2%g7< zO#`W;xNCz$yEz;7F38C5?6i43v&82UU2F<=V}aut;Q~~Diusn;wm2`|+Js=6w7wCNr9Dtk z=N?i@h$%()$kkg#=F-M;Rflf~tlsq?^^)xRzAB_nzDXo#a@tH(p=%5)%0_&cj~@Qx z5AWvt-42nhfWH6njHAx%_nged(k7L|+>PGf$@>GR7(!NdiuXjUrM49s>`dwoXX;Vc zr?vva_am7kytid%mIqjEQ{NCIy4U^eOlC?MFHc7}j7%=S9T(}L6j!cSOfN2DGUu%BvuZ2UEgTYZx}A~T>b#{6L<$n zO0cTC&l`BzLE^U%I4KOXOI3+{gsopd$?ng)QCtL>WqlBx$_TFhU9Y)V9&;h*K{!7galJ1Y<>Ew z3y-RfxhX{>324Ph=S!qq$CP85EI1*aQ`JJ^*&fH9KdY%)iewK|`g@vVne@0Md0AhG z5wqPL?g8ohIfa9-c>;V_P1|zZ7h-`W??yqK*>YT)%*+UBt<<#Y>Pb#`DWQ)#7|$?k zBs3M>@mK4kqkxx2g$Cn4){ucI1H(Y>J%?Z3N%?{OcQDI#s$f=f;DuU3zdP0d@SwA>xL zFQ=KSjNDBax|v`|OThXR^e|E5MmDt>wz-{<#wObziTqva*0)1r>rI>!$~Xo|mz#h#?Q-(^(cj*0W=)8|v)OE&fFs15h6 zg~;&3CBD}`&IG4YPEt4-N9X?j%{jp^ftS3zvQCh^w^7wu`q>~FC~MB!h_@uF{OGx= zED46Q?0B=*v}6LS)>OG0*_Vl1xk$)$gtDyYJ^!O zhyys~9TU>NSuJiEdGHMxLc7gud}fdtWwD(Qcu|*QCV{!=VxAVkwD_n-sY7%49?A7! zaN%9$qq1@{4JcgBubiB5u%{Z+T zR<;I6fpaOboZ&T!aB%%d4AGhE*s|T;14+(h?)K8FPu%<<&qag|^i3EGaWv>0;Bs?j z|AribYR{EVp)rD$+9eLVJUm7gM#UX-1iRp2NcZU*);SQ*COzv5yQ}yzM4J>bw)aQ; zMjcXrOcPy^)oF4+oS&U+Sm-eNYjv`YaR*;(YzD<4Rf)MwmK99Nhryi+FlaHEPghfxG{T>&ruk%?x+zas@(dP zGtmRf^p?w^eM>rY$i#LQ_Iui0sSf}V657n(cc9{e5JvG{3r>l{L0_GLJ4-7GR@*c))g8MS2Kz8Ewsa!7u@?$G` z?F7(hryG4f#c-??wnHUsdtQjQ-Qi)<-`+B-Kg$h_6KacWICZ;Xq+Y@~vi7N=)<)NV zPcPp*|AkFgsYRQk?Cit?ft;)T>#CD`(F-=}nAQ)AN9OhQJDwJTwKHZ<+$ds&w*=t?NwbZC+Wj!>Sa!lST*5iofM zbF6V}gip1>$MNJ(71*4Xi28I}GUVG+aXtm!^mOxa8L!W;4tUVX>jn^P)v&w8te(lC z!NJR4Ln;IRT6!Ksdj+n3#mZb#C|yjGs{)SW`H1jyBb}KrYoYYg^Z{Bfj+Zsw8S4L4 z-d#yJEV5YGHl@g%lh|~1=umw~{D@ZR`3UL~Mp*{qcQ$K!pj!^bM-Q~4XJPEf~Ef3#pJ@l>4|K>LPeuXE3)EVB{q=3pRhPx{X z_`Ll={q+L8uCRJwN}hsp59Q|5GW})H06A+NK4AI%Qf7BGa8JBmUwnJ8&&-=oH`(C? z?sg3hmUT;pbl@9Y(tdG?>J9f&u20s31Sb$}2F_Wrz;{kOCU6y%D@1HKFlfr$vu0_o znfehU8zqb|Yd}md9e~D6{=o=lA*HUrx@}ZnR=_}kpPPSanZ-_Rlf0AhdA)QAaK{F10MlTR zDLx6MgWX2)Fl)V^cY}sQeTi^Nk$L(LF)M5EIM6w2DC+H+-j0Z%SQQ_=dt|~kgUIuK zDrJu->j+c)xx{R|HeG<@K_6kW(OLL{~fdqfu83Dh%xw=Q19j z4m%*b%=aY%uec67*c(lZM$7Sq^nTlzKIDfH_XU98G88Ui4|;7XHJL-Ut#<=$4fS)s zW~g#_4TN8JY5}4|sv+Arq4grCl+fsu>~rF4y@`?(dr)ydXD(bqbl%E!z+Y_iN{504 zYc9Oq&yF$Ah;w77_Qzx=S0QW|tDG9}f&~h_2ZC!J@=2!Y&^SUX_q>VrlQ$4atgM= zy}Hw5AsN#AMQ)RG+Lgc_EXKN5n<^kRR)1|=5ZE)tS8mP`_&|cBgMr`iOS^Sn6+c$t zBI9Ad$@YcM;eiK-p9@ft&AT6Nf;uG>MfMeAbjhb=rXeZx%F;O|X3*Ex%z1R(33jWg zwu8l{B=UD9FIGq$;w#Z^p82BsF!^BdtIo(_xx}-J&EL9uN(Ee5U8?=MVEwNLploVA z##v4K`796mo?#_CIfD>mtw}zN1ynE_K|Gq~gTi&bgNn!7%k87Ld3qby#a-~Cuwm%Q zfhusFQH*d*+ajz~giB1rY9j%S4d_$Au$AGB_qO4-;Sk1s4{Vo!<0&9~mE%%~3)*2ziUC8+C`YlcK@% zw6xdl1?TJ-%K4cV-B?6zBKZ^`o%)d9rE@_6YY*XUdquX3xAsbfLU-<^Ox@Q!G^qDw zp*$-D2f`C8G^sU5W#yCaiOFV;Z3n>@;3V`1E@jtYOmQBD35e7^L(BxqgB4z5SLlt;x%7Q<`h#DzQ@D=Nw4Q%s!a3ltZ4 zoc3;AtUWQ86)LS8OxvgTjZ)6NQl!j*$Ft{;p!U&IKK$Ex%unvEQCE-O9=Kz~dthJ8p7IJYvEp7Z zQe+D>i)o?V>kGj8a;x0U|JE3U0@Nq!xB^G)(Vz7tp`<987qBL=M4L=g3^mw_L7Z~obto3ijE{if=u9Z6%51`c|5`~$`blO%Ec4$|aSup&tHDZiXT$o7r8{jHk@ zE2SU#*-sg1kBsV?oXT-!CmqCJ|IIhT893w-gJRqUx?+A37rBI2Ns)ET3+Iq)N+YBa}SKfs*Wa@a^t)>q_VN{QlkC4htB>*W`w z{j(i6$j+f_xDoFs?netSpvqkH5qCr(HSU z+86F~MqlR~u!RH;P31-l+u+vUaVxb4C|s46*jpZdUY?@GmN8wL@ep{d$4Ua>=l zs?JaC)}+@zrY5!-%kK1U3fDOVw%n*jN_@*BNurx$n*3`t!ldht*QN8z-ZsW?W{1lW z9M5Vk)K|15s8pkCR>-xT_aMdrVcLT6`B{Bv+)RsjivJC z!V&X`&mO3psF+T%jW>D38H41kDl{CCBfbm|w2*c&Arct|FAZLoI#G#DQ#^j=j}CB@ zt0@ACJ(#>XC@k{%=&|6Y_xZA9E=*6^7BmMbw_Sxu}Wi1Qu0*~w^hd}x6iqg#M^UhL_ zIAbt2-w&$>@6Zo<*`hv#K8sSi9@VHeKlgp(jy4BZ-~(4~_OqexeUC=YaRsb-icg}-O^}#811{e{(yAz9%y{FO>VJ5eT8n&=@4K~kH@k?6@nLrKWd!<@4KJ*>{_>kPWQ}R!V7Z_e2@T#8Z`|iuxS4T zX_zbRd&CFiCl0wyos{| z4_VCre6*Hp#%Oq;WA?QMx0Y2TQxZSXdGDzJm4fY(f%q%_zXblaWm!09p3r!DR;RmrY zYsT%aikL@%_IgKC^;BsVHGAIR$fBVOEygwD5k(8*l^Yk`;sT#c#{_fRtHo_-RwpO3zpTP7Q^@R?iIn{}Gt zG?f%IRFpgL@(=8nXDUcab>E{Orm@{;t?==_#BfaoG4Fwi)|NAXTH4^&vo!D6WovO= zOCSLK@ObNn_!32g?VlA^fGxI|;5*)?zm`DwKQpv1-pX_pT>U27IQk6`JU!0K5UeEc z2hew4_`niKmpfjg3o4{|iD=}1?)#m+OK-~tUpRdYZK(wdrmMfto{qafb=UYh=BGmZ z0egj7N-Pu3Q;Z@dWu)5=(B@QB9u_BN zo*He?84wDWrP^!l3H6#+HaopY;A#?bPr_zCn4kI^jIX&E-q%^#Kah!&6o7FViEX!o zuhrz16n|NA^trXs?z(#8{=is?IFZofGs5bie5C8|*UZ=Z%<1c<@o+xg%t~dwH2{q% zcfWn#Z}+DhJL~PT%k^iR>RWu&Wv81v)tA^HXtn^g`ia?>iEOVa{t^;8(3(l3Kw87B zX%nR`0tR7qgx<{JfcRycp9t_t;B+iM{)#;4Lv zvvs8qIKcvkx+EmTZWUe&0*8UGj=j#~mcHo4cYV_b;IG>)D6N4glTn|=89N-n-~7t> zQREWO6sVl8C9kI_9bj4K^wjJ~x2>RYtNgcMWm{Efhu<3itoSFyKt^38fiD)wb?X`9au(fT%%`MO#djCoI zdPgu`sGSNmlG)putH_OCo@eN-2eV_e68(00m80!2{lAY-h6}Bh=Iz2}r{&xD*R_hS z7*;lG@601YESIS9R@);F@1S9pe+A3`3Sg4jTuz@EPO!F7A5dSss!-i?Sks3O!1*KF z*^o$?`+zUz{~jQ`+R@FVNlEgEhFkD|^>hUOECG(sf$vN~RcNTKfC9-=Ocm$FMl&AG zD3Lm3pau4FN7mM3`q%ff1d%-_UA86KFYtEF>&^^O9w;6V0Y6a#Z~dh?kl}jiFx>aT)aAtvyq0;~mfB&0u;G6+oJa+nEzeD6LObyCln1HflgT70Ym%bP_YD7b z)c}(gCUVUWsY10sh#RbI(8#S^T{nN*%TP;pPq#$ghLr`eH2G2y{IDIIbSBNvygvVI zne>z)Ir!V-6a-eBFe-)zhd$U1wQ6YKLmfN>=Fnx$Wd9!Y!PFZT1fYQYJK6>E&!48BPhBh&LYH;#jO0+(J_T&3}1 z%}xi}K7&OwqrUTM*|ey_9_g2S-2YWC(Bc!*0Ibni=lqQg|E-ru`PUb_^n?WC)snu0 zZ93Zq3m?mQ7PYO1Lq4Bf{Pl^yWeJo4*m%AO( zg*5Ip4yXTmnx)oFI>y(tF+H#HEG4Q7<K&rC8n7Uwsrr($Vo_*jPShrL zIn;AgPi<>8&2v2=)_`9-CCY}sNegX%{{5{VjKuk@wCqNpH zW_>epbL+SiycB>p#N6_Jh->a<-%?$J^=m|`4+bm=Jzs1~>D3^&rCxzg^z~3k-jurg z4!Q~}U(uOS(AUwXF-}eVpYimhv{#WSc(!KUn=NlG4)%Z5@4u5=yd9ZVr&+sPNQ|a( ztlSZQ<)mKIMc9eKwrLGeHJ*wo{mTO=f>PfORn|Qzrs+5*UaDB)-dD<$Jt>}QP!0xQ zC5&>5OPn$D z>e!QswSpLbS-?&GR2lVS?&)1XM`dNco~>u7X8-V6R9f!!EUX@H$*fi0$l-LW&S`3o zg2c?Yf}VvO`pFRAj$S{GWAycOr0x4?%R1ICjAiAl+1C{94l=o`2(?Ca>U1+xTT22r zF8{avN2hU&Cyc8?joLh7A9>Z?SDBE0gilY?#649K5{FMO*H#lB|LVbVi36$zn@jzg zN3^by_d^LoGZcr&MwkzZQN%+JvjZFIN_($#fIhN8KR!NpY$t?rHWDFg)D2_m_|kWg ze_Vk-oF-a6{KF5kVk#U&wF&faDgsfsDoX`n4GcxhWdy=|!~2{n{qKgz;Tlzj@>Quh z8dcdJACCnL5)tGxW|raMyH#zXIY86%jm zps1Pg<$R>P?>_&eYMRWIOcHm@iM_sv1$7Vmodly2su5HuLw}+L@6c!cgdVl7os`I1 z9E?ax<#o*enZPKgTfDN>7qNQ2*&`@c`KhTt26WaRMX3HuEdeSK_t5lm=a0=yp`vOI z7YYSEI?;}}tGTJ56WwY~cWC#@pG38FG)(vtyW@o_@va`ndqw-|*@6Q%GJl`7g%^t8 z;+14pqo)oZs$~@?cXJ1TySLgJZ0|U_w^Iz@IU+O&8)^l@&)q)h#pBuLHt(%#M@ku~n`+Mr!xr0xrTgK+=l zY{17(#M3fKZ0Sx%G&45oINt|>|3+&*x_a{#=9##o&5Yelet+A}Owx`m%z#}FjCFB`H*(~~ad@86-F z5pJNpj5hjbKJ`q?T#RG#I0ZU`?ZW((;L!`MX@? zqos2C@}!HMS2RAkmx|xQp?kP=a{uK^zDpu=f)D%n;W=U0gt6knp*& zm_%axa>)qJ<1_siO^;Nl_VCYFHzhjZYOuYOm3o!G?wbh3oPp6;+des3MZ^{ z;pg&$FO=9|UrN97-9!!YFxde_#$VkvI7zG?G)8pABWS`jYc!B9mnb zxbQWkh_&%!dkUWRh-f$|Ke%8vXq!=zp}O@?i}p6KRM^QJ@z(q`f0QuI&ClCU;VL<$ z8tD6%t>LS!k_U~Ji61EH3kQ>4>c6d90JljL4nG)PhD|FCR>MSUkIf}6R|Z4-u6_m4 z=ba?0_jP;l5B=eg%1T09pn$IIduuvU9AN11_ju7qpfedG^CoZ8jndx+t5fZ>m(+KA zu3FWn8u;R7M$pxnkpB$7LGCTPpb43ASIc8wHrxjhm=7$KaE+W=YYh8CNK!RU4*hAV zLf*~GCaKm#6i*G7mNZ@E6SVQGALD5i|m(0Jw#U16m$Z#28_ix>6V@N+z`zMRrj7K4v& zbH}pOLlkeNTu+BX(Y_rwP?qa6cP=0D5F1?#w&-i#dF_$ z(%UGR9x=sUZBz<1-{iRGk>a5m=Q_eVa2Lad;Q)+^xEL1k)8w9LCP^nU*aHmnlH=!j zq#syf;q2OfmXbIE%*8%zTC6U+*bg3w7Hk-xA0kPJ8x+lWpX{ppxTO4U)zi)-0qqBW zy0bvT$$8({z5y9lx%bpv9iRQ+r1S?dv&bC=Rqs1-@en=@Ak3n-z8{H$Tatz!l@F6d9YEqUaoM=CV$1LG3Izj3jMB-5t@$NQp@>$8e|v$ zuh*fNU-;m|3^pYtG~|E$FPHz)yDakRdR56T$g}*fSC$Z5VQ8tmj-t~4_67g?*8l%j z{

bf2(5N1&Er;-!9vBG%4mvKs;#ytn&u#<)<~H{z!WY$>?j|jkAuIhv9WG5^tND zSAbx56<5z|b56quwPB3!s1fkLZ_YA(9{!Ylts8oNJnOJ2tDAEmv}rUr-$q4>6=C%U z`94iX;jwn#4s0o;Uzr;dJph|}1z=x44Wc7p=A*WMRno0Bi|cXYw45tl!TSsNvu5yc zQp;?K`eT({!>WtpbiOS8h}FSVo{s<#msRq=>6!+NgC}ZH}FZ>dYuEvFL-O1O1I}zHU|GB&42!|p5*#*Er z-uU*e0^%@iDOQhn+$(lsW46F>)@VC0WEJ~Yzfn|E{Nmk^0Nzk9n^R_ItNWGLdeyTz zX`TfK+Mf`l^41;YB;33i_bm6C1>$+LBE_9<6fP9Ad zX`AqV<3|`dJFZXH_cu-Yc=K^%T?nAGu#aqe1H%8@?OAAW+QfmsBWDp8!kz$b6J16n z!jFqydH~&W>{hz#8a~zRUtSn(cW^=%I+o=VKR`LaCey#}zLzfKQ%&wLK}!zkyff*^ z(P#<-k!)ua_lF4(%mB!@)mD8~Np10hlq4it=)sJc@V$+~m#?Oe-U7M{c5P0tz%rRu zTTCX=G96*7Yj0*6Spg!S(`=fYDbIi)2Wp=$pm1NaY}3N%rSL;_<0UsrqWWGCUaDCu14IrjEtsZ7_tbRKcHZ`*;!{H3HBscKyX9c9moDxsz0_u*lmI^v` zX*4P$)(Y71LHG(VOAVhe4{(@ukAu-cLRt6R1R*M1*Vgxq8&opM7~d>8q60+)odT{H zOvlm=biHp>U3XJVn}La0e(Ll@RkeIRP4I$>VC(D4qs_D|_sv0{5$xEEj&0jb>pCFs zbfhru^xsbf{?@i@UMLY3OA`2r4xtUVlMj~s#GWtGUggjnP%X=@# zaxH$qMeqS4))el$?>x!{a?VBr(W5~{47TvU=c>r^LIWoWXQ-EWP`+ko_JcS%I_T5~Cr9ws zXhwk(wsHaxQwR+XGj|-^hZr9f_Q)P08!z@WqQkig=U!SJ3v|>8$t}V_4@@;+N?4MH01}_=9wJ~Q(Z_R#b6y*3OM~Ja5Bo7N zGLGcKWt~P3AAq2mPD9nbX!y64Z51ZcOMEfq4_uSH4^O}aFb*wmGAkv4C+}x~1VBo0 zWT>OKK5k4y*>)Mff-5`{W&_A{R`luF>jnBR#Jl1Qq}`6?c){;MfAdpqE|)*Z1M{gE zx82ChC|&ky+i{X4_)k_3Y!_!Wv#P@jC|ZI&9!TGVr#d@teP#9Z9C5TK%k>CciWJpaPHNfQt zV0U=ru;NclXjueAZ!@}tcRThnJWc4;O80+O2$|KFnYZTD$2feyC@RP}G%l*<)EY)u zwAcQ)@|PvwY*9(ezv>PCHfW1NI5Oda=bL+9RYXgS9{ukr6?+znCQT;od zWs^Zk=Aai(9S^%wEnQVKs1YJClgvS0N=I&>qlQYnPrio~5NEhi1AAmkrba@6aC=Q|VA6II7 z)v=&aM$1w-Gt=`re!Tv>$vNvnc$2GIqNZwSFdbxNJd}~cqEOmJ;Gnrad&#I--J5fMTUN{YsTMwq<9PXv|*(RYT>5Y?Zd)LJ7oCFRX@gN4;xN}tGOfdRnHkQx9IUL6Q} z2PczV+9j;K|DGy#T=x*TwJ z)-Hg&p&PhJwXoCnbfsx=D1qKvaG2M#$*GJiOKm|2@UZP^_0id-y3J1J@Fh*EhaNya zAPUej!n!VIoE(WqX=V`>vX_vay+^QSE;<6rmKfiHWHhR%O*h=#CqqanGLAYVtZ@yj zguj!ImPd+zHIpxt=Vc?Uq1VH_1ym~Dk}tg&E?Xm#au=}_hpM>S_Z5rODqgPx!s?8* z1_|ow%H$_%%fAxd9ON)vpn&Kq=`?AwX7nQu1`={+#-~$qJSxhKRhl1~_IL+g82kZEPaq~j<)E3_ce5Eb$F0&9^ z;9!Vol*2#+T-e}fX->WSdB#73^kz{Y#D90Fwi)op;J8;oG?{1_$*44o@2vI8fqwcJ zjzlYOyDZock*q-fGnjbTkh(&Ah^Ta{DxCH=w75T=<1ySiU2N8dzaf*0ixyWrf;h^t z7 z(~riWVgMg(Q8qW{$Zi$au0vTEKF6~@vtHj`%D`1hM?qFob|zpk06W;vR~5={?abODwdW>c))_u#J$_34@>^-OX3 ziDakC=QS6xxN1@TXdnlbIe^K4@~_;>>LFf+%<*eTy-xm8^hvJ6nsw$yo8r=W4MQci zF!-7xj<`m7^DgqAOYRW{g&jv(cL7L*8`qeQkB#wcqf}Hz1Zat;rN=IXSy=Rir++Gy zn;n3Hg68@BNmQj=w~bG3?lnr)i0`1h`gu%Fw+yCpsM>C``!>~KV8*TlSbp&AqrUCZL7T>@H(d56wDuq$f5Pi>pEEZ{ILjx0vhs>%`NW1-!EZz@? z|GUV-bv1JJAo(B@47r22f(TrzUud;Wz+G+J)E-hqUdiqD7Tkep`? zg1I~bN`iCz07s4okiB{rnd0ph^89vc1yX=7IuM3{{Ir|HOD4P^@IDZ29Fu`I79oTH zBt8YvfWATQ%r+3p(50Ct)4s5B1B{5;DFcT?V2IKZx%TfKfC8mJcfPeAI0j0u08UGf zJ-Vj%a+$O?0BGxVTbEkp36NWNV&31~cD#CT9tRWJ(44jbyfn0z)LT&85Q)Nwz2a%$ zceTUSOunLb`R@wPv0oRy09|$4IqHckV8VQUAgVkr8pwN`@#l41SL<#8Zn?krvk$q_c;4MlJ#aFe|8eDq ziEznojvVToFu|O|X6RsFF}4BS#22d$3+3FE z#Y^q*eXZE+#}n~wLtp2R>W!pi)!9IhsDGb1;~iYG83ezo_k5^c z2L8e9Y(0!~k-d%w5~$$UPtKjB#eQWuk?14KE7?UQur;!oC0^_%#t*vaWXFSBzle5y zZ{7eTdg=s+oKXgM1K9>_neWke^hTlx$bq2N&R+25a_6T!(-lsnc(EkiX!qkrw#Q6R zkvS2;eSyW@5V3cPNbVNEv8%k_4up(2%<_W|wbOF+0_IDF_Il2OA)0(1k_mgrd?25EUktvzhiSDj6IsP2! z#IiA)(02m?a*qWgohsWHTVE4!+=8!pE_$($(O7NBvf>HXVlI%313S=x8Y0_zm+*_w zxj*`~%ewdN+8bQ$iDj#r(Qr?L7eee11>u*uRz>5`RsgLSzT+5enKlTWY3*t)3m)u2 z(&jc;T#WuW~8Ek>GL^2 zp!B;!#{8G%S8}UEoLy-FW#4a6j~*QMxu^E4b!h0|ecOJ)NQBGa_HQ3~A<6ix<@S+f zMO!@sRu!LN>_cwVI~TM6SWjSi#i;bfzP(W(PBS76O%ah7yiv(S*U2ahFhzUU<4-4G z6x-2j)viR6WqzVlPsdn(IBO_sj(KcopKv~M_omWh zvVcGZUval5&;vN6DKk{|g(Nf23GA4rY~$8p?KMLa^yECsIscx0j$;H+RW2OVgRB+; zs#b-wITxzNL)yIX{U7-+xe@u$z*hC^IMDcon#(jLIV}Yc%6Dv{X!RqR5|r{7)m!Se z04cV#;9;VP<7eAat0J4tn>Eifoj`x%Q;0O9bO1rrJ>X8vFNoM*V#`-xptbP#$r_7>BR}+w z8z2__o^RtGNZ?CiysZDZjO>YisBzezb78k<7=A;@z3@=F6}q7LKdIp>oNFWOEO0Zq z=;PmTEn6uw47cz6kT#TiI4x?IjpBWeF`d-U&|799L4}HEQR=TfgmShGWJv6Z6MAN) z3c0p)f~1htpSjWCGp#9wYEVHimW=IACUvG) zwcW?X2cmg{=R9prMzX*I?1+E|X?*-3e}L3wDYgSq_-m~+!j)$Y(yoX zwz(wKqLf|+cGg6?;rV}@a4MFchzl5+aRhvLk=|z8DW(~;!imtZ2)AkhQfMm50iVzw zHf=+QT|x;uAY?;RgGJTKbVpfQs8G($zptMGP9}w5^Z-~C`%QoJ-=t_y%CIm!ee7-M z`2Vt-*SOUIqMwB?vDit9E)XQLsDh>Td+_BZIJwRT80H{MNX7zZO?xD6C9->T+|7HG zQAR-%zkCnR4ofOBwg@DYD#f&8ZTPf`!};Ny!7SoPO;vz@OI)eU6K%95i##3?=4trT zB7E0{{-s0eOgsYT^I(OxAr(8=i1{dIE z59I}CK$=I6+T8ZJJ{(cYbDMP3t#c3j#!&OsIBajhK^>eKRn4NNvqtdrN4$gn>p<33 zeAlua&Hr)o<$r8oBT9%J@EN(@^dmI&>LaMhWMN0t8{M^{Zia}&Y51T}8Os>iv1p%1 zbezXP3&Gc-3tlUrKY{@ez{hxjk3Q_h$dtIXo^@A5?TcPICcNN+OuKv!ZEyK3`Crs#OWDCEerySHvuF0=GXFAsXpT@#36B$ud>xeMbl9+#2KzCCWi zx#9d7u3)H+BC#ZFv4XPtrD6nFy2NY8bV<5M^45Obum6hff%*mX?xpIrLwSc*h_fE7lV`I1H#(W?0% z-`n2WGBnV~z{3o``>IlCBgFDNQnHw&+mW;Tkch&4!{L zRXMjZW^;~?V*Xu!rUM0B`O%imLAs+5e0lWb}{WtU^nrU`F^h^?$&& zG_!ZCrLqZ`+p+8i^^YV!om&>siB&kC7YA%pHUD1G?_fVQ#h+$uEr5r6RtQ-O8QUQs z{9WK=pxwm%6|epU&9unet!VM{)!sNW!a1FEg~9%J%}F0 z)Ig*Th~l*B>Q=L~ZomN5OCeyBWfea(W=q%%b|tmnOyC!8T4^;)&x*N~FAFNj@5Ecx@Fw;cVs}H>FUU$BjNy%`V%tGjSqi2mU6ZJor zNE@<5WawgPV{$ti_@)fJ-hfoGM>5i%N1~@`zntL!BT)n1-%OjoiPEaRrAqr5`Sf`5 zxv6d=L?KKBJ+=k;6fv9V8QOjkWH~wp=BR153;7KD@l8_fX<1CnE;g#I@ff<@>?(;K z!#PcA$x!wQeTYJbDIyCwIZtLj z8p2GxCvg}gqm;bt#Mi?bu8JIy6wT@O_EbNSz4f%6QKv-0#_Cyhy*4*pAv3qQvyMdYupjdMIm|tMY2`;iz-gO-`_vc`iNfn( z-X^H)@@fH8Wd+pdpJ-x)U)&N2=?xT^8}}sqtpGd+X@1mpFSv|>o6YoIrhvS>q^$mH zJs{h|jmsj-gn7H7p|am}Ts>?ODvbVH*@l$%TC#oS=?k~>o`Ibo2@UrK0N!?pq@ z$CbQ|%Frcvw6ATYG6@`9%r~1ePDTjk;Knh5bZsRPT2v>feWg8Av$ePnh*oXQdIZvq zWU!}{NmCr{FzVjoJ81^R->_4#?(oLBpBpE#>5T$|o?=>Knqi!SV>tW`<~Iu~AgM!+ z+=wZq$$cWKxBuQ_w#n7*=+Q8RHyWMKj>I9uI#6qiBP6c@0Q@YcsHX(N_L`N(4DfJu z%}OkPJYNM$C+`37oF8GhK1E}ci>LY_eOsgkf+&X9b0vchZ2%)_jjEbv9y&6L`8~r7 zL*^gNm2uM^Z1@ZzN%nooAq?ICm0G&#Px?Sn;m@UJf~F8Z|8P>>E&ii0kkpwB5IM>i zWQ~~0`W}4iX0BsZqQ!NDlGG0>k*=GHAq>RrM3(=?#tE z{v5rmFuKJTmX>U1fyVle%OC#>kU-%7Vo@80!@-5o;6uwrN@P3o2hZP=gnQ5rckrZx zLH-9V+|xe#v^NmVyyIy8)4@w`Ja&fRz9}ov&(9kGd7eqtCq9mxJKhG#*lZ0L0E!91?y| z!qewzVK_7kUg;(AhVYA4KOs*9`E$PhxQWc@;uWi8thdk)K8Entph)xs1v&0zkE62T z#$8bE;WGcb{?DgDU-^C@+Zg$2Iqr>($^m6Tl*j4I4J#=;hN=%MA^&+o{g6hufW0zS z|GuW3iX{T6lQhNGz3B-9Lx>^X7qi9o;J_+W_c(yRM%4C*hYu#1HUj;_rjdzUEQ@FrZT2HxObM19F(!i^ulNKmA_<;shWdX6H06P5S3=|JztFNC1{wJM!JMBI`fi z)4%`pPl3F!lwWLf!~a~+e<#{F6u`4ENrW8~{`;H%`Jqz=h;DXdWbu!T{~5Ud`xHfB z0xt+Rx7SJK-{1Vt5BmA<=@Ar)9@4U+!$G;acQai``p9)CuLz&0c2+(60G3aAA$ z=f-$KU>b;tH63QCk#YCU*L^xR6&|($0HtGq<6XTTsHTmnaF(ef!$4pu03K_=cJ55n zveDd`#98C#^#(H38r_Pdwx`SC#c=v^9!3KfC5}xb@ZY>7UAl~%W2U+pC8VUEj)XUO zjafdaXe5LDNid9P@I1T+UEbLX&40c z8yX1^de)0!nMrMYM`juXQ%hoFyN3!Z^@`}Gcb8ekyhw*FqDg=HqQfgpS*nlgS0WY&ek zwVzY1sy}bq5S=)w6p^i@jr~0Y+AtV+(Q`9}1NX;iFqvD=yG5Qa>*I}^5cRo&(XsXgpRcFeoaZzP%xKUAuP4Gte~kOl5lRri&1pN1>b~IkkZ%dE z#?1)88{xs5^Z4A9=p`Iv1!tE(cmqV?G&@}jf&DJY2$AyuBk}<9JwXTyN}zP^(Qc}( zuK7MMP%9a_V+S4LOSBu{x$`KH{C2#6C{wKgXqw95BS1Ns&v}a_FHogKae;Mz~h!ZGPiV( zLKhd%%yqa>NR*-8aL23b2x7UV|IIAKjh#m*^8H04sIwW^%%W|LYohdk@^!A~uKs@1 zBS&^gS#KxhfJWMS%cvm&0h%$>K#w$%?8s%u0Ph?pB*6YxG+VyGY?Ut2LVXylZfzyV zZB|vi?qX@tdX^{5**5i|xrV&Lg9sr&)Vcn369X`JJVd5#@m?N2K>NZRJzYLp z6#?-CR2p!A+ay8WwGC#IIR;@3X?`Nf1BSta?BfFL=d&-=Cc9*^l9Qpk(yqg3Vitcv zCTHFc)0s@G*#fNP239tWo554WPCyO5%o7)oAYfI-eW-C{liI_D=WOj$*VHk2?nZ=A zw>HGX!X5x2?@H5 z+Pe_@N&`>qlAoHl{TZn5#_2k?^%e4BGG#%43o3}YiA4L1;P)WmD?u-q*UHH2nb;r;r!em0uQU2z-4?3F!U7%Up!ui7IykT^`Y z$)tVx^XyTLiLC#ME4{(%b?9Rz(56tMZG(b;ceK=`kV`ux({B4iqQDj4I*zxuC6E~0 z07%AdGDqy-cS-w+cbLZ>s3P!`$B0m;8|AB@efN){4!^TUR!+NDqJ3J>SwyQjwjgFD zTqZk_aRo1OJ^%5YVRu_T#BP@KhS#wt0kZ;|)LwrX16VUk?_kBb9v<%J(aO|%gU%X!EZa0VyYc1*@t@g_At?8jR+?!ON~ zSTUl)KsZ>~Ms!fBY5e%=+(9ON^U)1m;9R5&hUmzIth<6_;s&UVL^8#6viIX2U_As8 zU2Zy%Inf;^e${{F2}JS+8s&UcO^2NEOcL577m? z2S7qV9+TwKx4p_0%hubbb{iLMZlltI3!TTjDIy46BDRat!R*s!%)x4bObDoXK-P>S zaPkxC7Z2hH`tS3>xHg6!^t(eDI+wv#VtvM8)H zgwE{E3-^+ZNjff?94l1Zu7H#M$UX8zHLVe%5fxbE#)VWd1ZkJk+W+2+0FE7gPBATc zniHJn!>DGR<`+nw*FaFqqg_>kADRJxoVA7^@%>;M_kI*@#*XPpwCu45KzLbePScrP z*U-IA~On~Qal zV*O$U1*rc)38m$;W`WJG4$N^4Pw57axn=}w+~sQ~Sgi+9_lG`aA4Ry_%gK&_jBTDQ zgd?1NRw-T8=gER;ACu{)7=bXSt;WEcxS?InOEDT;?-l^3$c@c5PVzw!bKy%nJ z>F*cgpn1BM;_`_Xo6>dhCIkG6aJ@Seci57|SoI!UaBRhKt&ibC)fMT3nVYJ4Q1yV1 zm}>h+d@;|Frx+fUgc}Vn(p;Og-e%lq#aIo8K5Yee2FGYPSX}?EwYAO0z)2VZJI?5W&WRKQtC9D*?K8fM8;2KN^ZIq@ndk z(?gH|mlA8orr^#SotJR|#8tD%xBN8o+K#d*z8qHCJuD%jP-vs3+5AuaB!K}W+Cv~u zLLUHjzXs$_UkV^1AK1RKi6#_fg_d}>hs7gHc;r>k{E0M5ptLwsOp>u8kD$%|v5^2( zY5JaV;j7?%G20jIo-*0%g7M(p|YB@LGxjSh2KHqr$t0*y>oaj})2MAeEhcQ7ycbuua&o;B^WH(5S0go z+wv1OlZ_fQ1HN;VcI#ojo1!lf#eaonUq3#8^$3|ByeF7tJc9}OEmyzS`v>dx|Jh7%jQHVt?dUN|F}nYLeYjVAaJL7J)=skQ2?DXr?1{A%izvfsz5eAJ84 z{2%R55QyVZbvt|2D6(z(KcL13Xgou^>=X7!i(Z@mQi~Kz&cBOlM;vCpq(AIT=3f!Z zh-_Oy-OfAFm%$nMJcH~`1oqlXcg=X`qS|h$EYDV&EHp$KDSg)>P26?yR;V>hDA>jz z50q}1iu-Z(spS{oV`ja=3z~OW)HLkSgWlO<-*oCzfpyPv*|QOlO;igQcO~dO5&2F6Cgzcm2RXMB3P)XIsMo7DEhi6dIb?nQqJBf6I!1pe5ZF~~=4Tp_ zwoPRc*N~&AWv@@jx#vQQNm?Z`kW3}JMf@L~e)5IXjGia9F|AH0^sQxC5?uarhu%EW zmyJ?f61@ikBlQyYtsn`QC_4ZdIOotQl22vlgINI;enxoT&){;-Sx!I&FDw(G!aL1< z9vjf$t%JUsUF?zfg$u!^=&qAFsxDL=3-(Q;VdZ}zF6uq!7iq?C*;-ohx&T4dOlNpa zGoR^7h>9q=^#o=P=9f%#hcdkYAcAm2R;00H?amT=JUr(x^e57>%;(4b(PaK7Ws-hb2j{XCf}jTaA3$f9 zWckYxC(oU@3=%SED835kPa#yd)DPpus~>clBI7X7swZH$b(s0kL3*5iu$~|V06-$igKrcvEh6=A0@Da z8{WDC!{=~cN!={=Z0m*pb362dI&aX?*g1KZjox1o#`iKx15=2&(esr2T;H zP@f38bf81lIO+k<>r}+PNDaRO9b|1`xvQoLTBUeqCqZK_GE{K$B*|??yySpOx~f z-N~+L!9f4b=;UYrCfJd!lYNKViN&tdtOP{WWu?}OWe)$!SJ)$hfGWD0?JkO7`O9`u zRIy>=1kkCWo5CJuWXb)!K9x%mt<@RtI2Fo}coXau2J zA2<*8WfFFCNZF}O9ogtZHX3VodZ_T$J>R@Yaci3O14T4NpNq#AG{w`=b3a_sJY`eB zZ5rzy&Gt06T#%n z=R#u-n|ZO6JJX;@-6e!TJy`@)^)pxNq#lQ$TG4gP6ShN?+UZCHy=D&DBb{Z>vMbC} z2|{a?8Cd-Xi1tPr<(G7hlcOo6Bb*0G5{Z`Yt$r^=XWOknH}!k+1jcToOo<+4BT7@~ zgRAqe#^ekmK7E%`cIZbqza6J>gCCUMIw&Hr3s$sV0*L$j3|7JH)Uopdp~0UU-%UBH zH}RJQqop^Jz_8=zA%9`)yGpB-<#_XAXfupTzq`O0WkA}3ysKvsS?QVx)PGYaXGe=@ zcS&vk^2m;GJIZG6FvpnOQ=LZ!=jk9c;NU zQe_y{Oujn7E%pjC&e>rg6HrC-Ky(KS8)a%$7m{xWjB5LgKB)W{s z0Y5_%Yp_{-XLKa*qw@NiVQl$@srI=j)&qFT=?1|F13ZaNfKGf(aW+f*3)e{@|2~oU zePfSug>4)Tf+nWiz(A8O6dZh}yUP=;*Xh=6WAV*-n% zkkjt+Qm&*I{dIHm+e$@ZN-dn~+`E7mNB1*`>h()&w0>V(zt)SA~F(BOt zNFxFRN=rA0ba#l<&_hZK64D{v`Rwt&&;L31-*e9M=6QKOA76}oV6J`bYhP=xz1I4D z*U88C9JAYr3z*yfqAI~^&V|PmcB0O%jbj)MM}q=S7;B`NeEnVd1RU0)GabVh3o<>4 zS-!pX7<|Z@Fg*zq(*j{s~gtgt}7WxYeGLjNZ>Oq0K1Fwe*81 z@zU0tQ9iM`_wH9GFn2MUm*a`V&VfhOn9ugqp6dRq=q+fUgqNBsOh|Ggd^em!;s_8+Ci+<148| zSmMld-?MXtNZ$nG?KSJ;c#%7QEB3C=c!KFqIe#ZJxNE6m@p_M8yiKQ;iDoLf{uUV} z?DJf(K>cDq_MEng=a5H)MK_MVwqscQPQnL^E)Qoan>k|2-jlW`4ikHa4As<@LoO#y zB$K?B*#C+J-d_reUgHvyLh*hQ!@AX?jCF`JwUizxusat9p07jo-JWT6C$z zexy+s>ixMls1cIVPyJSw(wOg)`lGw(>3d@c0PqQ>SglMQD@Z!>|Zw{OjLwE>+)1t$<5HWO3h)i zl+cY3^Iiy<96zZK|o7gO)d5A#J-!DxwXzcsl6E%J6*Z!O7vyoCtTkKaz9p z`xN(k|9b8I@+{q)vQ@2p1BBbVcMnhxzf(nT7u#g-TOP49WZ>z(`vsJPt=$g}!iNf? zab-*#Z|fR9eBhYRZki_BBs9f91rspyXeQZ6vpgHwDcFfK&T-N_MX}8_j69BSmv}%_ z$7Tp&?G{gG_?g4{w%I*+sYG1w`O1gP*oiI5Z}A?#U^af%$6qXJhS_Z|j+d0Qr%5=B z!b8g~bA+Sc3&|B-1XQT8y>TtF&>=)|Yc{Bs3<-2T(VELfIIZR`NSWN;bzxo~6RaJ5 zog`%S?S{RfC2?}SWmC}W?!_U@V?rZ}g=_Zll$yGEC;V1F*`Et)w5GDi>a5}Ph-*sH z)`{+jCDnUQ$?1;}(;Al1j0en(GY~i!%h%8)jwJ*r$9{iQuqx6dj2%`Y@pRJ~Tj)RbE(H60ude!txPTg_$Jd(4zzX$UGY|u|vz5oAjg}6{QgTT9|qBV={R6&Bo;5 z6aUb;RLu6ePr>#2~44>KUf{Q!wO2>IrSNI_{wRN2H?Zt7P%jI^)CQ%LY zAt&OK`p)9*G9+*FHWYkedEf5AeOQ`q&_Lu@|eFd^n{6ZUk>Oay;%fFpw; z9KID;iYHvsM7l=0SS63h)EjIvXP`SPU{515HZ^b|iH?KgL5RiFb+-kcM9@ce0ug6c z*i;xsbj}%)@8+zT+m)JJn;@FWma{ij+(?*4=&a|Dv=tq-Q8SH9JC!x+y6aGAFR3Jj z?=N0O|6W<@KKRfngBtu4n}RbqGNvs{Mo+|KL;3OUhYYt5xSQ>(R11Cr0m4J4>P~?> z-bWRJz$MC3PLcjmtSd5}ru)dNAG#3OrXhnJ)p`28eq>>|wtDUX4OXUe=iA!wbDHID z9(f7I9%ZT{i|pVBXS@VJj`u;)3A=S$l@~Om^yJk8>==J!^b|aH-JC7 zP3)fTS#bddUgqm4FM&bVG#Q;DBhEyc0(fqdO0dBERY60KC-&If#IKvh7tATiq9$SP zLq5)ILF3ixA<)G$!z8j3T(7e8BG;OmCj-+#OuFW_x84aAeX-WG=6bC7i{OXpIO*rF zx!=B8=yS!U$myeKmr$2)h$c#-Ti+0c1dTikLIC zR}yf3%}Co3Pxkj(SUw8n8xJY zKdo3=8sr$y>7gzLa1t@$_6C{f(>AU*xePp^+)Y95Mtd3-m(;8{E4$9P~BSj$gD^bU`6sNhKYw z!Wzj(*rZvU$8T)}BOX||d&8KMXe3Pp^k@1%&xO`vF^6LtNNsk|sucOJ5G|IlY!7;8 zWxigmeG&JGa#`7Hfk|%#C7d=nrly>?Q^DSE-wCq|IUaT8ZB;W`u0Z5C`qsYJK~e?N z!s1mkVpiM7do;0IyST9n9UWgv_rg}sm35zQD++$!11%v)=6(z%ofyU8k*uzNg!O@H z2jeyfEu&VEA$rv%D|2^mc9j%fHrsMd=SokF9#qJD>Eo0W+{`7;Dig?W| zi3D-^0AG6i&VIK8!MT4!h3@mHfqtmxn!Pizm=gB)Ya?3Ut=UsDcPMMJf*j(rxI%+p zvi$V74=|eV!0Y0x3mN{wCNxwbsZdQqOw9bc5JxD>{1>8Wn6Uot*2d44vmDM&`~p zk{wCy=jf|52r>+i{q{izENAJE?&jdg>37V}}^`+uujzvqB|0!HlDi)9#mHbVf`g75NXPM%-M(Cqg~V>c|*6ThkBjhbbE(Wx`1vg ze-%_j!=8RhYGNK4O0%O!+q#?+{#K?;$?VtN!I|_E<^5EidD~&zK{bPJD*I3@YxUgA zhRf3iqwyj4z_nZrJ4f`w(+#N^5JGI|6wGeNZx6cXvAa+m)|R7iu-zgM+VcKsAxO!+ zVny#hq_g>V^LW2~qrn5+a~h%VSP{5=kS{U``JTC|BH5JLsPT~HkG8$bs_90SiyZs- zeY449`a!i<7VI0&512sQ#=5%CfdJIYlL#NpcCYu#tREIb!XF9ds4*6B%2`kbE_e+$ z!Y~6jbGd?_3pn)o~hM#I?Rvo0G<}*FGI&0W>GulNFOAY(8hPWNk%KZqJeo zO&(k5Pn8$GWwx@3wJG?O~nzg44XXEx6ijW~TJ#zg~5faeqZ4WG6%`3Mi*rzAqsdn|0%2(vcTMxfY4$i9g zg9`xpmXLK$*O!-HlplPy`KCm!WS_T35v9F)3sJBRZ;`^k)9B8x-d4HKG^ zYR6O9i#Sh~llx>0-Qukt%xH_`=yKH?eC}eF^inW2g_4cie7MjYZYs@HG3VB5LstW3e6r-QPh;P54T&GFn# zg@~w4Fsk>_<@YJrG=v?!;*jVSN84SNK7?JH;h?J1DKU5J%i?I0BY%o=T=22Uq@kyx zYi?p}g6L`|3naCV+VLqfLC_qvi#NNwwFKJI5mFG-Dd09A1qf@m*MA;mUfnP3Z`|tP zBF!KAC_<1qP@GnldLiF|?4=c#kZ9j67R_fQ-^#Obt+)lY*<5EO>+;v$Seae=&(9MQ zRamg>N{l{+rQ76k$>uW~1}AqFuJ#++hAwc1rJasu@L05Gc3tr}S;-y@3M?j-CO8 z`-&7;q6Q8qj+5)%QZijv&sv)ml9bS^bu(vbDAdH`7-B7ry+!yH#`XF3 zNys-{QRCqz2ZXHE>J1sGMY0~L96tQomNwfG=e#LW$_WFH5Q{dy6`q$KH+6rT${9-R zHj{p+5f5kc9PcWQjuq0X2W&X{lZGx#8ChL{H6)*t^9@pG5u>X`RuqJRmuIG^HAmh@~6X6R+dpt6DnU;PZ6HEVv$T^LYk}g|HR5K8_C7p|F(k!dNg{+o_u| zv0zW?NHgzs{5GM%4;TfOi73a2iQGnJgDtzNNlylvAxQ%-0(-hAKpAxxk6Bhk)B~~) z@9L4>F8KNl{wg|V8H?t5#C4?cSOwGU%YjT@LoKW3}m+aiuHK+NP;^|Cxu* zgt#z|#gD6nAhR1R#8RkGB>FHpUAxVgsZ96^_ZhMsYl1w|yVwBnT<4Me;VdO0aBqGL z!?o4;*(Wctq;Ri(NgPymy>Eu)kOyb9U#W%=r|>tb-udL0Og)2|(GoOjr`{z_*UtIN zU0!{*s%U#uH*!YlmKMK?DN3MgUG}v#f4%tVFzInjCefJb2+)m$HgiDx8p;5{Xw-A&b}k!qE~qUJ^!?1@w8u z@=IeH=M@EX26p|h+QsWpvumy(DL(@HCLPj7aF>XYhjR}tUm2&KjU&BXLDR@lH~jQ^ z$SKd7KV`r7H!(8AdxHDMazEDsII)UnhkL~$K5#E!C6SR%r$XyH{Ce-=W132jAJMK4 zO>ExGa?;G^z`CdZ_G{PHlaIj|DdLip?$N89v%%!&vq2wjCRu)l_MTif@L+-*t3-u4 z71I!*$k^nYFZ7?k`8B^HvFvyf0=)R!cv}3T0oc(WQx!tC2e?1NO^D181Z3YJWyZy< zw`$aS?jdvqI9W|y&68hYKf_+c!L}23ZFctGDuGfW+cl=In$LOfywfnKEg}n=-9wS2 z4zW3^8eYY|268AVAM#G%7d|Y+>dnvnAE=iIx6rtsPClXRrqVRY7OIwwdfg(qE3hYe zesl2d;Y}h)kc(+j=4@U#0eM)AJU6x1r+Ov2E6ElbKI@f`Y$(5Uw@qDNS#RYq$?Y8H ze!ca4tlVOP4>j$AT%^>Z&E14=?oBhs%-c(v+H1vju#*?rim72T0_E zTA1kZiqZp4@@}nDSs}%zDG)3*p-F*HiF@)KAv^VzZi&Xe$Kis z_}=MWSy4&Q6X0#h;x6pIVJ2UQ>_R=_o|U#`Zfbi;K5rCh^$X=4lj+knbgJ`x0p>L~ zr?0LX^n}DQv-BOM>6*fYizy`p<;sxY_*}=0>O`E>AdvP*{QN6Wi5@Nx6`ba%t>!!8 z{qzxzCS(2~IgStz!VDctV~v`r3?_)o`gL=R`iDYM>NH^+;kgNMX=CO_e@0OMFCar^ zS-sODhr&uW^T;rJZ_=@wJvReoHH`{9SWAVX{1+vMBPPLY$ysQS`b`#lL4~qy6gEHU z46@k-$1}8C7vR?akl`jLmo3H`iG;vC%qhBR= zmw@zKreU>mT}~My#vIeo#Yy=@q$sktBb2#p=Dn4|n17p;+@eaN0yeF+X^i~k^8MsY zL$+l_F4>nWxLyJV)>t{1`5)5C=rj$wQ3+aIlO)%X+^{pzPlscT4 zmZv{=kT9@Dx}_;VldLwl@6_UZS(v1~Xw_Q4N)Yzn$w_b$nt7;F!m%MRm_p!-gzd$b zRBHT#1;8Cd>}o0=9?yor_y}_EKDQb91Xmep+~e3EN^LehPo?O6c;XZ;g~a6xeMCT7 zNy^fUkltV7;_Iumq)6-^$K!W(C^A_jG$Q+Atov3k*njcGuT)=51AL_-WR*Uj(nruU z`MIof=4`9Oh}$HQ3@TA*)Plk^lke;V39xDHJ6!1 zvj%p2AzXm?o-xwiD<4K#GM$#lvM;n-H4-y~Z31XDgZG70to!3aTOZZ=*O4T2X7laD z+YRhMGx^dVMfOc^`3OwSgPg~{9Uw@d`eh=7upEa^bd5kC7fPM)Mh6@nsQlE ztcsL&PrYir-*}Je(P14F`E+d4Xo6@_vTISQSXtAXeog%`eR^0RPniIRtfNV#UXa|n z_P&7zin;m5nw`~d{07JOhpcqcrCGukA*~M#U%wZ~rnALlCKip>`Hr17F zP2e+cV3!uJ9T3Pf%v4zRfhqB&%Vn0Ob3q%a9`X(^xCxBL+}%=hR1S^+j(S}znate7 zlV<$2PChKsN?oX;WXsRgQoA1ySbf?5Q4i9U6-yXK>Z`wk8$%jRsryyLFUkD5o!+#1 zo}P5nMKe)7EMrI1DCk{N2KBP(7JjM|jw2$rYxo20q~7hQGXN2o9?kijP}`<~?6=tW zH#?i@h>OuwfVVLmG~+-^k(SZLbeY!hr#>5u5u-3=I6}v{_?99fjja1>5Pl@=in#w% zGS(xjTpO(#_qB}EFMhS`>thhcy7Af9_Om1uyF-d@wuWO4eH`DEVnCIGZvz+Waw%I+ zL>i4NVA~C7@bqKo?bL(9eWbqY@>@8-9V@AE2{8DNjbJNXt9KQTc`?j&)RCuMNF)Uf z7&3AgDqGFBd+Wtz>qo&a0EMz-6m@OJOZ59uRQnP7s6-XQiR0T!WVv>zVq$#l*#d$x zIDU>sW5o6A@gQ&YIXJ3@!A>wNFYbqa9L?KR~u5oVZ6Hz}0HIp@$JglcCI)HyWA zJW_dBq>z=SD{|2$See9_XZ5wOmT~yPjMOZN&s6UUpZF!95)`r)W-GDH;g=N=+YAlJ z5VSqu6iTnZI2mow?Ml~94$pFwaMMvQv4wTO`9tFJOT;x0j*lnl^jeI4X}_{Iob5~j zNQ7dG_X4)3a%Ltpd3O05%UVoHCyq(C{ZqjLJx=J_cV!K)X9;Sn^(?;xPg2L0l=f%2 zAjVmV_Aj@YEs2P&*SjxB=2Nw|eYhi09L6{_P!$Tx(;0s&&8X8cj_&-Rud&ZgeMxd) zFBP&XXHz|cJ0(ssz6&h}bQ0v);TjA0NwLiOuOzHWp;2{FW*IJ;sLt&9QsFF1m#;v5 ze30z?^L@SN+j<-kcO`865Bm97EWvuQA*L}kR8-M3YxjMXdFrM!CU=Ykb|hBGt~1k@ zlyaH6J^Nv}RB4D=S)xyRuuIeMi?}cZ|Jxn2z^àboM%!=N{GWZ&14X9$Q|G1$? zkxAcnR>F668)@m>J!JK|Si7|i_(*xb6CUlWBFp#0m*iqd!U@3wOm&+5}XShA~roDMfL8)z%!BA z^O>{}WZh+F78cKhe97jKcU9GC7V7F!p!22fk2Ed3GTvgamY>a2<#t8uc^?0?5h*FC zTT1F*pT77tUFxo(9R22JS>0`+ky4z6T@t5pud{ZqJ4;@dhh8>!QyAN=P%cr-LgGJS z$S_ME#Avgl^fI5W3D0vx;tr89G;}05IwFfn=6$Bt0W(G~&FMmnUJK|qNc=SHR1w*E z@~ZKX+X@ne7GHP+WRImjeJVs@M?XtO1qW5Q02Oao5?LQdv4qewGOS*i(3Qf&gw^YB zvMmOB*@Ob&j%pE4g~CzmEUea~4AotLuxEdZ3csZgaKPgc&JNwmZ4aAi8qftr=> zyb*`*6F$YB=>&_#RLDYuJ5vfRg~A(Jn@Yj3MV;?%!Pq-D#vmN$oKrFjbV>G@_R)P; zy6oo^5PaucMJ_U0_cPq)2iy@>1EKh9cY^T4xKqj6u&kh6#=>Pe5MR`VgA$9CBU#mH zZCzA@duP8SCI>8=KdfP(GM%z7M&0DN@{xzGfk*0Ob=24GU>oMi1y;7Q%Zts+ja{Wf z@!d^^E-OZNU;gKAQ6B?Ob=E#ab}IzWD$Wl7NHIH^$C~+cAxhCyA|G+4OVkG!Hqk+B zUlgx(MiwFq>6&egHFa_JL0h=p?seofQo_dMyDk!}2X<0llkl#uOtfa&Fp84^B|L}U zmFYVOn}PN;s_3Wo@0BO2(o{~I9xbWtY(Y41VHUUdC07mA9oY@~{Ch-91U^R>w(e~S z-c~2aS-vpMIpCwxkL2KhS)`lk>D$fB@pKDat$nIwvei=`t3C(6JtOoX_HppIkAR{F z^~S{e3#x-(hyMdMfe~Y{_D}{*w;Z)y@f(~}LhTvAECYfRw!eRdi1{UaUnQKxJ2p@xqbge=+LY)pOMs zu@w5tc%2e%@`Lyt_|>vF5g{c8lyE@A0+mF^4)k&NVz&CB8t#0VDIjjb`a6V&!oPwG zJt4at`~2#$+V?UrR5n;B1`oiDeh{SfFS)druHTGnq`oF5eqZ-piqm&9@o`r7n_t)8 zED|<)4sE*hxs{&LNsQMlB_~(`rHxYL(ASNI%kxbWbo-&K>TUerIzaCOp!u`x>lV_y z)hN+v+F@slc@|B(K6%ZU+un_CO;Ra3+N1?4`I|8?#^_2_3D-( zp)ns~@4k-<(-C^hp2~P&eKi<2m9o8EYKsQHd-42B!|9hc&tJCexcd9io?%R%8$+F3 zAh$nm+n_JKEDHpQ8|&+X|5k@7ok|1bD`f9VIsUC=5$3%C#=qX%EA)5J0a$JS_(uv- zjHNUT{2c$Jb^Jdn-v18f|6^uIomlIS3=RNm>~3MSuImbV$Iablt7`|W5zB*^hO-A+ zaKF1JzGyV!IFLZbJqCV`$KmlD5Q?DC?u6yIQA`hDN(T#FqLoYsTSzF;@7hHZG`aEX zvE|i=Vbogy3~ZE*C%>3kMv%&)NPHj;55F;%NR0UWaEuX7Ze+1qT1?PykOW#_|$ zS2oT_vQj`jOoXDS0M9lkFBg(md?EgG~0RkfY^Lz6(v zSxOhe^U1vu=<-a^+>D@)3q2a17)T^Q$R;+Kf{g_sIs+h(jKOMy8razzD*N&($yp7> zlnUbYt@>aOHe4KsXwwHHl&witI z8jzXQSDa#@B-Yj<%K$`Yn6W&Gqp^Hzs?S9Bz@F|^4wEDLspB;qU-9fJo4h%W3MS52 zZ=D6w$D^l&eLYVm@?*$2@A)(E5*R+*%F{c~W#$L>Wm>L5m8zXb07$bAtlYVGPZn4y zhNSFz?5ReGl*oHi$1KOFh;rBk*D!Wxgk-K-lD23}o#8^~H;{RUvEW6Y|7H+~?m zx6=_^(OL#dfPWNn;I#g6N5q8QmQU@8$Vz_G>M$&YB83Q}?6G3o6wu*MXqB5PY!-gmU_57KAxZ(r7AbK*Qd^>! zBVNiuxf$+;V;S(A2yOYeUJQ#Lf80hZ5Y?8e0CZ2zr6ep@GE?dB3EWK32~bH7T~vIw z(4E47YQ%HBa>DvL{ZP{J!M%(aw3t?K(#Lxj(1e*bPybN+OY0w9tK;OS@))5|pYk{4 zJ5=WfW%FfLmE*=;w=9`Uddoyh=)VJ0x?1i9;7ysJ0qrHy+ho&65(i+dl)57Vf#R1f zf!jtGU@l4luLh=N@czL`GAoNPai4pe^7O}p)(4&;?R&R7@DF~I^k`=$Z^l^_H(?DH zJ*70rr~GCg`Tzysa;kdcvcq(S??rq>a##;M>i{vgtl@m3;jxDqpM!=(u&WI~WyC9H z(Y^&3HHOn~G4;xyIhs9sEOeC+Yj}SyxLHE9d6rt|&pr*C<%YaFnZ2biWXk z@wWOKthUS{ImWUer=Q?k=V)*PjNM*@k|TQ-^9hfsv@Z)xv2IOgvulgSAB{jb1rp3e z_$H5g3&w`fVNIXWZ`?#c9gu8you+w)?SmeXY(Ba?t3sx??PuF<^+iP7oy)`VzS@O7 zJ_FhWpJ(KDHXuxgYE*+(4>-RggWM=``>}TNP3Bx#hwcIm3PFTMGM9C;xB7c+!Kqe1 zdx~Q@BcNC`G8fxamnD62WFYu7T+szN_GNyAeaOWUu!+XMS!P73#(%U4&pggAp%wPN zF7(!Sw;0+Yjv4|FBW$6}H88YAWONHDr7|mS68Wq{T*!SeVM=+S4g`Z{#pQtZ$CXfS z{cG)rro~!-F{tFY|!)j|5#}hd=x*&(KFfySQ_p2JCJ8_6OY| zwh;$s9@CNP?zQT2Hp%HKDv}sJD(4yRukJS|P}uzoJ2KU+dKd5n%IMo|A(QgMr{H^p zTIH-cS9I(@D&-UlSVM8CPDQv}B}9c{YR! zX7jLie8CW%zob|5%L*`&jNHMCSNqLFt7dW+OFRH@zZAwRy?d3SkL{4M)kZrlucmGJBwrCWV^2D zW+$8i%+Ow8c_ksG5H^kKEXOtg?Br|Jur_5{SYXA;6p&1YQ~um}6@^Q&+I7zAxg99R zaxSWC-LZxyj2n$f%Z>0V-N~sLsLUS!Q6H+|5`YC83u0x8Ucma?o@)AC6!o+O){WtKvVN(uKD8Wrd*DWETN}o^# zeLY@M>m%ttb8RNNn>E$I`dN^O6q3f6l6%v9r248qCY{bgPP-~oQvrMi&Tm8~rc)U- zTg6C%wFN!j%?MFsjOV1!Hf~=46{O#_SbHAj8-aLUJ0OT37fQncp+CdtKAdtZ!qU>F zqe56Cr(sxY7>4G9XIL6t3Jc3zy6mt?cjM_h1p3`e9aXiXO!L`k>?y5k0R(F_i~L=< zeasW9tPZy?dQGmHb21iviHv&beJt*-j>nfKi>v3}SkzYYg3ot0{5s0$=xoLZ%F-;U zF+zls#((+b57+3o<4Wp8UT5$&-$##Bi6^$5D31;AkzTJ>;xG&w6Bl|;jCp1aT2lFG zA0Z*F0HRRAsW{`pV`^Mo7mC4QERQBVECjI=$HOAFPNy$Dk0r$^jLm>wmGRZx#c7+3 zY&oN>4~Em;&F0>X#UW^R5jxn^K^Z*>B!^#MVs8nJUzj_` z2ICsu-vD8Sg#`{`j;#!M@$5P*Q*=F_;}bR2%G)F1ljU?jg{LO?xfn9Rbh$*|9!=+! zVaw|9v^Wg?7R-~V`37pF9PjKKR8r&f<;tl{`F+_R)oXauLF0eNWg87uNU(3_V_@4Fp%g9*qb+9 z^#J|ju#9i#7*_oKOJCp6~v+iDH zLN8(;wTW^hzmCf#aN-6GP9eh^*U{DX8Pnhuu|=N32yBgsAo{aStZj%kES+0<2#NjB zjM5-H6H`9`0rZJW7C<~Wj8u|M>)6RhuqP$qUQyxWpzljB>1n?rmOOuf`ROrcDV=EiH!_g$8Q%wI zL%UhR=Z^;NVu|>+n((YK%PbUOZ7K_XmS`%rq?6zG-=XN;8{AUFYE(Q{V+AuRA9Aq> zvDoV0$*?Y;T%yVwkPI&Dq|N6C(q((~qW<8%zk_J>ulk@ja|9KzFVuO2@34p_(JcSW z=L2za=JN7hIU3yN+Bn!fdsI_u$QcDm3a)2VCwTZzbB=PZaM?FMzmlGZz{X00>l53< zc{+uuKjq#TjqQ16C`+u?#xc+F?71zb1nT^7y5YBW*Nq7)G%(J9>U6CA2Ifb0<+xyZx(N}#K2JuyiVHWVrXiJRbvso|ef#_x;$Q2AF>A}DC`P@aes$T6*c~0-%=zknz(mg+{ zk?4$D3?BHs3;jDSw>E~-PHD_3!t6s&VV~Lhvf)uw3C;P^mf=86bJo@HN+%$_gn8&u zRJ7(jgYFg9$gJ8ynNjw^@_f_SS*}Bz>!JNP0gth_wjX5Lb<2}<1)jG_U2O@smv8_1 z01s-E(*_qh9RGh$`Tu*|*SGyWhx61FK5ATI{jp+(&!r(h`bARP$R_b(Ugtp&WTe;( z9CbxL%l$mqHG7ge#L*k!?HI1ZakC?S+>n|y(RX}mem%~Lawlf?ZOj71g~fHXAH2~s zwFpIwMq!?}_jZ%PlOaDcC&Lw(p{pYpu;xsHZh6B=9^_4H6(^p&;8FwY$aEH?OsZr; zmIIn+lki5Q?z=I(a>lO)ePOCY4J<|3)+L;o*0aZGA<*7C!Ywpsnr$uoRNO#<5@I8A^%g%SCPURH{yYbWk@K+i{lg$&PW zaO}v)ht<=da!+_4OdtMf=yCxiN~0&sCX@?IjQ&lsGo@F{68Pb=^H!eA;eSM6; zx>}>=BkvHWJkP0zt?DmAgK1!~GjqJ^?C~c^d-d-1{2MmP_JmM!6*xySO^TX(<|UnM zVpFDozUdTb+~5k@FWK=Xyd=rRc(#izM(QiBIoPm>zZ|DI1-(3?CY<|J8?MkDAVh(9 zPI^U&JgSO8!lnMFMoe=P1*Z}(8>_UDjXPTAuokE8|vGoPJM_f7|& zv}iZoX4w02m&9Krq_Y}SjYXLm(bpGVd|fWe72vcJcj0;Sn2C|DPE{3t{_H$9W?Lb* z(BBhZ=+&*#a+*>mqtm~KfV?@uVSmu_13e#(D(017-jXKaX9#P3=g%d0COY??3k$q{ zqQaw|*}YXy@CoTH@amghHfziWG0Foo3jnU>W~}KiVzdONNr{M+%eaX+kaZ7%E$o{P zSqoCu;q`^D*>K%k6?(UdH9C39%BdS3-sa=!U%|<5JpYt9-ifr{K3_Awpv@i8L=pBYgK2LhxlB(D)p(mYa6c1GvjQshcVNXqk zGQK)ZAn{A|-6%rcHOV9~I_60<|C#e=^Of`UvOWZ@xt9f{I0-bkZ!GglVi;DA6^%J& z3Fe);coVR&C4PtC(j4Fl$r9s2$CXb7U3 znK_9S!O=5e3b2&4yZ7?&z@kXgQW<+B1W#<9PNcvtgnjVECf=H3<$T)|Ov=sa)$jG& z#vq@+^tl`4QWB@tg=4M4&8{d;jU0eB_@aDPu$CTD<-K3YpfViTiZUF&$f=sNmm+zS zi4;3N;i}(C<|}R?a&ZRHo5v81_$MlDa-?|TAvv~t7ob0l#xkDIJV4hgXz$YT+qQeq z?$>NQdZEF255Z^3*S>T0+;9K-!q3T;;Mz@1Rb>h1U}xJW3_+y~Hemk_N7|B~HoGhf zofTjWZOv)g=DEOB{SiB76Mq<&R6%rXDAq2FlJrV$5bqt5*XdLvjorz>gGuZ~?UuAt zYLRM*0WvM(aG08q?CD?%sn^Za-mC9~j_fU+mxEx$_w9Z!8%KCv_%*5lQ`hWBuz@yMbfw$R)8A{h@C&4zU?KE!W=ge$3^(sQ9t6CStc}Okog2(GSrnlNj z9G{z1)!}R5DbvS zG>p)T=972!cGf>7esJK^l*wo)kj!#@3v(;`Nj_027Cdh?h%w8S92-uWa9+S+Q4*Pq z9sMbNs(v*$&lR{bRHmUXyY~LD)eq4`Kdwi8O%|rU+3bt*uexPSmz(r20J?1%gv`Xh zg6LXV6}pOrgynxGbq(UPm(@nK>H?xP(Qq-AgL~+nSb@Ul^4ExM<(g}^sNIz9^P1a& zWJn!g5x+nnB&GCP#P$eB%t|w>aaPln>vSkUr4f1{qhJ261kWr7t31-~GamNvW2XYC z>@<$(U_$^Bc%Wrfq0;%5S-C2=?rrgqI>DuFXlRZA;Q0!6(>|q4o3uSh?&b60?@sic zy)|q2g!X(kA3T9?_z>Nh&{7QElVJn0IKWbop`=jJ0TZ}3JhTBwHGx_uaN^{!lhER1y{PCRgQP@q% zST^yS#yIHkiE@`aI=Ro zo4N4o+y3G6qYW31dag~xVsy{Cc-o4;+ov|v?xGuQOo7nzXcp1W5RJ;%;a2BmW`V^t zG>xxIQ5PRtCZvRA-Yp>W*h4RNbG&*bGa(wT+9Rg7fT#simdVohnc zqZmKD)IL;Dq<9ebs&2!ky zc3&1B*CRBn*O@%$u@cuELHtdAk0fd`je%aw9%&Oz_6(hxrxia_(=^N2F|+RO-0=_$ zEZ6kdA4Z*8u^^ggxW(okh*bg(B$4P6)+80|(417G}3 zVh6`(Xtkibr*!SaH5BYH@HA2F<)b8PyxCDEnD^j|h>rELlyghFo^p{oRb7___WBI_ z_jveZ3pXH(-Ek4N=Uu-hpU2TyHQq8RmT``HM>OXzodS=Fa#yve1f*P(nkH6MOtuM% z<%{JDx!vd10o_l=^nG?TA_CFaRa6yrK(znlSR%UB3sVdAB-nSW-ar5HC&AS81xT1h zH-g+;n+$cz``Cq30Q;p3(5SED{j$}JhnJqSdR?3x!etxL=YT@@w`wNNwl@A&K^ix7 zlQ+VloF$z;Y*SowUd{K~+>G1w=@h$s58bhD#rVY3K_z-PXwKg0vZOFy>rGtoW6*{y zY=NUWa3^vzJfUd|wgu+u3<^;K>P~o$k)gyFrYPKc1qi z9hp3lN3mYT4^a(Qb-Hh|`HZq&UTXUy>9zQYBJXMjmAQL%9 z9p=@^jc$f=@~&;igxRQd$AD7(XZ$8KuAsR2MjaPjpZTj&8heR{1Lco0%3O9mUY4Qz zv*VCqIWwoAcdnN@J022c=oV#WVcmy8Jph$^cn9mbYdnad!>ikEI(!L*FTXouX~c4^ zjECJ{_~SeWNdfyC(!~7zL)hbMun4Bh*q4Zm&n1`~sA9=^kV~U*6G-2HLs1~d@TGqR zq{RB_xBOVU8P4;&_ij}$e+n#p3|yct-EgqwcU6LRK+Kmoa%ne>S$k82h0O$ptRORR zuydp8ccO|S%V^B5v{QaM#`Y`)8Ht`jG6jF*zoThyOMn%GD`hMBW}EIU$t!eMo^5Xm zcX_NbTDIG_sI=l9V+-B!8Mols1E}6-UTeJWSI@587Vh{=vt=k#P2@)TI-yG~%rErU zOuEFs*k&Z8z}FA#R5<+MU;br`y%WKd^kV(_;Qsmv9Wc}L9fbT>{{5E#A1n#`?~Cyt z$zJet33O&ToX+XWUtjv?hbK?@pnr$@{sqf@iyMRmmR7!8;tp*zD&6DE`A`&Wg0*Km7OVDe!51lu@+6@A*7nXoL+&y)1P!&oZ`JX0x`L~i3?mOu`7hDG7 z9EGfvXtVAFy3dRek4v@+|9$%ZnlgQ3!dNau2Y8{`zkoOU(_ZD6LEt**uo)z@EA#J{ zy7%^N^q-+o!d;fnes~{2sc*qzs)- z)$7(Jf1Nq^>hG55f1h))I$^8|qQfq{VHQF5A#}D5O>RbSN9+4VULHAJz~hPf0h0f% zn_MI6bXvg4LYbhAA>f}?{^S;_ECYWQ-S;n&`2Scs5oqdl{E#QQ5h%#Tvwi_d1iTmk z%h#zKkRXeyzgTOyU_$p8`!MZK>1v98nvs2=r(TdHxB`=>4WQ?apB?X(fpWW2_l-Z3 zm;acQ*gNQ`)8{?VPg$?~RUNn#UJUn?vteZu7FlGy6X-~6IaTM=aU zNZ)22eFeD^6C!O}Z~X8F6ncMu`~LC9NZ&#qJr%X^!mY{*b!s~zgWwDK)(Ij3)#qa<2xx&2J(0ggn7Df3Vamv5O zbOVfu{y_$X+`nDH#B|_S+Hs~uK@Wj{eQW<6%Da`WKc``i8eEq5~vj*xXh!Vs1PEwT13<66k8pk+przW3&5XA=3KS zuIYkmf%TQFl-}P(opDCdW_OxF6hNugLX+hsw4N9bW5@{Ilq1i9GU}7g>afC!SdE;} z@hf!44CBGL6eS}Yb+e2_h58sx^G6a@1H2h}bbaCu*96fO4q`ux2Td|t?9{8#4M5i4 z(e;pgM$3)jaWmbV+i{6~zdfkvJRV@_7ziKuw z^*M<$mwz?);jfCF_($8rJS!lZDKnSpX|l`p&2hHb?-|Ln_@bJ{cq3l?x#0|!A@{)y z3LM8+nFeGnbO8?Bpm9(XH~NV5ciAb3UK$m-^jMUFxZD1CZeF40&?Dr!7QQCI_XDG_ ztP5c`8_GOAl^>VF4EPM{cj?Wo22J;&31cnh=7!Rc_Z0|YafrG6J3G_}TsEXK$h}t%fFTK%SS~@+h-#l6OXj_`<`+8XBWWUMV$LprP z_H|U(;#b8XFSd5&_sjPb)b%y>KO9v)dwjW^df}x1Lp{1}y>?>EYTt}`!=lm|by9+R zi{Pd3<#AsO`egr}fyKssj*Qi7Cn9Ap+Tto7Sr@uZ%G%?>s9AKeKxv$agHfm3mn#@2 z)p4day!7R6OZ?L{QQJ$P8qVkY8q>XaWJ@}F*TiZB3v{9K?^v#PH{9j8oLrw#( zBN`?Jd#lm!JV-2oFQs^0Fl3wW1?Rq!iIWr9Zjo6@>6s~! z+8DhiSrTvKv8IKZm|T4FSay%w3#gU4c0kQY(`r1bk$jxtR`GSB9|r;LX_D?d4#7tw zn~$l#RN)Tn0dbq{__gcNXngpD&?&mSFD-wk>Gkb=^W*U_nlszF$}a`hSC^T1e=w5W zo%zlrjP8b5xr-MwC+D%M^h^`o*q9Z4;3%>^0l_QH?j<6_IL#lrnQQJgD^)DaQk#Y1*64O5h2LWp zr#X_hgDTJZw?pcIc6fs=x0`Y%sJfpkOGOVq!{ce$sl!OpE9{YRg$%YYI!1XG+WEI5 zXdHWnMa935jqVm}*~vG*rSjMtU`pQtB8RV4lk`H{?^P~9Eun7NJ5F@J5;aGUWpS!i zD}Ii3>1(iCRrUJ?6ZJwXpCc+GacvS_^oI@QpB0j`z9N@=I5F~y8t z=5l!{sZT%d?RcPJ);$Fl`MA^Tk$SrlS!u)&ml`&{nW0`E2hUAh`Ayf+FRE?+xL5>U zYOa%WlvQ2A_ie{jV(^yuAlhnLE;gGqGZF@66y6;fRf5WGb^i}@?;XzO`~MApT2-{R zDvBtIqP1&_s*%=gQM6XuP^+~Qg3wlLliF>qmMUrlwMVEGn^>_|Y+}cVbzeTe=l6T= z=eWQ3|Ic4JjvPmFo#TC-=lgu0uR*)}`leKR6{2oFI}-MDqOfM+9(qLi;+dgGTy%w# z3Cl{6-<#_*S3r6r!jkcV*jDT$Fy{O`hpp`(B%t@jq3IZjc@m!|yklIs;p8vvJ$~nT zwf9!r+{8M(eEyu~0vEbf^(@v!um{6$2>rY&IXyTyG+Bdn&O5KhdE4 z$F!fzEmbX-lRdhhjl6>ZFlftXz8ji|FnDeGhuY6-WN-bOF^Dw3OS>%q zJZO0yF!?J346XwzJ#~Mry@>eS$xSuuwdB3uoWkod{&3^V6tX5V6RA6PH zzqNAX&sbzRFy@21&T>9w-_G*wU5szWKoAnj@_t;^pq{<9e-O_?lVc6p7rvK!v{ywB zuf*SX84KjKTta+BHfO_TisJVH$ewkJa$o1i3nxueCbtr!V|1NnRT5BL>9vRe{ct*L zzIIeJsus3CIN*=Ql|Mc3Rx+BOT)my*av7DR=@ja3=>evG-F)j%@N?Er$%@#E(djCn zB(Ldw_%ciK@(t{)Z}k$$n@P{;VzgzrkQm$8gvmzuX~B-}_csq;eaMG699_hLIW{_! ze!fl2im~J|#F{KdgHu^TKE57oj1qArH9_NtpKX3kvJe~>XMc`f;*y@6=dVDrk4}E^ zL)Pg1Kq2zXpUC@ZC?1dq z0Q^9RS<1<`?pw`l<%ftm`qf!CsY3 zO)4uN>%zZ5?z|fLQnw+eW_w_Q%yXuHly^UzKB_DDf?~L);@=eaW1P!oCZxzafby^! z&henUN(je2am9FYi1R-{M5-%G&U)?Sh7kWE*k{+bQ*Fs-Uvj#Z!Ow;EqxrO z!hVHqT#(cjaxkf11(DIC(dY}v1XJ;0ZBtl!?OE7)&M*F+a|ZEn#E!*%n_7+Kq3n+q zfbX}<(vxt0H4Iyj)(x7kncvp4|62>--0f$)daSp@RbQo#wZxq8bbcJmvyFko$JX@j zTcYfapd+R4?$uQBM0Ca(4oI)=Jgz zj63gDs;H44P>d%Jj&GCbPHi2IwUq92@9rBnHk^QPxoNl+N*C$_E+KTD*(uB_lO{wi z2utuoQWO8M24x$RZ_XE37Dq&+usu_%jZHn)y+qg!CYfD18<)L$?s;SSR}LNSVS;#) zm$^H!;a{#zwHtqJ^}HOI0GSk^NRc0Q+<})@PpnwrkJ(LIdjNRAJokn-R;9gnzt#Tk z;2hxsgZF)>>D^byVp-T#cm^CW3>UNBufns=Zxnddu5JVMRtr{=d#{CuNc|(8UXC3x zjpU+lv=2JYb0gNf{!*FN_q1j*%A}tlrquxG+k5Nl_q4@-LoP3IQYzI%bOd*w$B3d* zvqvGWdax!}}K)CuJXS_e`{A7w;o^ ztl|MOSZVxasC4JStQ=uj)xS@O6H4rQeZZnWNs~Ba~RGTJ7mgF|W#w-xCGc$=VYb`JivYDnOaa zd?u6&f3f7$3{Go8ph`S`w4wq?r^t0m*SHK6@MNq-4sxq6Tr?tuzY&s|9aHy8i(;Gv zUrx5}j(+)JE_E@|#V;eQAj;B{fNnWVhFac8y7z{|Bkg3(F0qwi_t4v#$w*!eUfL*| z@K+AJ@C9m8yud!bS60sbChMnkO-(maU)1t_fQD-eHhsHMNUhTFMmQ{o-g3vEd-W`I zN=(5Bl*W_2Asqasc9s=AOyN5hRisn5C8;1M8USdhps%8k_0H`*Fnxe_|(BUZM)h3hxIv;so+Cf%=?Ezbx4bc!OdICezzHT za>E?*>Vy?OM#a#Fkrp?$s3Yh#Ufq^)$QHhyc8Tx4kIU5u2q4`--;NXWyHsD|-Ybwi z2@YEthN6i1W7d9MH=j(*vGX z)t8TJg9R+w<%ku$m%M`S2l$|4I#jk#zN8K$UJ^+IvW&Oc8RCq~`VxOfZ`4*rQLNJ( zeh$o1F6CEdcq%XD2&VZx*a1sxx;@=UdWg375*RKWMIUpyeVP6dPQTvF-Q{sKh|TD4 ztRzqFP*;N$E79>@o;vu0?eEB+YISbo1HbnF*bmee5U}7q$)~0&K2z~4F}ghtUSX5D z%*TnGr>8=c30b@GqhF=>w2=bA^tzdxg9%YJ<=S7IAkl<1wMd0s1dne@dLZ;}kFog= znlO}r3)&ML3~3*_UiVQF@e+LYE66#Z zG&K1p$oc}edMs)X%;ARlq(fwff!rmB7H>2J9y5DNgJX7U>-uATlHu?+@9)bdvVCsxyP5tqQ9DapT)17{iN4cD(_}`L@8WeVI&``U|Q-MISmLX@avG#AUxQ z)P}Vxs)qjScgTr`tBBxsYXL53H5TCGz!+ODy?(Tk^f1@IqafBRZ~eROl*K#$Z;CFs zS()%zwn$oyy=BG^4}5Xjx>9y3XCh@j;$) zHj_;9$v2m(oKjq-w1ss?x9>@&M|)Ewtx;hCt^b)BDz1vL z=`U4EY}zHewFLQ!1WW8Z*n@z#qjQhg9j{@mD)c8XuR1@5Si0ps-jNSfy2-9csfBzH z{xXZ!Jm?v6i_Ct>GPk<~JvUsq6VXQRsR2U1cw$0<-Fg{M1bCQmb1J34+Zjhfsot+v z{T{I8Ua9JKYo(I^8S!-eoP24{bG%~~AQ^2fGj^U3W5c<>GRL;kZ855PmTTjKaX| zAD(m-hG-35&0jNqxmGmRL2B*Y&tr_(h+S47R;AwfycXe3`i7Sbp6VZWVpi^Ibq*Gm>(tFY4h63FGQ_ zOupv(hr|EV&WP8#PpN@cvWo=o+2fRQjw(n^(KH>;EkUDWTtI3voE-5YHsEdww^S+@ z8-wlv>DvT)-t9&`1GjEHJx5F0C4;uY&3VN=x~YK^0YJ4H7Sx_0PAzXJ2mWU8GXs>| zC)b@ZI!FCW2tXROQ+enT4zKZ~Nw!tk9_LzK|2+j9hwdJJlQ0%@*M?r@Jc;e zda)oi2Mz6F3g(6n{|>+r4;EXclr;cjbKZ=&#^VDA@H3ToPZiXOtw*Zu&469STI5#)j%P=tWf`GLp z=^+F@l5Utfj6HDgq};;dQoub-ddg4Qkg4|WmUAbDvzo(vC`%7n?{A81Y^d~jer1PK z(XVXITk@Kwq{wHkD>}P>>_LPq9|aQk1&>{gh3l&69x z_qDOkseYy}*FrRKIuhp=wCISSR@VzQ^Y5;Gx{rSv#E%O9ZFLE6im0i9S7hHgoZCcv zf3mN@tZOvkV^hyc(fv~Qw9?mlKH_kflTd(F`c7EMMGxfOb*+>S4}R(0wf9c#tK5giIcyue_4++2id(|}3?IUodSI>c z(F6OtPX{P;3x1CI4Gy@O6gs5r=ICQ%JQmdu774#buWY0Z|2j+U$QbkR4qXnnKAzQ1 z3sIeaq8i_lje0v`6HfrVGiV2~anKrvSDeUChSraN-QqMNM&e89>n@U8ZsBv0QnMvd zI7CvWZ_DO#iO#y&X8Z|Z2{onk?*?;EA@}?p5eHviQ{!*>C)UgWobyTWP+cr*b4JO> zICX2rKN1erBXTZA%SLm9Xt=+PL$Z#|cmOpX_hY(ek3FlDd(HZ?K-qEnuH3pwpw1@~ z1EQ7>KrcH_#Hzthy&j|2(1jr$7ZNLLe^@8CEcLwb{gj9j*w;bK>m|D|CijoiU~KLD zfS@lHowGI4(j5o@_|@pSHmq;wY8{f+n}cYWsUj=x-GIVhq~2lv@Ju}h#n$#S(L>>O zm#78a&H9Ue^XORAV$@akh^;{Zv}IW~u;qX(GQ`}G7xdhs=t1Aaea4~_nafHQI4g8h z!owl<^Jtl~$coi{3rkIvm@N6%gIdc=#DrZDTWv|Yso{%zZdmaA?i_`ggsRC6MKM3W z-+589gFCt;U2DoR^e)#^WT8|+SS!;yt*`JKgZru2A_~sQnd`9~hE0$fpOhlMWiP$N5G`_u<RNYk`<7z1n+q$+8{Y_D=j^w6TJJPI0l8CzGz(n2aEJY8LU4$Ar) zXgu3vP02{QhR80T8>>uym8C<7+6M2PK*Xuacg@@{Q4>sbcuL#Uwub~LFI)Rg)3br$ZUtE$kC~01| zd}G^&BGo90Z~gM+`XuT7@bw9JM<^gI^Sb1(S40@r18W;`22ts|`fuoN;TGt!Ivmo` zO?8V*L6c>PoJw{XZys6uCM72>%+5xida5vYB=}c@zozGA8<{;U&>_YZ=xrIL1Vql8 z$w^Yf#deI}iI*VioH~6+c>UtGfv`PVavR{Og=Wrp>0=TNrQgyucy z<(m|B*SJj)448_4yl4W^j|=~Va|hOV7zDh*FC_0B#u{#Of2qQ@Uq{LQ>A0LJE%fs9 zFgfB+YeojZZtn!iWc$-`*@s^Me=xUTBd&p%TokvXubou{L9=9!mvX&lQ!p1)xg1Rf zq3(@VKF7^F9a}6z;~tt^Q*xQb&bQJVb^+Z&1(Zj40QX-l(c(=_iEdM?*_Gnad3jqZ z{h#GFw1Yuhmn5Ft?CZc{bCs8#t}qPd^2f5~|I<_y7>U2y|QQVyIRd zHsZrX(L~?IH!-Hj2nrBMTwvY}tbKU=ZHLkJo8NDbH`PX@)P561@tGCnh~?Z$D0;|L z-yjY~T#rQFO2%FNmR%4F9^{aOfgBOPM#FgBRTHtT411y2#O!?<1Mi0RUkU{xMlk{t z;Sj-WW%uTf^b?S?HreJPo({50Vx(EY5Szfr7e^P_F|@0d&SG}}7lmZq!K7G~P#>OT zUIMAyNs$=uzlHU3ssv2x(rdC$o`Z0Y8%O55*ffpNR0_$0;*0(z?aS1bZm*OF#pF?z zv6iLWsMXyqCm*S@~->0 z*8rDQwk*kQ;urfnmDcUvw+eqKd_9IQh@YM+kz!F4gNsTtHEBOOSfD!9eEcb?Jv}M@ z;u& z1`_tGJEFJgXP^&Lf1JMNQArm?0oemrhz%cKW+#84VbdvlqU!aG{N39hW87G;I`1N@ z5s4BHpM|7iGDHPX%Y$pcAdMOM%hjYb|7$F;4DF9XXo(5ZW)J^Iqc^ zYbRf7|2UXWwIJ=BZDOAN&b}%6DET8RX{AUsz>c0Y5QF0O`r>p5LyD50BBzlX!-E$W zQ-$_ITO#nnsZ~+;EctFcvqe*S$Jyy7b*s10JWhd*rDW_^Z3_PzZ=zeWu(d(*6*6+% zURfb!O?GRpq_v3TWaJsxpQTu<*Im8cS;VSt>netty?xUe%3!usDs%et>U(hk>+dh|(7W%8By5wH;_pNy?sJnmaol1I+qL{} zeU0kwhxadmtDxycb0>VrNv}%=-urIf$;Z#rdMq=fXLF|X>-L4EHcPTp^82-l{`pOJ z`8RrX$uC5%M|`x}4>8Y_?@_o{MyMo6wVY-APn7*-{03xumEglrk1_?1E#|vSi=!Kr zRbf6Ec>|*&mOQIjRTwU5LHn_zS|^K#3p%?)-YK&#dpILURdl5K3-_DMS^Dpp6f%G}UKWewW?9BfRdhrjid98m#Q`85?S&rcTR&P>EZpe?HrHSzv9c%0Jk1cIOXuPu4s1F^fm ze#QKas?w(0z+vy#0;PaW>llHV2JOoBe$D={LhD$O|!dsA&YeeT1{T2m@jtHupY+KIEW`sZbf>6uvGoU`(yMz^{N96zA?&F zuY0_lq@4aE$XahQSwE5~tE~e@O#LCgo9ghvMVI`G+^FvAT17ZiL>?OkwCriuA^AV9 zFoJfYRi8zQrqu9U6TFC}oteD^|M#jm_CvU?jK1HRgb7EWK!7EFNr*DUk1HEo zp0%C$BPY($Ghy4kYZ+DJmWIly1+J5(HZN$8+>W~R`!J;IGq9+2(EU(Z_!?MR&fUY! zMr!O;Mk>bmXd}3IB5hqfsP!^^YLkz((0Jf1CT-_2!l}e2j+=c8OX(SWI>2q4nX6JK z*KF|gX7Ovb+EefK6RVg~UcYQ4PovRE7ubjIjGj^tg_-Cs{t%ZADFQ@)cjxq2&^xoTEqOi8G6+&Tt zt@;da{cihOw~E^d3A*8b58QidMWG4s@)eW!H z=!8*d!vLgu^e%91JaiqOa*B~Uz%5Y*NKq)Tq*xMN(M?H-IWNcK?dXTBT$H^m9FGUL zcb6ZIGNTJ1+-Wi3?9#=O#L+$X-K{SQW671?q1UrYSN(uJ(D~)K5MCc^tUAb+>9>Vl zT}bY_xMUUJGjvpY%V}19Pi%5LAMI5H?EB=H*ZZn@3xy06$;V2FPP0 zrA}(<<>-hn26ZXe8{DHSdJ^q{ziwCv2+UCAiq~P+LtEG9tpV|-}u_T z1!5ynvOHd51hGfRyBRB-)raf=Hr&J65mDWuC6&N0<(6hI7AlSeYB0<4Q zY$yk=K;~B#pj<-0)_3{#^S&f7BlBMM8Vzy99mLvDHfZ>J6B zt_Dg3HfQ;UT&iglQE?f#jM>o`3W7Q$M)gY#n$X4{DJUzR-b-1neoP=_2|T;V#qfRL z&9_zEeM;GP<_9=|+-{W3JCPby&k48OE&UODmm#8QZ_Agt<9*K{m-*1JKD7L z@FFxgd>+XsV13yN*LWpF-s)TkH!uCfa)(Ysov!X%4TAp$zkY1ust+U?rJ~pQYcG=U zxPMFEOPTHZv@#xxCfU7_K81t4rNSUZgBxy4KI>FBYx3>!Su6Ah!fk;&mE|NIw#cZ^ zj?dn&l0A{V(TD72#SitjfjzS(ajVO>guOW{yvo2|I~4;BQoU= zV&vP@gQLvwxZ zBM?-1%3?p`7uFDskre{F)E*bp?(LiGJUvEaJ|27=)dkYSDy29#!w2_uFX|Nr-#60* z`SIQib;I%Bjk6td*1gTG;t%4vhe8|@H$DlgECfq2rQE*n(obdD7UGb_aG-JOFm}jm zuq^5{XXLKzlpD6*8^%-nF+tWl*lx{kNgkkcnw~7N$O{We++=*NT_9oh_ZK+xwo7Jc zoq<(plEiw%=KiG|XPbxbA9#xj-=8OCa0<3da)eaBXhTn2oO@Y%TW~Q+nXFC|^++u6 zQl{i~YJGoTyws)#d2now;(?^(6E@Y!{U}SijRNJ_Kt;rwv;A*ih1^!SW$?4{NVZ)D z5j^m$U0QQPb5y%7^M8ss8s*|X4_oBPS8}(nsITj+FZM0^TpNG2ZFjb z`OFEymT<@gN>TOH(2Y={444u3|C}MKh189EBkFUdS|jCn&`OJEdB!WT+Z7Q*`)?g* zjm}$_B>LGFJkV&}R;IT2`TrZC)B)}MRel!BsXRzG^X<7<$wW=RcL#&!eyqgK%$hL~ z;81}UbkR@S&F`O^f0ZPnqk1%K^!=^lRK>VF$`QRGkH>nYBH!$la&AwAAjOh076g+fAO)Z)0wcw0%jNayHlTsJhW&Wh&fb zoL4*PyWz60+K07tGSqD7{2QvqeLYrDk}B}-1#;$q3s@`1`aI>+cfub61)B+h zXUmSUzLQ?iW8=iPo-Pi7QFx-%ysgebd)6g$nQKmj*I8S8L9g z8?mq`pWRTv&hPIWZy5Wh+-cc)L?<=Z{7;3JlD|-;cmi6q+(+z$8qKneRJ`UIIMZd0U=DQv(ZLA~a-PP{dBz}2OYU1$V=6XAU{sOV^IY6$?{PvQAFHL>BY46C! z=V3~zveB;9Pw~@)nu1*PLPYIzYlW_KQ+E@0nO1Syw#6tS7kSn@L$&vZyp^-HM$#xu zMRw4{`%E5`xs#);Ro$4VH$w+PxI~XJdfP-B5I7Ybp)!g?ew$I#l8P)7%X<+%IOqY5 zy5V`)1LaFQJ=vPH@6eFiE&nXkre@Fq>w4DBMkuVV(CzfdM#Il*K6ieEc7h)i#HGo0 zGK=Ks_z-+OuB{_Y@b+9}ESn9(*rz*E&gl`=`OI|pjvcobWV8bm^sMw{2s<;u4iVn2 z*KW-7KiQANxK+A=Qid=dE^JjfR3kjI1f?F!lMx7o!2z{2_uq=R*#kiyFelpX6>qBl zQ|@)~C#GqZC>R5dd%!$~sz6k4P+X)As6@4Vqt!(Ac+X8_wMy+ovgpgd{3LDgWO-RS zktXp`fO6954Aa_Gv5M~`j~>;tW4ay2^`qgH*{NmIuk2>b#8#PrVYM``UR8BwaQR%g zA|bgfs0eS_F3swMmP=IVNo8!R3Ds0ypnDVF-xCFw5$)!JB~gw9!PF}76qT&<+~rHv#sK=tD?r@l<_@#9+bRICGaC%uMN;JX)veCFEJfoQ`=G)+*4=7$7Y;XrRcoY%GOH>s=Yx({(-rjf zonS4jV7Sx3HkmYv<@^5R#3UVsy6LTw>}%;~dv6j|r;}@;EOu>Y(7!r4&VJw?CEqwx z&R`pDedw+NzCB(E$8L=ekkR$*s_TOz)VqS?7?!-4vN^$vy&K8~It>Z^AWl;DFw zEwMYSJx)QkAsG_44BnuoETvR_c0W%Q_Caf;S;vY!x3kteFI2kwxM>WWap@?Tw{Fnu zdcMi(gVdfD*komR7Qpc@MQZ}SXNc>~L>Jvf+}<*(T2Lz~kQDhUHu$7UHf~BRWoG*) z=AUx05q2k+Uu4!ODtgZ@hNV@z#X1J*(vf&zrldU$cwGFayo|lAeLyKkERwAWg11YL z1P=S}m8;)-V~jRvaFTHh4(`7Nz?BD_i6M7|>av891b2e6Pc3rM!_RMvHtk*>d2|u% z@o5R~h1|?4d35uYo@?Hmsn-b1o+DT3Hb2t5|AG8+s-CO-0l7Jvq|Fc5#|u7(i94R{AfSCjgytg=TwJXh8ITcst0uO>g8=Th3p z&Do*YIEn!SHkyxAbH|ev#u!J`y{fx!*}W)S^fkH8Z#rR}&?b88akJbh%qXSx3Y9r(u*7Iy(EDK2 zvor|_S?#uzq+y{5OOw86qnF$}aVwsUvs#beBj(gaw~K0Qh7Us!+I7`7KF-y^S{kZl z89QEhRj>NZ!X7KkfCGq1=6tS+XAdUF4|n|5;_mDBHv3q#Y#977n2%O!`_ALWrNTbr z^QItw^OT7ji4|6MOjfW~Joo%bG_{01t!6RAj~^P1jIxu&p}EQskZMgfV!TUrSK3$z zzD&DftTf4nES4Oa)ZG&OY5pDE!?3hsx5&fUHk_YH{N)RrmJ6Wh!Nk&iUSEZ?s_MzC zrTt~7jV^5EVPPnx*CD4fl)S0VmZPr{N_guYrSj`;RvQU~qSzTOU1751!VTU#^USk! ztrS*yz_GkeR%!k>r+}9lRWG6r_YRW={_^D=%VQHg;4r+^NuMoVbIfdl_h>AW;@1)z z?oU*Pz310VtEH9gA79fBoWi)AWWQ@vuSv~dzIjjkJDfI{0czrte~vc*8GV(Og!Y6e z@a5Un`%6y9kB!R)utj(G zvmo@@Jj9zRHvecpIt@HpUH$eaG9|nN!+?VbSb4tvU9b|vI%uf~fDm$Wbqpkh7AAgY z4%`!KMe!^eSUV~k3Z10m$r>jz%~NarY69e)QTa=I{J#C6z5@5uDmA4;Z?RX&1M;nG zaut8+hO{7mL_Kiq@nx8nhj-33lDn&t>IX0S-1Y!;X#Zp`0@4G|*8r37lzB(FB=K;u zZ!cQXpS3-=SbdIvE^`GIU;1Pvyd}F7HZ>_zqpW*eii^0 zjd)jDkOFCNvU>)su(fKW#tx#hSGDHO?f!H(@9SMn4!W_;HIdK~fSfFPeOEN}^kp6? zGv{Q*UEvoX;n;T6$jF|%A2e7sX_2I|w_vCg58n0J33;eA)cZ*tcJz8Ij2UF)?P=LC ztd&@Sd?QF7E_i_3R%yBX!WZ{s*lI=Hx{ByvwNrSX=SN0mxm>@Q?;q#7S1#LtQLuim z3R2nC+Hackri=R8{AVA0bg)}^&z(`fWY0nI)K=*xp7q~OohrC$4)7_vV$cGtF8?PX zXvnBt&crKjB?J%u?eAtzW1xQ0*IMTfRsZWHI!8O|kV{is;z8ds4ew)W(7?i=`94`( zv<4?aIvTc&f%XabwD4jZ|N&rx6Xd|p;v_iQD2!uu`y zGM^X!_ckLw3D)-u+>+sd3OMHN*6aPI*|f96v@DbOdFJ;TH<=z@`VSw&aB7>I?qje= z%q8Nyy~+i(@_@V$+Zy?BA3$lr<+OHEziRGK&j(Ft9We{GIq`j_zI8G5{{Qi@rhiF_ zu~O;iUgan+^*GP~E13<=iTiJN^s}1*J=(IF=coVi@&A7LB8&g?`_`1nz(;3MS~oBA z8K{s3Gn8_ahp?U{dL~@4tNqerj!RUt*+!Z&1dv~H1K~~ zUCjjiY`w)wFZDl+#{bsFw?X$W^OZjfzNPRVy8A!>7FzGDag!pty2vy(>;E>y|JBDN zUZ9U}hj<_9|KHmNJgJbAsrCMx^V;B?@PD4L|EGz=ug~WV@HLBx{lAY8@T4`Z^NHc~ zy@$~LPt*TD9WLXz$PqIBnmcCh|LxoVInB2&{{MgY0F=iuz?3Me07way=cW*4w6TDY z!T!}#zzwR7j%WpF;e^k-kMwx}Qd!O%D&`}-=W5Gk3KCQK%FY6*BSU1S&k_1L94hH< zx`+7yUSRh@|G7+cLMouI8E^r$l;#8owhq3Es|1J{*QWq&1hzV$jLR0MH1}Ek`Z*(k zt-PZ7?&$Vl!_hF^u7cV7EkFydredVad1&_Ohxave{B-ds;%y^=$snu7b$yKcpX3W z77qR6+U`>>baAXJwZfTQF_?7N1jh^Yv8f}*QVpdef2TN}{c=mnl%;zw7$PT<;?b?p z5%gtmBMIQPqi+I$?7fcmP%iiPCM+}2G|)-baUK10?Frnv zX7ewDzbg$Wsy_=%%Hg|qP75vay+C87JRJq1vIEu+0|0ek?K!$ zvNk6XU-wJ0CwC5q)}OPJ=HEJdBt5O;RToO}G_?ClbZ0>pJEs{!9l{DM%T=YQ7GJAD z5v%4?RYcP?r_LM?Ymu?6@_m6jva$FS8-t&mz0qB-JXSZnUJ@{4aGpTDo6fcrW$yly zpQcR4$J+K>L^s=HTX^f88=frF0XwbZw4~Zp*vD5f9+2`lZ`AbaU=VRNEfdc!)pAlUGd?nMY zkDG+RMeQiv`0EJe0KCFg=X8=f5Bag_Q0dgs_#(L6(OkxpyS!a1FXc(DEA?dGOL0V- z&L}26K%zwmak6S%*8ta5;D>GIT)#)Jdc3J}akP5_7~n6{oo1TzsL#dw=fr?f1h&$uw)d z1)iG7NyOsY+Y7sI;?s9z|N4qb4A*;}4jW&pntQ9=cxe_4(C6+<0pdq@0FKyx!RaKx zTti>f$5(d45_FGGz>6Dxi%Me?^;gJ;2dNJ_6gxtGVeZeJljjD1UIR~UCzRg_0O*F| z9FR*6BlDh#)#JA6spr30y#<2|&a=!2sVqMt(qk9g2>PH&ASue2{s@?obHW~rM~ZIU+>yZ?1= zw$**jM|q4}V4JxjDK>dBe?{)Ykq#3~Lqq_L>At*UZ(lZ@W1zp%jeXdJMFf+3%A9qqtn5$;siP!8QzCGN> zOz2}C@&t{|U{;Iri(|*$Z`7(a>K6-vF{~kZwX@WBy!zP3*=#3|?1V<^Y9+1ybUB~b z_U?twJ*i$G&=NEHlpExCPr~A=4`#zn=Z7_$F5MAi^Yfw)61gB~n~s9+xNi+>9C1?7 zeY<8heR8eW$eh(ys}Al#0^wS-j}u#Ie=iTy(J&TV##_C!-jcEp^#@)am$AC- zc2T)F;gj!o#T)r01h`sWJ$7`GMr%G3Z3`bo?SIxGr`3I_z;<6I$AG!V5{tn8gth8% zx@DnuOMoDh>mGqR_gLvjX>1$^s`#mf)-sST;rYquXsPQyLdK`!k za-w;uqNvK&09zRM4hnZ>FV#Qa1**gJxyOWxkp2wZEWOL%Szr&|HH7)jkD86KxkYMJ zgBs;b)9Yr32fdrR0~u)Q%;7&|CI=TSPtl`u>_pwSm}%RV)assD3^nP#%iIy*)ZjE9 zwpD= zicjU(q&NQfzX(h1UlO@L%45}I1ci#|{aFTX{Id-`WHDh9-#wy35br@@a3Cfr#@7N>{uqomZ?hT|t~X$s^| zpe!t1qr*SC*=;;ergz=CeFMpYEuiF8V3FeKSjdpq9_Yyk5jbgcHd%`jSA^j@3L3LH zz4Lm#B*P%1oIBBcOEmzgx+o^M;Crq&p;h$4!0Sg*h2{d}+aAYT*p0ua4vQS{=&rI@ zVgtQphsFjI%DX8{7Dv5M^G)rMt>+Yq$z}fOO+$C|{nV8;#ozR!Tkg{+7XtC<@SKw{ zNh3y7l(n*2Tze%@IWZqy3Y5D349m*m=KtJ1P7LTZk8wJ_v+q%(OZ2;P)~7D%O?Z2o zp-THvjk?m++Xr+F5Xju6kxvCi`U&gbX?(NwBbTc?!jP6c&qr~#xO45)GM3YCck>T#3;0+-UgQ??Hq@iC zQsB?cxsbvNTSs>);y*aIcCjZ3-N3#mz(5rcHjjZKMB$USt6mzBY#`!7sx8a^;nl3EVE{9>tNU*+>tBVDk> zxbTM}KmxNon~^VHKK&M2bYZ4^(qU#pM0B2T13*M1Iukw*tvoL5M4;yfVeJ)xVd*)P z8^%HW-4|Q@ZePCp;!^-9&JAMt?CZmviI_jc_w90+tw@owCP|aZQ6@-diZ2J~AON7b zm;b0Kv?aAgzRGc4xYAE5a zPdrB`S#0tWw1cd7kD`5M!=_&E@_V*d)&f$Si4BU|7f@pAmj;5?9=mdJWo2XIfWq@_ z=ct#<7K-71jaaHV)6L1XkqfHZS;qP4{a4{BncXtBkCF zs@gSbY=fi4O_l}Npcq9W5pgr-KJ=&LX;j&eBu?SvcGW9{zf(i6omcIf@#yeKRp8dv zcNtdAOLoKxAL}r{YTGptUo`sceo6w|!%PpoCMUnWYdLB3CT(Yi%;5((gC&cgqP@gdp~4H{b@wKN5BQhZD8W#b)3HGMqBQI= z9C{MbWkZxSYpRlOv<09bE+JE$&UP6 z1aEQptgEZyvuV6{Rbe9+rQFE?{l;f>rEHc#qfXX&Hk7#K8|Lg<&4eKS2@trk{haUS zr6J}J8zGvY#1Pe77qOoJmXu|{B-eF3=S5$)$t#r)%TJJACQf0GwBPNG3%`n4lPRPK z4ZTcsohx6Leh1L;H%eug<2*C}$-k`!|5nJn==u2coOzUMHayg|&STA+|5nNRJubNy zq{f$DZz!ZDO)F)c0*zrByTuShH%arEsh3%t>m>6iZ*mEw&1m&K-hYLz6JQ)C21_fjM+l^9- z&uyXx6b1fevM6u7Xne@WuY0A&!1c>azWAXHh0kZ6m4;^x2=~Jv2!KInm^O@}VU?n} z%dTS2lICnPF4=;6Rs85|yW;&+|4&3n4QWe$0n_0e7i@;=zlvTvedlG9obf?t92z0Q zYr47)8H^-oKW574Qi!@4ASpRCsH)h&z(e;k`GdNtd$I)z@%4FX2&elyecQqEl0R1_ zg8l08Lcr;iPVqjA1`rYSAk3dAjAprn$p~`ZogQ?h>W@(nH+O5fYZ$p;Ak|uZKPPX6 zbOfXyS*H7kj8V)=r^ZqIG7{_5HRqOmoa;GUN@loNl;0e`>Au@PxDj$IGYNaMVZ<(N zVnrOp;`{fiRiTJZ_0kv2CH?e!inB;to&5>=$Kr6dN{wLm9^yYN6y!wXSOu4i1fdmc zn~!Cmnc&mDj2~!Z$gta!j%oEW#8??w&FXDW?i4LbKJnsa?lnqeXv8MO|KRad6L($F zU3)dH!;r-G$3m!dKGko%6+9V!2ga>J$hqo&R4Vj+F%*HmYc;lO85CSlvYFc9!>qH^ z_PX82i8Tq^8h~Pcz*U9!RQqh)oa=_OLWP{oIW>LP<|>Tu>hwDl zg=K>-QPN~V5O4P+L7=V#JN1|+GhEQcfHX^x3|7PFD3zxkGzpcVZW4I-ghZ$owuK$~ zv6m4+!^-WE&3<{4zaqb+Gjvuon9ODsGOii4_KNrItTSwuFcGdGBH`R`N*+(UgSD^* zMLR}gVF#POqHAr}KsqJldw9BChBB+_>S&#{Bq1J_Qb~5SFCx;Yhal4{SQewH)554I zup;a4k#a}{Z-rjQurE~^6BxhRL}^bPP=mcf-{W(azPp z4M&3hTMJ;Y!)6trOF941XjJFP)t9P(_CN!R#N7%s7>J3R;U(TFajbV!8H5avmsZOr z128Pc^L|2KIuwfYt6VY4l||T*hT9@AVA}HtOT{`oZA^Cti9z=YtYW8NRQrS0QHNFJ zA`NT&JsUhJl-z{s)%|B&=*sVYx9!tGWK^kg6ekOWJP`|rJqX{}GXil5;GQ{|BVe8g z+fL09{a5am*L^O!~LrJP34OcfcJ?p)V0JRT-`gz8C!VZvOYMmwXA5r@=xrw6Wgypj5?Ze4X%biV?!-^xNQH4STOVH zB6qIK=R-)$zFUQ<`e2~Gm&@HMQO)*RKlV+1N zMZ=$GEd*K?M4^c@+-L8BOl^^3ZydSdB6Hv{xJ04WbeOB8XJ$pMeFnuS%s1b9?&o2m z3gQT2A(92bW{-}_jXvOAmvC}A$f2M3URr56#Pi%{NE6-R2X441z2_|EEpF{X=6o$l z%TIN*!@QxSO2RJLhdKAU;rE@H!+B}3#FGM!v}Uc+m1uPHuKaH~_7&%*boNU-GW24U z*oiMv8vP)t_~Ou2c}lP@NZEuVk_oGuiR%DG{w;cu4S~f{ET_oQKYOUhxO>$K+#;i7 zPJ!JC-CWIrJN48)%;#d)Cvr>fEHr=8kt?#7YogD~$*dM@=cpNCLSuRqDtBhV=ln+X z;iO?(e{x1wT=t{NZYf#L!C_zV6qP=Sx)j*)T1FpYt61geHI5G@gyt_DbbmNE0cikh-R)k;ON{771YAS3K z@>HNTt>YTtWJiuJ{1ODaGnKuQp?Kb7u*bwt`{Ldgj&&>R=Uc!|lo)!)6vBk%Q`)}$ za~-nzSC*YUIkBjg^*7x)EsFUxsZ2xQoshP4dCW92YbpC8(s3MjTYUFm{#Q3)l2dI| zSxU#sUa9gJmJYTA( zS&}U^+ri7v#S*eM{)1F{~ZDF-ae^~9R z*K~uUMNU@p%hy)5*m4O-gRfy%)wD0r3TrHX!Ygw6nHxHYxWRcsjI8Z){Z`H^*}5IM zr&(u%J2Yl*h?rJvV!d4ES-?(oOgH2w#4mTBDCyWz1)b0X!?U=CCG zTNeAQw1gpNRbqmU@2ITL2AlhbYJ>M2@@sHL_oRWPQ(u|QS11mtbso@XH3Z;Vzj~T_ z6ddn$Y@kzr@5!hK69t)ua6p$!2~VSNFJe|MKs3Oj+UNRiH+*f?S)nA5+-;aQSf!}J zp2Q8_mmZNfaUYd$gggc=!cSRN1cY7$7x2{AGq-IP)=Rp~0*3*g73xc6Z?kp}tdbmM%Ru}VT~38jTBDt{syLy{l2 zMhH`1Z@3)Qh#>B`+XW=?1BgA8F(%rtpp;G@0oU{1Eg7#G`Il|5R9{%ixdh88t*b+) zJ`MEwN^F4ZOpm6PuG#L-hQtJ2m*%qT;2X19^>nVrv(P3& z^2XT%#+HD+mnVWdq>yP5b=J~l*8r7LhR1LXqgRDHPg_V9zF&`*of6s8v`ea!Rl}H_ zy%qOOk>Uq}yFDJ~?r~xnl^dIF9kQ!*A_@MCQy(!n(Mih)$16Wxdw%vr;1l_&YJFiD zW?ey6Q4o13xso||{?Y73h?xeWd}hMH?Xs^2nmVb$O$yh%?C= z#n}@*$5)>#Q|1u)+F8T@!G3}I^mAFOC9^{60CxwpPOp9WgOl&g{?=Z$p_aX7gg#4Y zcm*YX;eh6fl(UMK8F2tSiv8XB+h%cuCV%Yz_ti&5{`%MhxK?y*JZpxGI$Q(hnU;lpKvqZoT4HyQ z%JyLHKVedCes$>7q$nkym1NP~+{)3#$9wl%B!+EPHxWo{VFl zN$)g)vd|o(KwMLK(~-jK)Bi-Odw{*X-2ki6n3<^5(t#E#NY+%OxEf{*M) zlNV<9^LZx}Ss@=cz4Z-Oe>!OAM(?ci?{$DT5sG4QEbjQG$a3D3;whtP%~XS`*TL0T zZ=ZlML;DHBtK+^(sJ4KYlwE^_nUt4YhRR{A9P^Y-I>(wa?q6jdL&tiJBqYG$eN^+X zbJwfo@P_|{BqOtm$hy(QaZ@L?;h%TCmerpj{|QJFM_1ne8Ii&_Dzq9+)h}cY+P?%M z)KqyT7R>top={T1|5%yMQVSVER*SUiq0b-WU9~-@Dv1Y~*woe+eUAhvI9cv(0wyqn z+siLCU1q5wNt?{P*dDiH!yJW)qKKktxGIP;XXS^kwNT1WJb9}eEw%h6FL|Gj*;4~) z#2hI8Yqhlt^MHogYW{(y2~Z$_kne%E$86c(sn^t_rL?d0T4tsotxK?P6T!*9g%KNY zu|EauswyE!E6NMQ*|oxI`$|%ozp5P-D+1##;P{`X@=7*OUD}a+lLz@5Y;@+RZfT>b zSkt&`S;H?Xwb3m^|c6W zvYp%X>@}54eX)|~_z{wrOjmB`!RLNwH5R0ds)L^eF`@IRUi_v7%kICB?6R})X1+lA zAngIlldwPcqvQ|3cTff_&De-L-Q*eH{SeDbH+%g)bI&QBDw7_!sKN1?r4zxtussV# z_ejI$6_CO5KNbreL)^W!U?XM|{z!#N4VM@tcNPGZE865ZIWOI~^L%W?3*Y1^iI}0F zV~IxE?jAB~42?I^HD?3xZYJeeE067+zj3^~L-e2o zB>`OqQ{_5~2w0Lm7Wsz_T?dQ){?H7TyZmHaw_7+KIT;dg6zLpT9)6!khAW@ROS>Z- zkBFxNa$|bMm(bM-%>>^@Q$7$h*Nt&#|McQ3QIz{G^>Z*baZpHK{N9k^pBSzOv|)dj zUp!N8?%DOFc-zrV!mRFYOQjv$MpFO3A`qT{mmOzULdR(r7xTR^oHcjj!aNQ(5GE?) z<9gfOE~F0kj=-ouXa1#|0zfP6pKjm5an!*nqjTJbv`_jcubfZ!MJOnUd7>fwWm(^; z6f9n+ahJ7{Ao?2Vce)wiEu#cIsKDLn49Tx@V@pcNUY55O1ZY3wRkFnac21g zA3yQ5(_zEieA-wvE?cjbaZhBd8c4oovG`YS;f?PiXa%jL^bO>OZb zYZ$va&2xj6@r~jC6q^b*TJI5Aek^#7Qubk@9BR(9G123S@^ku;QOTp#JcZ0p%QcE5e3z;bsb( z%&TUY9SWG)m?Y`?f%vAe^Cp>!9*0cW^^hl0h47GuwA&Iy6+}_0E%sgdl8?TPD&Oo* z|C96(tNeab)F6NEW^>Ms567K6NEpQOof7_(wB@|4ee$QX@5iq{bnn|d_SRG0{1FY# zRo{Q+sZs)NOA2W(y9=Xpx~U^?=I z-7#J9ccRSaq9pVx5mYW;vC};Zva9XOFQxB)ReOtm+UOqOdpUM0e^4klujH|w3PZ@$ zRrLqx_$t6)R*rr?vY2+JvT92tMY$S0jhP%&0rJ*{nWWFRJLb^SlE$ z`-$GC`sE>+v7>xA+*2bPtl_WvZ|*s*SC|i!T;PpHy+cHtiiK&6^mGZ(qej^R-YAFv zRNTG=eB=$1H?GN&#g{gy86xYC(b7NJ`;jwSDOT1Uh|b{X|~{O zTUq;rCeU0TM5$f}`O7nJwdx23}`d=Q>%);BGuk;4U>X z@p$EwR+^Pw*<0TE4!kq8x>zzSe#0o?sJ6uxD z5!=;p{lN#l3`@&Tg7dXIlnRo9GdyZVw-4Wi$gzy_9hW2+->F#`A^n#hioBoM(n5FD z>eqLKruP#osJ@}pT(L`U;1**UvU)m zHK-cpxh*enkiVl7T~X}Is1jpxDe(2P3!3kIiBduBFT%k-L@DNa*Bj%vi2LL@(jatG zny=i$FBV4$95!RL=_V27V3WI#-gU5G$4CiWxwDygRw0TJ#ls7#`0KgC-3*=-qw@-q zXL~^*`CXXuaq&PM$k$q#F5oH1HM&jR-3f)zrE3^&9X;x)W#+V4 zv?6o_9YsxSc(%EdN6YU3a1?XJAL-v;RbuTYP@+f=_}$i`0R(>Iwg+2M?9{@v!jviIr85i-2xT4~F~ zjZ85c97NInw!jsi+$eoa`;V_Ei@N{3Rp=_m0jq%k_31Eh!Jk#ISy|reXKH)KL1I!Kyj%JwkhaK3O>l#Y`A*2n(yiw&nH!z>k9Ax;rFxqcht3YkCi*} z#_M$ve^E_7uA{sD7DBbFPLA6kZ~d1|mOFHFjtUs7>t7qq_mRN$QzVO(xQ|vjZx6vp z6m2yqjkouXDamMKl+xa5QCq!u9GXrq?cuGFRxRyO{UuN~Je}UmbPOhiorONiVN`); zmM@SFHmFb-L6sg-zR!(&8`cduc##69=z)@tyJ*nK4#&*m@s%ft#dR#a0Z%Z*BK z+r3A0sS)4ZY83 z79^U+RJm^=na=qJ{D*yUFAq8C^G;GOsYSe`nOZ2x=K$BDx~s_cIEp0RVJ)55_=bJp zeoEa4XI6B6z)O?HNHwV?TT)%msEsLQIv;Yb#KQS~B+)cQGK>pUN$m!EDbzFjU%A#l z@lS~?hx1oG%+8&A14`xO_w@!)wMw`7r9m3-bPLnvSqeNe)hX~Km)vsIAzsa zBMS5(MC$hhZ}NBXZWVsb0GRP%7t_H64!@u_<@v0Vd@j26o238u20O-$GWPC!m865~ zq;{*M)Vx2)hkxw7>sfMBlf#*c*kA?@B=A3}Q;di<=X5Uod0&!Lk<#6quxYgeC7=H7 zI2Y>d-S?!%{`aFdv4bZE9Ayx1R{>+SgGa}x9Aavh<2SB387sl(Qw3?C^v zb!iQHI(=|~7hJBBKNoES+O~c$^xl|?ktjrUsvrS1x7L|5D^8~e2*AYR_sx$C>9uQbAaE`Lg2PUOTAKB1qO(0)436+dkIfFn2mr}b^L>AF~>EDwx2KKH+JaF zTHL-}YR9mSX-cazQ94a@%&&X2-LWzL;weWN7<5gGORdZw2F<>laUWoMM!;u54qr@M z)d_1jr6107YL75R%|pWG8QE3OoD+pt1GZNE8T_L_?^RMnSrFrBij!?1>5d#s>LiI% z?brGc0H5vcIN6ohyUU+U{`5qLPHRee0rP9}+{u%C$FUC~8%b6gdA@hyv4w0W>Gxp=dfEi^8ULT_m5{>nl6Bjeoz8}0+;J3lS~ zWn?9X0#8*D^G5al+J2`5Ez4;CUO}Y8B$pd7MJp;7ngUl!jCVOV8Fdk6I@luwUh8?T z%RZ#_lC<0m;9^4}IWFdRqzO9WO3babfFI`ckH|At_5XZ764pECg4L;>EbF(pc^mvtBb{^b7F0RIVM<@0^F`WrXSQ{vfV z*5nSNT;@9^o~`N@N>@<@jyU_oCr@l(CsD`W^ol~;YmElOn5Zjp+RIu&kA9DnbU&3H z7G~oOooCu$AS5ZO0}S{6W(il^^6IiL1#8#^HMF9F+`2NJw&QytNaaX3OH7uXWk zuYcvj$;9I^-wAvXi;tBG+!mLgdQK=)j6h=GbI757{qR_JxUV4>28x)Sj}Zt zp~+_U({-`l@+&c}+wTsF3yMi4Q3r+t-pQ8O+$u$1#GhY>Uk-D24Kicwaq|DnG)~8G zZnOSO)l}TV?fv*Q4tyfsajWb4iqr1ANG%^5bIW4HdK9nQEB;qZYylFm_V+#?Bb@dR zJwS@$HLzIntW#XVZB==5xx1poR(f{q2H`6_=Hahj(2y{D&oABrs4h#uv~j1XLXaZ- zqoTcQq`fhCh&HnQ${kqu;^Sg@4X_=Gs&jISNh&JQkhRqtq*fbr9FlNZfc z*SgIN&E4I>HIvaFKDMLeQ)Qw|deObijhzN{gG+aFcjX2*jwzp=-O-|4H4^!^b=Yu+ z{(0hGAKxab%XE@iqztiiFgm29skTFJu!?dz!E*nQdS#NMBm2y6h27+Q^JHjb(wJ>Z ztvi1GSLRY4>VQ$q;#*4E^iOXbrUk8=Z0bMHfOO8=EXQn(_H-en7!{nr<-P^2CT8&FGS4dA|vavPJ`uCp

4AT|@v9ehjsN#!^Z%iT04fV0o}Lp)CB6M`=v10AkFF6%+#o>Ij2e`9Wc^_~Ksp!k(E>i>*T9co^oR&a=4dCLD0$#P)3 zLamhlR22WW-{^lw^vqcl0kVu>gXBQ{w?Fp(&Sm}oAMgJSl>7hi^aQvmPOcRD_khWN z24V-`U+G_A$Mnq_4fx`-y6+W82p>Fk!NlqFH366qf79jp4u1eJVt#(by0)u1`;4^9 zT`bA*U931?2C{7Xz;w6f0t z*ld;R%Z0*Hbb}nd0o~%W5C1VQas}=v&jSdkIX*Jb@w{Hu6$r-X=Kd1oHqm5wVM(2x>wj|hYDQ=k*!N9sZ$%@8OW=J}GvGMu%uiJPKomCCB-GCo zaK>`>t9ZrVxpJey`S9dwhb-<=cGPUfA#vOgD3gh!tCRyEpJ!^+zn@mWk~=v866tx> zJ)~#1{J1FN_0tmoYg3cvn2VIMka+k@_<;?D&F3${!@!dGKBmt(!2M}h4=^C?=wYWA zdS7xUz>#ww*zhf?R@Dyypc*gW<>@%K9nsro_*^*?K=K^!KnT0wKA*jUO-wz86bUk> zz&oYI^ZPB3ikpA&oA_{WwUWZUld|oRE03GJu_+dNa^=fK=hZEyKIf*+6vNG0M8+K2#TMUd`wCrx4|Xa{zZ|b_ zs%+?UbgHm$Nb?we`+m%?s^a5~eyNQjU9&55Hv1BPFI|qJI)}^c#p6rY{Y;w1yttU+ zm2t9l)o!=gz<;`6lM}O)YQev6qRtC&G0Fcl$Om6SH zMiFjq!}KUoG>Why-dtO-am7(NqX>2(AH`J|IQedVQ=YiZyVbMio<^8aF8MOh=LD&+ zs<1Tt(oT%~4|;U<$iq+07O!|NU4|>r>TG;<|LVwgG*P8r-6&Qq^%*PF^SfOLcn<)L zzv5@k+SAiX-p+Rwq|=ADvNx`1$7&(?xg8{6^BO)U>YINvR(7Wrc??>L5YEv}KpaXD z4V$d44*0DI`=+FBsebxBy>31O`MaD!?!VfdoA>;$)2$RcFYygMG4KrF^5C>*_0LzF z{a~rCLp|->%*!`vjANKf^YZ7am*iC6l10UDw9`Ssj>^8sTtfMK&lboAJlonA5M!XY z!|)$-DoQFym;iL`zk*M0OR>S#5wWFBmS;|Z1Qh?BTYv!&W{XcMS@rZfChyvCv6E+^ z)&8+XZHxc>dZF3*Iu$iw5q*dY<0-M(Temzf1N^rNdU;Iu!b*yIK9UBY$meB60NbmK zdyEGuUTCO^;e^l5l~Y)l^>ovQ$)p; zkM#CyQ>Ibsb*4d`S0q`z6vZ0l6G)G+Qy^eLylIzO9nv>7N5XDsF@83rH0*Ly` zEl>UWrYS^4T+@70`uij#zkYqM*G7Zlc}+>#i1mNsiK%j!>$s;RPz7I~ya_P_^TMPB zn~(gHbD@uMSA~)K2Yy@i8{=Vr^Ikj);=NfW0g+AJqGZ6~YIc)Ht&>+q8{cDgvQ%{(`_hf%ndWl!^=C>+WAH&QM+q(n&!pfgL!`WaAM=hThwr=0%-bIJ_z z!6`?npWF^1^sfO1%>{|oZF7+ND)C*k6Rm@&Yzgx4a9J&;Xci>7`+ac61oi$o|CA|R z(5Q)(v9kWxvAWM(2(hY-%9Zmml`~J+`(KAQXV-l^ol)g|>+k=sV3>Q4lcJVei(M^@ zzY2z}rVax}FUt#~xmMDBMf~%?Usp$cE#pC1;_D1Pz)nVqS6veGNS)@2KB2kXW4Qzr zVgdoKfrF+`nt!^7+;_5-8qmmhBRn+4EZs!d*Q4+@-%tdiddTm+cbzs+kiW*vXAQBX;#(Wo%7Aup1sw3aY~0)Z zu7F}xlQzrPx=xz-E%1=c-JwJGrE8Te)|`3{G*H2#X274DFY!pR3eyDqSN%N}XsW`LHSu5?OJR z$uTV*7_f!cU2e@?I1ce9^QHoa7ykt|@B&%kAd%bmL`vmr$8MHTWfscZ;cdmIKiA<# zwOkXn;Q>zU--~A#mjDwnq}hSf&n@l7W5r`mbIH+aD8O9TNZ>kI-#<)Zk_<-y#&b`- zT3vZO2SP$7@L(pPCq=*Y`|7n&%P|Dh+gknE-d&%M(M>zi?Y7Y z0ou`<->s+ZsoCC}{1f#nd;(FxeLag#bIXo)(nW1ZST4~um*q?)zo! zXqr{Fm0QQ<$6=Q^{>$O@vHXBTDXY6up}n3R^XUPbxPy*efwqhImrDfCy-a*R#(Z)xbmMmcNJ@e&-jbx1-OzVl-xuZ z=+gOHJz24)Vc6N+#{-wRDg$wrNt>p}TZZvXciZb9CSB{sU3ngbFHz$z3{e6)F^okCq zRuBq8Kn#cHM%N_P&i;(3+iw6z@|@vjF8iRUE#e!f4k*&h9AY-gb`DahhcL(|r4I(f z$GP-TraN$}VC$vHqFo2Z5Dc*8@h&@FY5nTSmf+lm6?go%-P7)aL#QT@Yc#Z&e?z3cGV$v=f6gq7 zNBX7(OTtw-^CPfB(6;whIgE51K5uK+vA4-rjWnjAfBiwXmwlrB=C?hRBy;%BD~Zs| z@ag@gQ7w8NjZR6tb|B@b(W$gnquR0UXYN9FguV>CU!^WUcbA_7rcoh5;q08A_3PQD z>)ad-N&>#+KXwPb=>#D>p3dC#ZU>hs@N4s*;S!bs@uGT*v$q`Z;t5-vdnDc7qS9ut zT!Ez33>gM#%bl_hnn?@@oa!;HvfypNJa;x+V@|zC@zJz2@Xb762>NHvj!?T1Y<$ca zA&TfL_cwK>d}l01YFOxsId7YEq<*52z~tkzG5 zpCdb86^UO^r~GMGN=p2?9e3}J{U%F*3Reb0NcTO+YtNR7p6H3uxrv^* zeifDhmnnNOM&7-(>=8w2CH&J;Yc52hUk1M%keT>c_7jkQB#y}hCY0EIA($}VA*Lb? zK&mt8iWupZtojB&kJE}oM?XKrRW@B?*rYfcKAdEV0)OaU<4PGxJEbt3Fb*vTyZ(s0 zk(+0a+)WpxB}B|QU8>-?Q|VN|EAg@J(8V(VOEinr$o8PR<*C1kKk~U zv2YE<36+RwlB-9dY>75af#tN$oD>;ec+U0*jCV+S{OU_L+Od#aD`()bM)~`12v_ap zR)T8@G9A!4E-UFlds!87K-*?#i{^*wtxaF0AgX%+cWfP)Ai&;F|E^z(9 z*V&?(d+bSFr$4IBmbf|%ihFI<(DdJZT?u15AsP5%euZmcg1Z1ANBui-@$Q=bVdOtX^ziOSYj z_K4zFcS~09_kY3;GVQ(b`77m^$=z!LLxcXyks^wa>Cb)5T$6A6%aZQC`o?Y{fG{0; z1YhT=Tu|D~6iAbHsz3e?NFv>Mo?J34d7l6Fsg#mg0h{xtJy!A-REE~XPH93Wugb7W z(IYKIg&=}}4tJy{*>^1)UE>M4eY zDaw)j!<)+}@$RD4?e5kV{d}h8juw_PXrd4^FhUY+*q)Z0tdqk!#`hz;b@IuYZ#A3G zicUPae8l*H)g&O#o|oJNJh;Kv#k2J!7>vD&)q;bx66CeV82hdhS3|y`ouxh`v1gWo zf72(H?SFXBjhEAH9Fzn8$Ya+Ou8Xc@P(mhUD2#+!l5mV|TD-fC(xU4dnYnaH5g;KZ zYDV0@&nD%^J2YW(r+%qizW{FE`N5WKM%N3ia^uV2)fdlhUe#Hpx2%(E+^(cZ@as)G zz0!ctm;S^9bbJ#YQ5u}If9A!*X7OZJrzMDAxkC4;W38z>+SlGDpY{P3T+4`ZnR ze*A`1I^9@OAny^aCuYZS|6p)M6L)BJE>uqMz?r;K_J=KqvsvG*BdJO#MJYy%r8fLfT?$qod_*6*eo8;Cx|)$DwzT+ZJLvuqc#znXs=>_!qzFlOPMMVF z_ni(C+yTo&c7FU>;!Bu=s$BXwt z&k}kd>Tz^iVVTdna$=UR8=thyc%@n9rEMJi>_;p$1S*$@k||Y##WU!p50HG)h`h^u zGmOCuyuMp@chSn^qpmoxd3nY;)cWA^b|Ad0g^}pOgJn*~cHR4%ko$UmZq+{B3e(`? z*3kC5OWOj~?`gwjqiKW7?kV{avCGzX$rZK&^JTqLg_^UIdt#P@)fgk>H&yq!%j0GQ zRzw1`9rWE!T&})d=Sx*L-(%grsJ(RNb`0VBLR}rTSrZy?(qppZl@c&8c=h#Saz21E zl9vS6DmA=3{Q@Q4=ZT90(Fr-bK;2X3CvX zt{-$H^d(5CY%N#%GX%X2dUI)j3?{H;AQjmb(kszOQ+Py-GZr79Xb=KUV(sZ5kGIrH})b6i8LnZDq z*Vud^A~OfwuGMYSIWj>L^w^H{0_zLaQ+(EwwR3-#z?6##-3psLHWFiQGSHQiB_|pd zkKB=m%JcuKjj}#5yS!fO)O0#-U!c3II$UMF?U};BG?O4#^`5Yu z(Fv|a*7`@J z)7mknt6AiWuPBvX%9LgG1fztK^*jbRs{P%*`ti|ZtE|a}6LD*t$j&{2;vk>c$&Bx9 z7I|66zlD4Sy)PBXr!|?_s9#Oy|JWu^?RSzL%5PKS$Q_r0_zkAXMSat%<7zldMPVnK z`4H9S%o|HG*(K+<@3C)yB})ClK~*7;WMfE^Rd9-_9~)}x#i(Sr=Lyc_anjh4VjUOi zrbZJ_4?(;du&Z}>)MyLrb>116u4vUaTzs4;h7TC!`0MYo?I@wkuJ<*R6nR%Nj93)g z&cUi|b*mQ9bcUe5>93UGhtZM~*YRxCn37n#eJ67>CE#?80aqJvLT178sKSMUIELy% zzMhT!X`}yN5z*R>gohK&6!Dx|*C%=@=GAMG z{J|5!CgqGaJ~>>edEvBwAC<)a`xWV5on(3)~I09BHOgY zI(mrkCF@wtBKxiTdV+NIcP5wUn-lzTOkjTgbtP44ys!E!(?+tx^00U9sNAjH@&4pV znCYc)Z4`RY*-Ien`F=y9`EC&ZK$$#fFYoXf#E|lNX>(6>DrGCB$VuzZ2g;Z()O8;T zk^Fg5ql@Vr>`p6(qBbe1`9e&Rk*Kxc4HImwhEL7XDrGBd_R*9fQN2xJo-^0%BfWru zEw8p2!34XChUeM`uFQ*-D6h2R@HM{)NUXEjBTre2r%%;8D<}?tenyEe;ic5P)lg}H z#=*aMaP@~dtOwA-h9W-nsvsc>i>czn@k= z2hAUp=bc~gPMD?jHp$d)p5$!v#CG2+&jxXv^2v-4RYSsC;rj_2;aUMs1$+S-r&|YZ zQwmjDO~nM=aym4KFWi)Q0$o+2;>7Rfsfw_`!tp3Vv;p7YrxaP}B}AgX&Q^F2`WTj(+=Y zb}2NM|6@6^yHG5zD*HHiH$c4Gmc`6ee*k-w+nGUVNM=pB3$k5@fa1n?%Ko;Y@>C^q zKAW1Py%bi=MWgB;a3+4cA=D@o{7`re@faITX!@K*#g?pIm4yAQF@OB(J5N3jzlUE{ z8k1X5v~cGr3lGk?$3@w8h8A;+LQ4e0*74@I{cRG4Tvz4C57X}Emfqm z8Yj{Ru^!!>R)@UtbH`ynD3cwO2WWgPQ@#QHeKT~pzc6F_sCm#c;s^O&i?9?$S0nzD zde}th7uRGDmAwTFLhoD~s&%w7K6@~?v1NrBu9^9##LXEgt((1nitSb#+Nj4CcBqb) z`5HK8Cr}y8$un{o{ARUNYTsLWx;yVC_{_b(0-MCGfhI$fNcfky!~S3grlQ}dG#lQh zW-h-2TD5+uAg$~_tkCb(_QvhOPN9q?B5ITOYl_D7yMD&Hc zn0WZ?HAgl}SedOVcV6GD^`~3sX*>>6Pr9&TYj}*c&2KqK}`R`qMd+RbZ0$1|yAM~63iC)ka zGs7AZo@z@*qxJI3)VauF$` z&CkiZU8I!m{d8Dvd?ECo3fH@LW@Xge7f<*6%L6tejHYICLz9u;Yv_@p-28WE+9@bNxpa+c-) zeqLFxQ=h$!=!X1aCl5ZMHRf~kq1oR>?IVug&c?_`QvE9`03x=M$X2qF=^9D>76vc5!eTd72702n>k-LnA(Kf!jhPXNvso7v{*e}@ zkIu{oDmk?$B3b(=FwEq2e3+2h|Iz}G(E!SVwAeGn<}X4(NCMA(qmUDI5_jQ))?v~* z>gN*8y>Nk8B^_>icr(VolHtI_90s30{ri?~g5CusW4?+5d^%%mE z?p=s-gy`#7_`ct?ZEmqNBRcK@$xryCgMK1S^_@&;JaU;3wR-9?pre=`@C4?{8CkgFh#sIq$+J?kNPf(30!i@dvL zUmBi#%Q<+al00HcP_}v-{Gk=b}_IKUHaJGr4SYU-z4c%A6CX6GJZAeOvO8KnW!a4Xz%RrK*9&-o30va`xK8$E# zqsoOdLm5ZixbXZI#K=OtcE{fUNQg{UZE3D4EnRClw=&gR9mA-n zwW@kXG~o|XOBh(=Vbu+#4~7Pr?y4>M&L1ovUTQ&lI9ihX8Gn8ABQ4Ai(8%x2^8-Fp z`3tz(X!-yFB^glC-QC_F4C$`ftd(`4&lf?1wh7)KlS1POL@YCBqb0wBnBrEbDuLly zcTBj-!M~oRCHvYREu8UsN7(MzRd1O#B_Q!-Ks;uDX_LeU#cm?HlZ2b_xMvzLrU~$H zn+zYTx_EnYHM!8epMC;y_UBzCg^Uxy2!{*;t^Y;lKF|3;kVu#{c_kE=tltq2{;>(MO_EjOAq`zjqd&ZY3A*FMHkez+irv?#a{T zY^pMXBhp!jQ+R{*1J9}NJv9?#X{NieKLqCrboklb-93~!Cao|8J)fD-#U0LcJ%4K&ykvjX1Gb<# z56%!l2(i`$95PBz+e&xYp1pXPpH^7zR`y|JW4k$DitqoUI! zJzePDbeR@3NG_@HYv7hAU1ZtSdRdbe-INm_U7|s&Pf9;iX73Mv^B?~>`LcSX)6sZx zJHhVqW`ym{?Ew0;LUA=#M<)p^G1dsL&~V8m@lOzZiCX@f7c`W z@edkG68sAZ_lz_CrImiE2M*wuX5BARlPN#{55nF%s);TP_f=7%fFL4L1fn7!ARt9r zsDjdKC@Nh*Kza);G*NmLFbD*cDm8!<=^!N(=_L?)4K4H*>YaS&+=rzWJvJ-_BqQV4If+A)*&-?G#lt$-i@2cM60t>XAQJf?px~fiptU zB#7E6Hj{Sf*ipn(0RAyI)odraYly-O_@EIm;w;8z=<^^VJ*nLvngdg7QrUQ#Fbe7U z^HE60WMCy?ihp_i>pM1OHDNLm?9(a(3WmG42MHEA$4h>#isj9p^ry71qUo7`+)i?1 zq%lyu#rcO5d^QwWTOQ+5K)2$$0r?4nfZtDW` z7)jXF_3!DpR^AuA_Hir$_DuBEMjc{Y4WU4B2Zy^ZH9HhI9C2ln{OzQYFmZW&x0WY2 zf*FA|TZ}OOO6#A-C`ulbSC$EPEpcVI{~_BgQJU^(+%Zv1-w}Gyxzpl{%X7SoG=Erv zD32p`T0Gi&X#+Z=#e5l?_I`~Weyh@vXwkVeLQo}8Z$GARby*Z=O-<#MqOJ9THuwDu zI%){(sIKJDy%_U(_s5d@N+X%q;QSRKH}x#(82n~Zt5vUpI=e)aNp~;A?;>?wCt3SD zwLK~(J@FQJAf5BTRacMqo1OO*5|yf&J9sRaOV@qa_84;u6U2F5hijoy&^MoDsr8D5 z?C9lFrBPkDMqK}D)AetTo{-87jbmx7H`0cC`sSQG;Uoa-rDOL!RNih@%B+Mt5G!^b zzNSEDg?XiNC;Ln}Js!bfUc%0I2Dq7h$KRjtAT{WDFSMC|r(cz4oLOR9{=>oeG=hp04wK@NqX!Pu-tdR<@F45aY(fu04iv#p7ng* zK|Ol$juku*+RULn_2ahLEoOJ^X=gECk#Ayh8>`iaE#YENA@R>{D`>F)nR0PPJe&Et zdzdA~IgAj0b~ji2hKZ6w<(Mo32`VQ{U1Gjz0?qOC=NwIdX`q8`_L1RWYB< z#bb+NjeMvE5`@nmRJr6sfj_cOz z$gKuj{HJ@q@BJ$}L7~d=A45_NJ;(EeR7`OKg}chDT>iY9zh_+cM=c-erZY*`Y=PTU zIn;Y&g1&1`pR^YHY7v+6fxtL`4-D&vmUz-dr} z)ZU_(r18a14c{rS+l0n6z00`-4G4?8u7m;k0 zQ*Mp^K)y+Vvsuu;0|hH=A#awRlw-sJ$9IMxM=mvD(h2IlN)zWyK}vee{LF$Z7bLkN zJ8695sJgyharR)l?7X47JKVaXK#2D=a%tg1kS9gTgjX&zs-7}$fg_g0I`Hb!E|<@3 z+Q7TlKd8xT|8Q(ZXt(Ptx6m$cHw{;vGugJTdZK2lJ~vWL6rQYfwSdW zlzO*3)jmt7OJo`{1V1vr2NFx@<`q6(iorC%IqnvaOfV#wI^jZV%Ako;akE$YRAoLD zRgu_y&V*deYNqEWG{60beU(+`&>viKozA@p805z06s5U1#_BuLt%aUL3@+)%K~nZjLbO%KI9;DAwl0ZIC0yx6(svEnX7uW7L~Nl$`7y)$;0s9Dk1)n=f@9ym4blddS*A=Diy9I^8;(MXoYUNN!GI!kvst zYx-nnu&uLKlkJEd-EH+;w8a(B}kpg=e9Xp<|ak43H;v`E4 z59~6*mDsHdq2*gSN`iWnjyq<=i9=*V|grcE(t)Kn{Rjg(!ZZ|qhV!D z%Gr&n<9V4b|AChgLtKfsa;Z^YbWQ5DZImtByN@dM zAvvUei<~>I^@YO~79H!G_Oz!A10C66m5KT#eSkNly43*ZQRgqzX;3LDd9V*%+5uEa zZuBb5Mg^|0{xQ+br)rRqliZH6QE`j^!n>{Ga~J1yFD)Dq%Q>K(YRfIj!Q1wTn8tcO ze3{!7i3%$&?i-3H)O_hOAh{Id%EKDP{I3 z_x&C8a$T9aPv956;HH8Jubq_eddg$SvsM6wTans!o9EJ;pH!^)ClNg|P7^nS|lCj0# z8{CK`>tow}BKbNu)o(3XKxxaYW7G#b`2r#V*J5udrejvae~sB+?&xLOXzH>YBXIp( zCqOZBzGivT%J)y!;^)y@rKh}X5I?H7K?j`GF$8ZQ$$26L=JQma%|dAb6M=uu0BB{T7)V_`dy zF*YXAlMJ2@jq8fuxhp_xb6Am>%hUY723IC!_JRuT1y;#SkUeUUt9N{c7|iDF#7Qgk zmSmEdyY-wZEUiZ{C`2|9dzHI&2Y zxR+>I1D8g1>HrA&>uKS??UM|U$m={zY~r`8(ObeUSPHi{Y$rfr@UO)Q7W0HL{^Y;1 zb-%fK7Te>?uC8+edbiAcM=LG|C_7ZTyF)Aj_!^rS%I|ZmeG`6kC3YS z-gFndsk3jk(l=(tQ%}wOeuFH!5K9Z;Na+;Be{z3k_}f6)&6?cg-rs5+$;8+E2ixW9 z9{Cd0ayQuPV92sp+kYwhb?D0u@+5ZBw!#1xY|1K(-(F?+Yi?)NCqZ#as#Hhrd(_~hHQ98)2gQBe7r{bZv7F-Xzo z_e9l@=^<+C?+Ro+s@&Z2Q@NZhd04scrdnVsO7pQ`9C(1#Al)K#^;mMGPi3J>iFJap8lsi zPO<-$A5&jGpX>yv|j)-JlOwWRu z$_?44pMI0*{*rpG2ITf>O!jDftB?a#27~wWB~E-ACVA{)%`WK4e+#M~C=y1X=ke9{ z&qsiyzVFGbNxR;8*!YsC@#*MobLOcS-}eravt^4BA+G#CrbHdMqdCUvJ4^3*kJO-I zpcC95{@wBL*EWHZwG)o7NWFb4K&t)r#k3FgSV(@=rwX2*wDUPgcPoK%fVCx;Ote$y zm%_@r4>6`h8y5)m08V^TDX{g_7j%YBvO~p9LV&8v)OEWV;8w{H7y&Xhf7r0PX^kJRagV3H$*MpMJnfx|rI z{BQyl&x!q*8w|_Hv+jjHnp#wO_?Wh+q1*qF@8Jr-1f49e{Vt9zG9Lsi+HXx&Y)HC9pEvt$@|Zn?L3hTU z)%d~_*6hJOrG0f8FOOm*b~}~>NGR!3eBH!5*VuTS!)^;Rq=bM2(%$m6@3kR$ootFp+*GiaSzwUw1pV#sEL0w2L zkGM<8)uX$Wv3@te)MBG!Va~LogP4p6yu3MX!OS0f>u?!BlNsD)$C%xXJa`e``g+uza(^hQ-;#Ix_EsR761qi4Uks%QhlWnP&|Uc={G z?>Sx`I;z#qkClgni(H=dUDio88y|CvP*>Bv)G9Efe){^M2=!Z4rw^}51@YrhwbN0R zp@xzEaz~>`W4GkDZav1-zi#SW=elMPa0PZw>G4NSU%Pgp5rCEy|Nc2Vqz);v@puV4 znh^Y#LcIHAY|iu;<8|zoh!7FsQ~MV_H=`nbH0hdhNb+Zj2OHJ7fNaR?AfPa{4+6!h zt7|8!MvEV7Qja~kPM<_%oY+khdOd{k>q2U$%2Qdo?P~9BCpt&NI_w=kbv5zInC7a< zSE6Oz$ayxfjwZE+xBXyOhbzebYw(Z9{f}p94C=lQHTX>$0!n~&SY7E*^pqPQtGOI8 zYjYhmS<^=3kJ-~)+xTQ}661iS5_D%ON5zZasbNzSjvL?3RurVMlK`sjturFU(3tHP z9c>`b>mTa!4*atfe~5j0^sqmTXSDv?4w2#K{$*$WLlI3}twMvXS|!z0QhJIjV|2p8tA@J{)4p=^S6i_bXju%T@->kqr zg!vBDq#U5XvG%9&*ZpKpN?m+IM^)G3wA;ynxlKcKUe*^O{kZZ&j z#+v+7K~xq6GISC$ zQ9oMqUsM0b(*y6|f3*Dn_Gd}<&Ec>Po-eic_5QC`{=Z!Zj4}xIFPb=d^Ox9Z|KHbfUGw3%=Kk1a%kJpi`v2c$z)hOIJ=WxSTy<~r-JAbs zEB@CT0`6kEB@c|cO(fpf*64rNCT-%7`1aR`{Qn$Z|6fnBfh6`*{qHH;BJTf9n+(E< zov;1J*6jbk?X-dQG{k=LsPrjv|KGJqh1mH9WF9<)|GO9J@wf!7Di3Jh{OyVAHsRCF zT1Vn0=V)Myzb93BJHY;F5{#q&@IOg2)7h$q|Hod)R^2k7FmrY7coZU}|K~4lGO(XH z?znI@OM(N561EKA(zmO)Yg$>x|$ zLMdtr-RSzJlaYI8gVCSpPEdLH{rwJr8Zi1@Svh*{X4JpekmP-Kanv|dVLzgObYge( z@FDZl152XZPi;3)m*uAVNcB{ZcTuOq>mOamyG5r!O*pC=;2xv|QHuYn-mv7Gh>G~e zm#tm+-*n-*hHo-OhrpWtz)~hAgQ@>vfqJ-wivPqNfA`eq%ni62)xK2H+_2TJ8BDCH z^gkI&ZxE#e1h+mIUf1v4Zu@b37XYLzhR0Z)?GME@A}k7ny|rK&s`g`$@(Ko+?mmU_ z@%)u5VH)uF2oS?5z)2cNe1q?}J}bh>Dc}b9-rYwBQkr0JEospyAgJ} zzXwROZP9)7^*b5)&3>2y9A?4q9&T>^A@}6J@lQi~*ugyAdT0WI1cW49<2#F_;@l9Ab9^CEq{(+WE`Y zaDfr&Tz639SZ_}g2l*0Xp|Uxcg6B=rMIRGOp(93jiHk_ElA`!@pWor{h;Ps^o}eZ` z240aEv=3kf92qiL^CW=EOM}Fy$ZZc`^!P<7wKe<)K2up&cd20Y4YltPbPUSIca094 z{z*vKxQ*k|;Ll1=rmqJih9bX2dfSLUk+_K;t=v5sU7reTG8FqJr7@7MjhsO8Xxdgh z0FZyRF%=KitH<3>04ZK2jL3)?!F2Wc0)&(D@mCr-(u=mL>~92#tJFkr6N?~qo{@8* zpV{*&*5{s6x8QaPQ&k23dQwC81DjdFgpL=mX(H5btT=zv1$4&=XU@&>q(r1)&F^sB z3WX%<42cR*kf^bNidg4JG{xV_)my?t#dhL*tmKNF(;bDcI)nG2XC+CZLV;Tpe~>_x zp~+^0mDH3~4s6;NxF?+}9wtu6BANLsKza4Wd5X2GcHh0Mz$Ege7@U zzi+`5zFA%A23LAv3C!k_@tYgeG;sj|af^-+>}W1MhNjaq`YAO}UA;ORdrsoyDP zleF%8huE$##isb*-Mk%~P^B6!ap`vsx-ddfP|NUO^JWkauX~=#ix9Bi9~P^H!@7u^ zsVI!EVZaHWvrNg*X9Uqhvmi#GKlpQ~d*K5-cJrQHv1c2%FrsdeP5&%D`gB+ygxWg; z2#QA8I}zI7=j6ad;a5r@pb$}m5Qd2%E%P`LYE@A7U+7xWLb*5p+NcU*pM02j$%_X8 zaJXf5K>1Sx-`+UZ)bGlUE{_R;c^HO(#IKBQC$xNm#|gU;Rj(dPj|3H%-4o)s_OI6& zoDNsCECKO_Itas-yqzhDD#^UnxWWuxWjNVZ276gV#r!GnRn-Ss{M10aA{YDUK?k$% ztZ$%d^7H}BYBg*(fpdPuzeP_wpXM225WNgwL_GFVaT2*UeO0zt%wJ6BE0Z}uG2xp6 zFnqFYkc-QJW`s^q+zLg8jAB8}g%Bn!Pl|56x zdN+gOXjQ>v+(D&vD;BP>ak7!H7;*B$V1*5~1n7QXdjM|D25A%quaV^Np9v{^%(BvY z)OdLwy_g7)aA<8jLpUt%Oyv1dou~v$jYrfCQgt^pQSHuGI#QU(opAbL!#b9UWy87p z4k57>*825^7C}^7S=aD0EENN*RHE~)#j=!ihXRg}6Om9q> z*E;$UB^GMtjPWg7P!z6iIRF4-z1)+&jL+&+#t?P5o8M6nPd<(T`uVns(W`H2fo;1X<0sXh@}RN`;>T_G znTaUdUU~umJ*|&k5))W}H=lx}kDC{(qk(|jXcUX8E8-S8S^#vhYTqu28GR#&G{9)w z7zAcD-zscQYVi@(+oheB6q_R=-Lk+c8g$eMgw%GXa!Y#y!LWHNJTYk$ds&02ci?a> zZ`6Y$g?9ltb)ydn{^tWCno%DxD*N-A#l*k_K$Ng4ncDty zT5L0#v66jMt1-^EWc#_Ew1h?-Dag1&ty4xFHp#L-&e_$~Nmn^fWRfz9zh;Kk+8Thk z3o!pF=4UT+MC$W0-8V|nu)Y%AzZzhxpABX8-pe~grj`TFq&08fL;3Iro9`#S=nQL+ z3%79_)o~-RB{S=muW+K!#p&~)vz@DT{#q;m9mJxLyNdZ{p`D&x0U+m=d&|7^OcMS% zFL2l8#3{mH@;x5Vez<+L2(zDZXl$O?1Y(YzVDAC&FMDiT((S%dX7OTnzW~d8O8bX? zJ5fE0&dUA|FWmGpPcyu8-q;*BMSj|Vc)k{6SL=mk(xjgZ=Z`Y4MV5CqwnjMqI3Uh}_EG1k*-ruv(@$EXu4rKzq?lAzRz_mPYJg;U!LtJIrCm)}t@iS`H)>VWm09yy&`Ebd zht`iw(_J-B?miBwov`BgPPH0NW`6vmn&%LO4|T5F0@@h2HPr;lFM_?I<|CVN(d@Su ze^o%XMmIgtkYW|oRXUm(e*ZNQ^}vvZUZKRsE#m}RJ`Q8Sz(EC-zIMODkjmz_x($XK zLHwQ>Ly~}42(%X#BUNV@Z0@_Tm52Y*U>l3fPhrQIi(MF~m+gK3&01!aS2i!XC_uU| zoDvo9j`nX;W^mhIT4pc zfEQ_x!n%lYYJmcqczG8SuW$r9?>unqD^o3BzEyZ)u#()kTGbXWdXZtBbqP^Ms&h$B)utAFSS6(xz+Ykt2BawsL!VKaG{!Cf;aYwn>W>a+0)YT&$H*Yiy%W+ysELIzO_Jc^wqkGKr}j-P0AGPpv9hh z(qazp)~+Si{j-VwYp!oi>u6Y7es^N=xrWO>0rhoeKuY}Efp?$0>8`v**PW8}ut2%m zwkm@ur#Wxn(ADrVXDYnWVg3`XvEBj}$SN^wHmv_+X3!V+`0Mgl4c!`@@EgkvlwgZf zy8HmV3v6LF^B*aZG{I44c;SO$N-?QAs8v(%b>&lKG!_RyhTUt&;jx_$4?l?1j)ymz zM~mf5WRu+AW^Z`v-v#o9@6uk(090J}+RZVu<>Qx_+f^8~BfnVx2N|tVY9w@8uM2>JrLw? zA>W*?<*{2Tm{7Bt`Fzn*rfKs!?D(tz6)+&zgmPLC ztG!AKcZr-b?%=f#jPJtSebq{YK5TT2r}5T<`D?T!bnLlJ>CCigebT9SyPq(7UjpehZ#-Z$W~3nJRjqNVsejS2 zE|CqJ{B;3+U!i4J+riyeiXTQ!Z4?KY_sTODq|Yme_J0^-*xo$^Z#hnY<%t{gbyIqaVe4&t# z(=J^?cpF*=$sK3o$YICit3k0T_ff!K5N?J#dNcL@WfR>_oXrXOqS%sjg#Q}-MC{1| zYb;$OdxfdWOs^{}+sA)p;kq?2DLVx3F@Y`23wiWrsO`TX5Xv<87nbu@86m^c2YUUi zfLVol@V3@lnM4X`r5)c=d(AeJSZ1RF>D!z7#_t`gw8x>$$l{};m6s-=gf_ul%|TGX zGYp@nd1RE`eB<^%j`8uh$bUnPa|* zNvD3*I(C^Ew6rfYqNc3=a~))zIB)!3Bf}T!69jVQF~!imzhJ|gn^Yf+rv)}`gmnNw zcPlwH-!C^vxIu}si0esVjr7l_vCg=H9*2jMw<7-b6kKtWBC9LQYrai*UPD$KxqVOn z^n1V^6h-eXF{yG$=)SR(*DspjNUNt{Bv)W3-2iSxR9v2l-q0ib*Se+?4(ogbpXQ8b ze<60wL}KAUj7rKTZa!BM?X1gT_WELMRXvUY&D5YSeePzJS9{ot@fdVaq<2X5*nzpO zv?ISv&uyRaIC^#0Oip|CUo^Z_d5N9!I478n?Z|9m_wq&u4sS`Zr#h)iY^NLs@-2#g z!`ryy=?T5Gk_!5ZS=J>etLm}!Kne7Z%-ge2nxV04JL+Ci-*e7PU$I=I>U&tPoaKBL z!@m;y8p2N_*o)X*ax3af%ijMS#$%SroH_PFtSeae&xRJSNVcrOR=<=s zF{)?R2+QQ-UK$IvzkT6z?n;F2epBr?$3C@*U1@7ilS>;t8lado|2(NNJU{%^c@ULb zuk#^u^E7GR1w@x>v)V3KxaZixk>I__-BhsY!>~zHO{K`#2ll!FS{=OSFWU7~faTy% zYq2MCz5-*;MalLDfu*T(+-AVNdtX2A*w>il8@V(*izcMX5-dhe00=MVtk0!fay1v^1-dwz?tv`=j6(=*PRei0DFvB6-yeCKy9KX? zi?eLre9Bj_^_RZ_GSGc=%V$ZWt>Yo807%uZlAiJ3rX)Mo-h4xGE_$8xPO=4^Jv)Q* z{xJ#pCyeC#V)*7AEorsKo<31a)XCBMNO z=9@I(Ia{SW2jMnu{K>8OP_o(A2K-K@Re~6){(ad57^rXHQDRECNQ8og)yGR7G3N

)+uNCy&2m`_5@kX{R*%Y`VX( zyBFj%xXl5XvtN(s&CfgnfVkOO1P9kCy@E!4?=~@ir9NnBR|X~2uJqWMh4oyA5#>L* zlXo_M3p;>#61DR8xA{-_qz1l&l~3SjL)%1=&S5G-$6w>SZ}T4C2&i@|zJ)$*GQ@4V zK1%!CqgX1M#~yc>V1*5B`Si2B-S{$3>LL73!z*LvkmG;rch1dF(gJsVfrxD0vVC1l z^k3VQdj~;zoCZCCE=xmgVfXlKz^7e>eTPiMBD8j0NmM0y8fn}`sx3SFcyP3t#WgA% z3rSNt#K7UE>`8I>{ousqXyV{TNBjsqS+oNp|ek3b|-3c(nV1c&< zm#dPN40bt?ob$)6Sotod(&ZL(Ld8kcYEE2@3ijNs{;rQ=0QM_CGbJkBRgVre>vKNU zQC*7U671D?xH~ko?+)N2F}%{fe0__Pt}SruPph)jwki{oG@NVnetSw_L)i@T-6HLc_e1aK zxCMc43SH?F#{IDps%-{@Iu>4(dfz&S!K-nW$y` zBIiY(S3jPKcoPx%PW1z*f_>B1OpiRBSHaco>HJC~V$s>bKlZB@E)ggYPVk!rEBl?o zZ!JnzD1y7A8ru}oRk@?q4YLIGayoOb`jv0xRYe+ZHJNdmc;-9sAAh6VH+yvszp58c zJ6*YkP%4-`zmMw9`Lt5ggIwUt?&_DU@G>z+6dI}9w2Vh@rCQM05M$VZ-`pW zJUw^%0(&w`1fTWn<-a(|+{Cr5`pMyn-CBI)YQl$K#$7mw_bD7~(zbDgUzkMF_$S#fRG z!k9*BOqa=m4$Iy_XUucuxy_)E;Q}4w=v0-G!GiMW z5RE%e)AtgSpFc+Kp�-{&?2=*Fr(hWJ0aE-y$K*wUrU3SMR(t0 z!By&WPN(&)&+R7vwyK7CP-K~3tf`Q-3`;J3QLsxTt;O`swnZQ2jHwOrD6su%484N~RpA;rX<-L@%C7#}T20i~n!L9oG*}P^pW& z8cNSCPR!NFNn{_*mCu=zh1d+pNpmSIJ^x-5#*Trk;x#35`o8BI?1QlI0Ewe<3WW1W z-^9SFUPaiEh?umnr7P}Og$qJkz?0MUDjcmSo!GvdMlTY5JwK}7dM`}Pa=sI^(=^s}3p37Ntk4;MW9 z<68UCh{14a3`kO?Z9@V&@$~hk6XS8xEl9naH0FY{W-^l!-mw6v|8U{K)|?--ZyIGv zOvxR6zt__#c{IT0_I37;>YTHKkJh11U8kI8Lu#?tsn@xoKW~QHz@-jj`Ua^1yVc2a zwkURSFSVEWpGh&JC88})e&3Hw^+)L|OQ+5ZA28u;6*1Wc!`Y77e6P@;q>c~ZU2s`nM>Ubn=jSq+%)fx|Md1DY(94wTh^0=;y4jK34Y;V1VNEC@k1yt z*d)V$IGP>()z+fiF@TJ!BPe<=3n;yKRP}P?rsN<@&N^H*~`KYBftdN8*QQ)mr=POPM3M z`KQyelqGWVkkXnPeP6eF(n3|oUmr&adlWZ5q0n~D?=i2@N$xQJ*Rlo38^a9Gp-W=E z81PX{f=1c0*I9B^)v(C(KnaCIZTJ1M;9~S5IKI7myf;koSQFCkSke@E_A&4QWF`L8 z6)w}|@-}o=XN@W*POFPOvVxl~yZ16Zf+PVwFNIDMoi6qvBp3M$B=}PtLJ!O&K?fN1 z*MLCwZqRhqLM!t#v3!SzNddFZ>gcnQHk+zrPtG6B-M3d0ny23r&zB0#98vYx4Uvty zX8?A;gJc4GZ}P`;4DZK_JRarm8=Lu#Gv|?ErJbkkic{bNuyEs}0uUOL(jMrlwvDz#dtDdqJbGQe_@WCDuZsa!;ks~3uhNcrrsL!`CYZ)) zihc?};i7!Lgxqg)4Sjlz$!f^64W;(U<2Qp|mn%1#FVY{l0x-e_Wv)xub@U%rx&O3x{~| zW=$*IzE$P97ZY4U^NO3`tvkwWm?|rYQ++_iDK-0jk9v;VW2FSu%5QBph=ynw`zYU_ zAn>D^h6X;&3f?<=F>aljh~eK;?_USLvk_dlk8o)|oB0brGxcMy{)8rT3Ch8>+LMIl z+ssi=p<-a5i7aJHbl#+ISCY(jt===r|J$;o&oVF7kWd^WovpPI-%%}Fx%DQt0Z_6m z)81U%1KeY+al>tH{rA*Wx1THh2;;GMbnuhK`UjLE_~$v`0cH7W!da=)`k6^1u9D6z zXST>iGQFyzyPz9^;p@t@&KXR#!bL8*#h+QFI=>ECEk(0T)H8C3ZP=2-#P=qbFzZWa z5$K;|-AHfEYIDTbtLSUfaN23Y;QT#z8s=Q&5RLVAI9)B@k3N2u>m!{L)jm!;(!EeN zNeF!58l_UK7f)<64f%W5APeDLp;qptXeAng>-fE#wAW|*ovK`F;k>@Ap0eD2Rk1kS{I2_+_C!tm8R>{gyn?FY+CQsBTK_K(kvljojpdct^M8vcq)7=zk4UHXdKTaC`r1=@pQ=Z=AWp*&lhE}nj<4Nx`W-Rg@|8H$icv(z3O z1@N`T&wLX4RsH_bUpv=t1beFlxb3>uH{>-;Oo&-N;AH)8-|h9NyT8nvZa$dhxeu56 z=HkTyy?m7BLeCAx#~Hxo*@Y^fAlYLRJ@Pkh&&?)f{g0*3<}~iTpJ8zB9G0VavLVJM zQ?c9M$4^?H-Yzprcgi{fIIdXMJd^iz0Xv0DZ=5M4Cjg%{I#PfDFQ9l&^7DT&9`uk$ zUwR7MwdJm8M#XHl1bek_TW7`k-1hNZ*1x>T^v|!~B=37mJra2AvhVdRIn<&oO5%)= zpGBVMkt+9>r{VcSsg9rq)PB5r!8sS0<-6i;>^w=XTCKHHml93TgV)UaYsjmpVg(!p zqty3x&=rM~6Fg2d(1%IYnT1`#o0*}Xy3T=9Znid82b8G7WCLjwc*x}u{y&$+Sl(bM zLR`@N?lR%L-vrA?sTfG54Exie1YQmSX#lw@@RS5W{D=>CR~ zQSL7g%B4-F)*2Dj)%NI-q~%W$E%cAMAYb+;w1%W;^>18TsfVB1@73w%;PxtEfb5%b zXfscUA{ws143-XS=16Wv3f7!GLk`>i6RrHny%ARB%*nF71S1pc|Iy^NoVG~KGHfCW zI=Q-NH5vl_pvKOE0N5sL@Xx=3qPoIKbpekW=q__N%-6ImP__bu zHI|~V50f+gXyEa6=7;#nr#uT?$EetLj+Xs10Gp?EsB4%n$9+wbPGv_lSK5g|Mp#mw z!5J8!{9Z`9MQL^V-3bn@)Eoq|Mtv2kN;j0yRX!Bu`*o4cG6r$@Ma8|_BVj=LY-6PG z#O43=0cF61aePVa;;xYEqe?F>Bd(|kMX7MQpd;7m zt;jt8e2Lt2AX2oZYj@wJl|bFsQd}_a)*e@>NJNOZNwQxi2^p*J`)Wrxc9h>YYx*lf z5^2NA$LHQtNqiwtq-CxuFiMrOMzrjeClT2 z*-y`>mv;{P)AOn1Bt~!$5K-7d|3EK~A#0b6)T(XZYUfSDde5d4zihLD`HIlk`A@3$ zr(hBjiks~tUxtw-kLF-WzM3x?#H+MzCU4D&LFh7fRCi<<(-*Uh3v+f~I9-TVwcM75 zMBXeN(v<3rT}*W7{de!a^I$n^EP;+gXFR-zk_D!6GW!4vW%^?MoRA@cvv@B0GdfO~ zMlpFY;i{HzD7q`syja${@FYoypQ;hq*n6Y8Q-)+5>ZMW(LZB_a@1-Pu;yTJ83c!-< zf%S!RPTlcWR$#Kcja)o$TxqQE#3gXi7QSBJ>d`eteqBf(hAm z@G6FYOK)uNb*Pd}Hr$rzcuFqYaXsEP)%TaM_P>XBr*X57>Czg&FF0)1fVVze+qDEm51Hl@6!g`|7`%&-oZp^sZ z8qM>?W=es)*pEK=>(45RAU%#hm<_8wBc~bXsv8^fah!%K?x6y~e}TYYmFjH7(Cw?# zJqB65NvVLiZg1u2JU(F=&%1kMhk%f4XrNUAX7YHD=`VM-2ET?Xlxrxicq4L+RBx6= z?wMmTUtNMjGv5M(=LfCy8}CNGjBz;E*&|XzuXAs4&)t%?jcmN3t?F_|f#_j?e$-V%N6Qx7=y@G4@7Jloa32=_8wzVl_Z{0&smaNUfibc`EJJVwa+1J~R`{43fXKGh)AU8$ zAk1G+8}y#^xS#6@RYk8A;M6&chopwXX5Cf9$mr+B<`lelL=LixEM(^QhPR#yN{OoO zya+xj{uJi#yPH{4Q}^nwYC`VXovpS*8Wu5*c4U33p{;%}mD^+g3j@p7(=Ls!bz*8T zTf*jVsdpVU*9dOvHoR0v=02GaakMs}eLK%ZWg_B?mns>4cdFqHAyotO0)dk9(qZtm zIeuK@)Y*11N9o2r|Ghi+v@Tj%vp&^-N0gn#Hh12^8O_@jg6LkCn)iAd?Kb8mnhO)1`Y}H-ip#wAM&VTgj#=3yg+z47KqNJ zwj|!@FMXs=pKC2(gVNvq$z7;z1GsFnKsp`oNHx6KpqcmHjKAIRTd|K8u@bvW*`~7d z1`B>(Ezs_miAQ(vA20_YEIMr{&2;l!fo=cnctB`7?cJpQ$$vS^zd5HF$mcQ6lV6sE zxt4xM?U;Y5-Uuq;JU}E!(;~WVEL=hAGV+Ht*0Y$eNw-2N&3Db>%?WukOg*odB@#M} zi;GenW)70hfS905k>|0(Gi`_h`a~~Jz@2aNb*uVX!K8BLpJC9G%UG0ba^A&u(g^}f zd))a&Of+=)-lWQglKPR(g{DM;f28lzk&s8zYkPPF(^2^+BhF!ef)__E0h1M+*3Mg6lYjod{<&W)sf0wbULUtR&{cPhT@sTGne87}`FHO#(`hK6 zv&!?U-f!l@?ti?3KZdAT++z3~y>)Y6XhU?VIz4->4~n_4wA)eq7d^d)UAT7^spat) zTJA>mJ(Rmw{Q=Tc-gNQh6#UP0To7=xrzxB)b0+%YyJsWEn*(9{)}VsB{4`Z z9F~vWrXQr*K}M9m$h)}0R054NLGxPW>fEojgqDxjN5UUj4ZpAyOtKaSOi)J;Uj2;^ zyR%UV8W-(?LQY+cey?&XaDBxC=rou9(`kyA?tIrPf*>*{+C&fY{0x5jM= ztwJWq;W=xXtwKjWN-Qd;Bq!Z}pwtY_m70#s?gDzzdE72(UoGwCzFVbL9}?LdF6k!u zuG_#$xu_ePeoeTcDFesChbKp@-A7YM9^`4LVei!w=HafA!ybYSu`_?=wYWMimB%Nw z{W*0hkCr=b9H)BDhdtPqRsXJup*Ap%;rFX!k3O4xi38VvWrq115&B=Wt8h--cHD62 z`I1+bd*S>sy>M6LH&qVB{kJX==S)c12ko;Bx?LRMtFDb-Zri{3K<$)I^~>cHemnd7 zJeAM+DY5wBahi)WCuIh3#L7FAml{i|zQ41u^I<}PufTZA>*fYYcTqDvGu9rj1~FY5 ztcw5K<6i8F%wc{ejK@f)=*6XwP)U@C&4;oQi`7wx50EB%?Az_-yNEyXLu4MV0H~#S zu!{R>&kZ`m{sBN(m8o}h^f{uk1@Gy|VJ&_^1yEm>i7+Y)BpkmkskUC?X4CAXD#f7+ z(c}$uxrJY}8rqav#V!C+Dbx9C8{|~ZRL)E}v&T?_!+3=(!gEpDdT@F>`Qz5;icrx{ zTWd%fADbZS_{290{G!~DdMhmHAyC8MK4a7DPAf$P*(gaYY_hG5`1zA}g|)ApbR}bG zEWr0@sw&>d!l{E&rjdEfgYc*QK9k?^oT0$s@eb^l*QMMXeDQb0f&K~QN1rF*2iMMOG=9uN^J z>29S%hOQx{LplbAk{E{?I*0nLdG_Al^Zd>}=j{K+m#lTKb+2n(cdYCE`Ml@-GwD*i z*8m~_ANuEtc}U=ge+PL+*v+Z7d?(K=KNV04>PnDcP46FyyPUynszWJj?!i;d2)a!d zt^f2?jU_ub0X3Yc`1J%tQ_i*{eL~|rksn8A%f=xU1G9`phe{hofe6vgSCKNU;va5z8j-^v7VCit47 zEeROmrvnqEzK0PbZfJFvw!3V$rtpgj$k-P7+E%S7eTo~Z*!`0^p8qG>!jPUD{4bUM zPmH3K{wt2m2%zPy7`$hBMq@cfe=;Nf!KB0*iFggCll`$(!|=fRFY~qvYq^c}E>mL(1?O0WjtGTNh3H2X9sB@c}F=T*axUUp9ci_-B%x5x4fUL!oS=$_c;1hRE;ky=-x0h zr!C6dM3H835R=%LV@=FIf1p#LWgkz?sJ8q+UEsgq7;oMiv20Aj-?SJs7l$v?y>>A3 zGdWi}E}&;4zU6giri2XTi{F-tjW8buF3+~F{6cDe7xn$3_-GjRFZ}6$I(u0=Ns<^z zefx&S^nYS#G;g{+#^FBr0*aP}{|RH6c>n+}4J9%*(Er2`i9WzlGLd8E^UGHB!*8g<#e_><-IEKjHW<)>pfBTbv@>Z=xe}PG@vW49L zR}A2K+l?02QMJ|YOThnUNCUJJK8}lWH_g^e_)i_xK#1$88U3os{QuPZcsSfhv`mdt z=|6SU+?Un_73oVHMs#_OmT*6zb8Njn;CqItohdWS0r_2Qn4|)ROSJ>dXInFme0F|@ z4bR#$jmw$Ujw>7%?uy-vI>tHR&_$C@Kfb~#X5UVA{_T%X#J`Nv5`A$8k#n=X2{ z0@0h;Es&+lglPT&58ey4X2+Wgh$+Z>F!p9$VHK7TfU>?WYn%(aUv1jkr@c)J!; zn~N1WMs*$44t~hA_kd&I^Wm4rZf3&yhUa(Qx`7$+_ zXV?t17+N^JsnB;iPFr8#DHqs))EHoqe%z+RY1HdjF3kei5n?qX9Z-QPK5IB!vN1VB z-V4HU4;w{mx;Rs+`G<5G zepknSX9Vz*!v4=Q-_??BvIy@y^HgR7*8xCC<>VHHzKwgFYs-+t)j7|+$`#NzHUo&J zElBa@5SzOzv{%X4InwB{qj%h%6x_1_G0Sr293Y=&pWO{f1F)yer;N2IPh(u^ zv#VW5^B}ao{GvohpG>(HK2f3#{UWgdxa%&=E%`YJ=CPob<-S=Nh#RvnR`W*AoZ)~m zsKQ1i@TUJZznLRA^^pbpw047|#deUYN&v}!$M#G*M^w;T3cZatz546>Go*O%*ktpc zI%O^g=J=`RnU^Hg<@2)gA4a}>OdE{(S>Hc7bp*LE$cn8j+Jq#o?u7%+NcLryZIsQ9 z)uM+uIKf>d^>T$xVp^+C^OVB@(Dep+zvTNA>xsjrFgQ~@8hF?b$4Cj7-$6D*JY|)N z@Em=v54G?VOO1VMQI!tmMnfh*Ny)j@Y~m{T=>vLk-Y@a0(A_YTw1L|G;1e#?m7R{D8A!S zdV+E;zPYt{q#7`2WA9BRbshQJ_9eGdFM%7rb`8(=T4#|=DR!IR*+~C7GvAi_kGs}Z zOjM_WD|3(Z=Jrh)Y?)>M1=!tgNRe0f!8tQw3>L7Huus{2U_Fc*Y& zu!MB=nDlaNV?>X@)juAyY2p;z4u&+=YuvzEf%cQdN%2l&m7ZX-z<#cy_n%-Xfl;9uDe^g^D`i4|xUip$X|0eZXzR>RDZ9neV+E9U|hxXh5v6<}t zfKy&2v>!F*#lp;P=$#98uZo%swQzT>P!j2?{{ z0^pTVI#SkwNM!Zf9~`SELL;2fgShA8{!#EWLTD-YZL?c^leLM=c8}P<2qcHccX=M& zZhrgm-C5CFg!XU~fS1hePU(EHXabxG1ry=pxhd_$5{Z254&-q?GpwFFIz2OA~SP$4V;N^DPS=HNT;cUKE z7!{|H;^sK-1Ju8-z2#PSY#jDnc|aRrYjlQ0Y}v|*KKr05wD>s*(!LG&xor$+0S0(m z&6^K`n6H4E0ehh*biyqFyeWF}oqhCj(@J8)HG|mUC&Da0G{u01UO@Zo`#FS~-IP8^>=RoqlldcnQSAkSML9Hv?o`Z9~2;-B?nf z5RZSD=#?mStM6C_A2*A{aIVS>LV|WZ;{36DhlQkqF;-$-ULx?-0>f$Ym6VOuPWu{kg3)S-TRszt&BL&dIi@Q{}OAJ`9d{4p_^b`Sp*6Uw1=TBru;9r6goea1dp< zgNsB->B30#KUx%_Hyo|8er>6>W`F#4^-aqIh zS-+g~zu%8mxpAS%`O50+7MH`OXzvvch+Sqms_d)O=`M**dZhbQ>~LH|r-4%c8p3G5 zZvt0h4sl)Pt}PYlK0lA(8cr*B0{o~vjfDHUZT#(|O1UC+nmv5~!gHqlzaNO))DzoH z)v*Uisd!oInV(1`F0nwW4ztt6j6|`k*@7!-e;KM2BZ{>WGCY6Pe@K&CX^^d=SuMq{ zj+hP2@OX1xk=XQO8PE6UBw*TTaJ-({_vILXi)k~e8s1TkId#(|{?HM9V|dmh2dZEM zZ+$71ts)z-0SG*<*v6gmPcB2^?s(LTleJ;e)>CRyp4bvEFYX_LZJq&*(|^(te5Rr<0b=C*AM%g74#O=fE{26@kifMga`z`zbRVi`F=$ z2Ut<=#J1ttpB;F=(N@JI(Ywhh2>xWfv(7CepGCKzNTM{rj6gvc{p?Z~Ebqv=g!8y~ zOMl|gBSk;j``B8~l8mQEU39G#L--St_WVF>N0GQxqT#+$jmM$AVw7^hY{taK8eIvlX35^@(8ovwgq)QX~@!ZBzt^~Z;4S1#j zHAS;jSAK5(;;VDc-bL(|3TuRAo{V8u6!|5f`+(Wtl-7Wy?18v1&g<`!sX_}`mIg`` zvg1`m26w@Em7z+w!wCZL}LsHn_vU0*W~ScM|*j#%nkNtVxYWn|}6A$zj&5_;{urRLZ3)W|la* z_WH3P?dMv@KYPy_-5ZzbYzm3ze})~$a`+tQdH>K>zV|}eUUHb0W_j@olZcFz3g0GpMgC5n;pqy3;8W*E+|wY z&sKwva9rKPcl_F3w=ahusIY2_KMuggRJ!-D*e$v)AHLh^xzSDsU_)ASn%z{)sX1D2 zXk%dxAB!R>JZXf}%Z*x<=#01}E?G;*$W018dbWfxZryt#q^kvw7{QdKYo^GD7o*ic(^%xLO5Av5 z!Kf;-;*$%@Kk6K2?_|-sj8ZOW)>si+H))`0(I1zuW;iZW!Ken2htY1uk7tT;&~A0O zSm%w410QxXvzA$)DSp)&mYfOOtB@m`X^GK%R=T7gq)(5DrQ6v!XVMwrO#Y}@9wYRgLiXcK$e4>sP0=T((Z4!$eUlHg_;W=P zS3#b0^Bw%l4u`RvE)L;rVCjktY12_h2fwo!1QO9Sc_O)vTNOc6gJ@_R=Sbo$+P8?d zsrZP7ZA@m?-PmJzRnJX-P`y&8=i*)pOiDMrXPhx=`oO96SsYbx(iiL-iN3dT`8VUv zh2mEjt4gIyp1=JOQ(GDjt1cyV6TJ_$e1%tZRGmPS38Xz=t_-!etOrxqf4WebVuEwT z2BzABh(kSP9npzW6Ayhp;aLn4ak??L79+wVWJIrK@0v;mDkvfoAM*MMX!|#+e!zG8 z#h-MIclA?A#)vG=OIRyVi&loYTyfaAfG+;s{mBdo<1^F8s*Y>PBJ*`^eIH3c1;naJ zk_raw4xAJWah2qen_cRn4=N3=Pn)Z+$nbiNz^!myL+tM=RCm(sFvSQco znjENQW98GF-6NK(V&lW2!L|Q_oZjz!P5*8o*+CBKo@!u3{;0y*KiHhc`JR5aEk;N4 zI^qj%;t6ooylkl-$|0!POsH){-HRN5<){^9B(!BJzkv5gNEFD6f(_{<9|ZfPO7FU? zbf2ldA9Hv`T)&)5JQaQG5o6$Jqu29Skeh;=!VuR~X}U$JpPAtp(KtcM+R_)6?w3*B zEqfa^&w+BQa=Pw=&K0iCz{bL7U5O#iM1L#}B0Eb`=QiJQQKJWLxYA#|dN)Bi(si)0 zr=jk%Zme+OB4GF;#Kqctu2!;pF+T@vQOhat^%5-bvD4O8-`n*KZ?kEsAnSXR&5#?I z)uC?}z&4~-WWxyu*i%u5)$?U<#b;vf%v8xn%%Z$|EyDk=;1_NDVhlkubNrTRZE#`pkL?qvGrHt-G7#gg;;w?E}z2t zJwn_jT?pr`vjCF5!p`TKk1APg%?cw|FiCJX(8QNUzSHr1Q1!<1gsob|&0(q*<-_0$ zNXS-zhN9eJQ)#C1VuRpZsu;;y+qE*jDy!?T`(cl$M(dc@kBt<3D!{IDZ}_Mp{U`7s zf11^oQQx23w_PG4081IW({SJ~7bBRU>YqaJIgHm2Y0}g%G>7q8@3A>%Vr2`rrsx>g z3-;9U2pL+-Z@g{|ff)Ko<|++e?oTL|G~2`n?5%Q(z2Qx}k+G<}q)d3Ll3k$xMJd*o`SIz}l(zQSgn8}4dJ?aUQ{=ku z&9lfE=am+XT+*<6(xO>!x>&2HU$cgG@^8fivax>gSz^_J?GHg*?bQzt=9rLAH)|f( z)b|ZP9t5OYRGJHdE|F22{-V&|Y1k!>0P|kGzS|*ek-2Ou0g2^DgVwfPkQJ`xwk_4i zZdCZ)0it57HdXr>+KBtgfeZr1rKD@ZyEte~D+SPw9hl2zSqXC1z+*?YhbP(=-%S{j&?}d-kW<}@LyY=uAW@c4#zFo1IM)#nn8@2*BgCeWKIpcbbW3t{}sFN#&5NSzWk_Tk7f=CKIQ4> z6{T>>*+2VYNGY?8@?|l%`!5l`C(^c647pI-@z*{o6rZ}kj5>d3*!`wDFUZ)U1_E4? znrU69J){lxIzi|e~A6V1^?1>zF(7znFl1$ zekj%JT}+aT-jtH^OR(+au)?Jqha z4mqOE=CSmxaq3B3HbK}(@{rkeaT5i^)*~uZGAlk*E*>$kd(`*+8_mf )D=S5eqn z?Ay1^d*9|a9jWgbv$1OFdV+7=UZkQTPb5-88x_(=`2ETRgnc17B!2zYd4?k7pK1df z157g6N2QyHYdRRLyK6d=dgBI`${lo)5B%ZpmwwF%^;J0zzOZP#;9_=wky5?A=_pgxL|}_2&R%QH2-5=U1_xySHqI ztWBM@1XoC~m9~s_Jkd53leDK&-pRjf>_D98*UffBXR#TNKDL>E6V*(1Jk2oF4Y4*c z{GXNtJhB5rtL@H;=|#@_mWdWLS4Qf7r6z+ss8Nr(TE*_BU!Y{g zLu*qMJYx*6TN43V`)R7Y2nb4TA@3Lr4U!=H*<^fnvTMD&kTr}9y62(}fXLKbClWq& zq2r-x>|k)78h3?`Em4zw>tb;w@2PZ_?t+>*M4(JVhkjoq*q(}fY=5Wvg*>b z-)8=j;iq^d5%ex(K||ktolW@lQJD?j$)GvXT6tl)S#(bjf=j=%m-0cHiOp7uv4F}Z z{!g}-ud~hz>#7V#_5yGBAs7S*#Y2A1@V_JhdpXdq_A?5UPgE%AepdPfyvRk^<&58Ci7KesH_%#m*4F}^Uhw)G(RaU z++s!Se<1e_>I!{Rlt-ZEZnat&5wEEj>dY4d>3X~A+-F0r)?!Ap1&bp4Z>a{^28xc)!^Etzx*&-* zw%@^D`aLz03w3L3VNFUS87^QSnOW(vnO}C98E3BqkOsNCRI|Aa%^u6v&WOQ&@>3`L zW^kScI&PqMqqrvKH3h6pkNexVL_XVurcl(d`)*442~z}Gx>HQ5rTeH8(Ef_Y2=K53 z#q4un(G~YVLd)w7mSj8r=jU%~S%fo`*0&G;%BvI5V%Ib;Ag}gp!!tJUh|GNT-hrjdHv-kby_Bjd(!s2X0XM{#mbn#{1E<_^^JIU z>lPQ7Ps1hrk#hOzd}KcM>4bP!hC|_{A4iJC1wAhy0{&Cdc@!bY6<({+!FQS9%Q!Zu zVUJ6oIj-_z@kiw_6DUCnCtFu8N`%f&<0dzAMus*fuJTNAL$@~((iE^wrTDk3`L!qYFkWtx zjK%9|7cL#{{lUdrHJkGT_XnZ$P7!(eAqXBaXAkUXT?rE%rf67vK#2U$y?O$ZQF2J0Cop>-k6%W*c(d)2CHvlh$y9T!x+hq5>L8a-&L z!@#gg(|CfO(9OWNma4{myL0M*HRr$}yIUE1!MP@KyveX3#F#U0+f`q=xooWYN!(GV zh7dwSB{n8Df?yq*~2pL?Nt zlESa#&c`|#FwmG2{D0(d!Sjxoq${glD=rZ-^~u&UutpkFilgt>vs;-TRlOTss}Q+2M`$6tvW9y1VH-r3&vIuWOrbHqf-HHhv0c z{gC)R3k@$0H_t=j_+%Sm zUK3|>OiBL8OXuf@TJ|Wqb|ub%wB8P3&rU&jXZPF|;DZdqTJ@Hhvt9_!7@JXEEK9}> zWaVw#EyPg|k-)qUJ%mgbz!!;swOdy>gYEKY}L zqg|+TV2Y{bl!-LD`W&YUAx8Qsja!D=0sO!|_s<3O8b?@U4!m2}E>-`TE_@+tlT=h1 zgh-B4Q4?=8Ny$Dl2J-(-)-#}Ew+MH0Lgd}~`DldR><;hlZ@!ckY!=SmBqR;|{Ig!$ z*qJcJ=1Dxd?crEL-mYr;UC@F`7XOo;a#edni*#(+M_499*ApsPwJrmORJBtt!eDG7 z(VjGclq}tHkUrCu;0yewxxIEBg916Z8ar@VFW_ zS#|R_Im7O&-z+msdky4~N_H|sy`M9wSFArLZxptG61*SYdlYq5c=Xe<4HLVZqPR@Q z)wuVvW>t4>f}u2Q6+5k$hWVVGg$T%QT;=9-746PmRSoH09ZhBlYw=_H^ z`@MsOh;M_+o(`LZ{w94z@N$V!n}vr$u2b@SpH8Jk`bjw9AKmMYa@rF?cNzvNbT*j~ zD+HG6NA>88RCA|;CSj-(_uD&(NuW!&deVf9ck+V@v}2}ht{~UYys=DgaZSI{%o#^s zK`XRHlNd3ABR#}AZ&k<>ePF%9&`!3d?jIu4D{_?4EBBUuK~{8$VIqUDM|@L)AuWnt z9o7bXZ6YdiX!!k?8K4{Vc-1s9%3@hMu;w4B%NR10jGy?&cFA@ z-fX%kr@rvx7*KD?ui7$Y65bVfp#6`K%K!TP50ZFV3?Z?rjs(If@%?dUE-ExH((`R; zFg0`ioVr)_Sk$1Xw!S8KEpC-`s3dHRrh*VyfJu2KtT;qGH5`>wp9`6&;Se{1FK|{% z?W~E!E@>S)Ql|rPWIPC_iM>64obb$=X_PR)Z+hydxhW$aOF)~8;0tHlx^2QwQQv0o zUH))r?WwWXHtZSND8C7W6AL_4Y3zO5eIzz2q z?BcOc+(-~4G{|F!EmDY5MwFt;V66WS_Z@L`|1`ZK@>2~pS;CTB?1gATom- z25#!2PvR#xGAk={#FxK57nu`3nz9h|DS1;RrcIZXp{%mJmRLu>#5F-*ZfKTTk;?b9 z#j@QRuZf0w?6m$BTe_?IvB!Ph!WX`_0WDtC{RjRrAjfBHyrn&63k=xdAh!#3ZsG>6 zhCoApg$lhRMKWH~!E&Oh@cP%7U}f+cu&SkAn!uR$*%S5(0}iTBX2zp+yfpk}sFBIe z$wCbGSb$8XQoUd3B^=2CusntUc_;$okFG6*(xAc@LtN{>1sbqEf%w8*Q^eL=&OHxY z==M*3^<(z^3tO-vne3{)>@S*>hkyw)u{#J00Po9pV4W^24?TbTn8QxnL42%x-`tiw?KQ58eB0$;tMZ<*WM7h_{(nmWi~RG^ znzC`ZJvU{eVml45b!WJA3kv?Cljvvde$4v5Ch@e%o`KT1+r)m zSGtH;0v++4^!u@y-hT);WINsU*5h^XGwyfDQ)s^yd$*X%=i9*NCwAX^Um;0+%^ibS zS@8Ip5OHF^CVbt^Amd-=vldTI7s?!jYvA0p14BAf1Y3nzmh-;Y(5ujGh zihE$yG0zBu)F9!ShP5G)Mrqh{y(dtMwhIGFzw0yo#|o^A@^rp{R+DFi{p(h`W?V(W zM#g?S+m^-)fw%7+fNxdgB`n*7yYU|)b(>e%tpqK+9KaOiS$N^by@O-g>y=$QF^XiC zDYbXaPo{@_Yf{K_l!Xm*J?8`-r*b5BfNanStnz~G#;2+@&pqKTX+by?rGqE>J(bqJN}#=p za62yS4)?)1{kKf2;+qgNn%!+AX$cE8L(j^QpXZ!ak`EA(oc zHh+PwLG1XT+DI8$wJ+dHu9I$aM)cDDYH`!&O~l^#G5rRls*rGU`q9Fniq2xX!F|cz z4XsO6DpZcI^tLMGc=hD9tnWFr9;OmVCvsGt3tsqU)jmv>ck$@uTJxK<#)Xn)ljE;B zj@gEBCCBmf?_!RhIw%=o8Bub|%iTwCbVZqzWwEENK6Hn(|=vcE2i`yw9;-5PTUt$dC3V`_p%-vai2Rd zNo5uoce83;w$$nA2HMH0s)GtA~vm(dc6dQ4FU6tT=6Oq{`L{kN`xjDs-7LYN1 zTWbuf>dKL2mXUjau(S}OB!d{y#e4>-#KXw0XE$@4Kbs`ED#*Sn$~~|MNVtR6;DI!) zC2qqkNp@?6Rhc6zWQavbc{Pt3+%QG!F|bp4@rl&B>9rJOPM;i#3*_1IoA`~|k*DZD zebEmsUh;f;!z@CMrXCww?RnoN6gROBy4&4fGgX@*w{bOyxI~HeG&s9MV*=_9vHK|u zHvxm4KDdVWEdlc1kKT8b)Jpl)9}4a5H(wah4*|A$eL6;-E1tn#@GMoScwKc1kg*DuQ zYnPmTfat*QLhp<`=E)1|7tLE|c7_YyP9{9D_v0Hp)oXt8u8_MWk$< zwb2Ks36o2y;E>jGR{1_@Z$Ypu! zE(22cC{qtS)0RPaT*fU3)Uo!(PB8=ZF=j?k2q+^chUYlaPhxhx>(G!S20y-u3qy?I zaiz7G`%&RShI>n7RUy8LuaAC??s~eyw$l2(cqIIfq~-hqcQg>RwDG`8P)mDZi_^-~@QHg_Z?#vYs4YcLoz&dK=7ijy7Q&GvB{Sa^YL zYaWsxtltvrn>V;D2guJuJl+N#yA~B%yX9^@p5uL0$s8I5a(!3s z>?v!+J#LDRzUx^HeNL9z3I9EslOgmvRi zgQGg7iBDo_W}b*U;O!gE?H5QK5qKt9 z2bluNv|;x4;cCK{-CU9!Zy{A$GR5r8vwcW+A*U@rr6h^Bv=7L2>d4 z6vF+(f%CqL_(6v=LufY4e#MD+UxQ8G+e^fOMtGR*2R7YsvuA9~s#@akVv%*uWKFIY z?wZDK1Sqkees6gB-84*+0ZO$$ND<>G94??l+)i? znRfnS&f$Vu;5hcmw8$eX9SkI4FfIx2yQg{$ugDFRin?u5_3A5K^^`U!EL=Tw2XuTr zx7KVL7Wy~l{ol%o3A)uUaHSb0x)(TMBc+mG3NfXr?*6EwBy zq0#fVQ;};qTL#MqQhmo|K)^Bk;bUfwx|_g%(sbI;K&*W%c#Y-VF%IFa`~B%>G_zb^ zbkr_%mR+;_FkK`!2}JjiCC7HAro@Lj)DfTPQE)#>jW=MA3~^Bq)Z`J z_`nSNpyfU>**+6J1O`j6*+s)C1E?_WK>aXpPq9SLIs!dqrsF0(>l-_wnx(?Cms3^& zO&V)&ozO99`e;|CVSK#3(86BV$1E^&x5Y{G)Y{b$bm6A<KUR)a+o7f!UN< zm9APf!q|B|EpIo?ecqG6gY&Bh5yX|RN=(S>k;;#`p)!|U7bhNu^2cXOGA5@a4XlWK z?v$myZMI~&&SDe$jrE$%v0zQ{o(bU#QcekDmKJqht$GAkDuHNytRi};bnuk_N zWMjW6*47GM9A-^xQb3#{#ug?z1q-)jQA&24ecYK#`{2o*I67>EOfs zysJ9e{7Y#u8b$`Fc}AWr;b~Rp9kOna8DwZsj@|>lzVVWu!##GhbZ;#q!*|Ye=IDpm zaTDb+D#m4Rs6E3{cEY8T?Dz=oot)w1bC(RA#}KrK<{Z+Q^E5dFEDN%2GvCoBVxU{r z^EzkHZxNPb?mV-T0|`6P^zD;b>gPt8{z2j{T%c)Jph%j#&csIU2&dPMB7UpZVoshP z`Fs2VHhB8ncK*xq+-qy;*)2JUsrpcQp8*1k@jOOvD*y`H>zVI7UeqhhUonTnoFdL< z$0m+em(8&bD>IQ!Lt9=gkwRISTH=omiE^K{+fp4V|Hvgiu%$f|A96qdL9T`>EZvCN ziq|pLLzxWi-Afe}5Arg}au=^>XA^HP<`n~cbBgOeg=Aokw&qgh^e$G5t&9#kRbXLH zN#qdCuNSeO)#^Z}sjend$J7d^4$f*d>s%Y_(w|eup*Cs0@26b!rbZ5kkkyz-@67x5 zTx)fTU3o;`E0rWQosQ?+Dc5A+x-GuYa?Ab%a}2UtOKk0rQBI$p?Hs(i(b$M;|4CEM zLxoN5m>VW}?&rJRlpB*Jw9h9mf5x7?d2*{!x5*0&izc0-=kl`X$2`#1?*^O@-Q;x3Zk$?RGsJkpIfsj zOFI=h=}LlS<`YF)D)VUU8O)N8z#_}OIP6V*ad@qh*-Xkyn|tw?C+lBv@hPXiEv%yx@_ zPj+|WhK%(5cxlYAvB(raOq_JD|`P>sj3hTL<3I>Hwn!7-aW8IspYm_+a^Oc`YPBk85J?{ zw`=4IeuaeQK?bi~qxDdbeyvGWAfF26F4NU`UHvOKkLZii2K=Elw5O0)jbzQ~^R=4^ zl-DnUojM=t{CXP_gpwh(d0ggm_pvn3LPaP4->*~iCK0`uZjQ?BP;u`g&4trmmPA8! z7>RKIAwpatP3qbWrN~#v+$Q;kE@o+-rYz>}2SOiiK46NZ`9S*VzdG<^>*n3};yqQg z*7b|#w#|9bQOLJM__)3@yrG|{%_GoFBM52(&ek7xO>$+A6a2&fZwLSFXR9G_?`i$! zj2eHt_rL$tH3nKw)bTVY{C`jHZx0gq`6mWw!H|L=`R|wa_ZIe;K0c^#>?5=J*VF(1 zAOHASBG3Z5Lbr$fe`x{e+Rr^Gtqfhfe?-rJJN}w~{gaOmgcCa@^Zu6>${K-);VIqg zp!xfgzy;zzPxXrhXrZ2)g8$b4(gI568l$skJlo{o4*L5~Qy$=14_cN-ar`eWaP!`1 z`rPBa-Bhbv`A((WX}Jp}gJ<(j@;88t@!k%2oqXh6ps_y-@&&jbO1X$f90ImeZ^Smu zh`9vpkT2r-Bl)!?%6%`eg*mTt{&m%Vy8!N|H_`)pXdN2MJqBGeH1tma0sJbDUl#N( zZzM?*V_piL+u@ z!YSSC#%7-92mzZ}`LS=hb%}wvO>;w9cRsD1RS%r4cd^=C*J*)c#R_9_HCUav$_#!u zuF|;E6P+$tSdb_qb_G}!g#pEw5}k0!Mna%C)%Abt;P*=3Dj#@asu2|VnZ91sSGW@_ z0Uigosgt^wIPByhTbiRJb@zbaf}z;O8km6#bYqCvAJ7NR_W(+m^%{2qdAR`xhsZed z{qq%=f$AUtd@hA@!IHQb)w5M5-jz0N!EbdnUR`YS;(Q!$EvPI7+?>JzK9-sQE!1$2 z@8<=BKVbJ%Dzugp8#-g(P?D7J;J(ejJ;~NaQr#HICre$8+WEex_ZatpPYlN8?%VS$ zPo=w72XUIVoj8+v=XqOr0M?I15LIxLWmvGXbwBpm>^2&~N+}#l0 z_5?GQyQUB^RwTm`JDsVn&)Rb6{QG+lcK0ibv@g&uFHo<@MvhEd2DXAMb^+F)_>uMD zPLM?71lCHQ4Fjxcx!bvHh&_9xLZ2Gca1UBy|8z@SI_=hVi^CcL<@u(Psd5Xsk``;9 zQ{W8QCj$N5ocN6LZ$s&*`Tcr$0E&m$)dr z&vh1`k>n0B=cF`j7#9Q=a|Pf6%W}u3>icNqUOav^HJ{gbHoaCb*dX77ToqMljks6* zlG@U0Yek2dDHD+2jvMpGIsK8Bde3b*JCuNGONQ(Mdw34jEZ1z>i|l3rpcn<93mTCA z^!0SA@TFxlBr^XQ6lr5jp--mOuUwEZKJoA{+z%j3`$Vz_0>=d_b|Vw1(Et5iEL*vg zLwTsWMV5K;xkixZYSha&0H<_5fj%+r?&oQ+jWXV(UDlqe`re&Y21wGaKeqd!7Px;P z=9|vOXtx7YN7jZeTLQ)mkDE4i%pfrx8Jy`ajNGE6b8jJH-@lMg^@wxIDU1nt;-iI# z{rJ2NaP}%b5x>BZH32xVBi=+}jfTe#tC7b@FVeDJRQzE~nbwcHVra}x1T4xzJgWb( z+9^-P{KK-c{}ztBK#{`NuSp>`wvd`>SSeGjsK0=qwyQzwAST9d%Vxzfah4Xi$IGUACWk=yos(>LyH zN0 zQ|;k}eF2#V)ul?_blMbsCRnxnUom~U&}{VF(858UAmJrI@OT{w2mNhi`o~Xh>KinC z?Xgq#bE<-h~xRFJm+KKTpkc!&r z1szKUe53!BdEIDFpgc;-d^yltr+0)y`AQjYW!5OSkHfZn|7bJv|2*SN;)tSmp3kO9MpBZ@ZhiwQX;?vhc_WRZB(@(;DM8?k)&=4 zTrVQy49NBpLbz3gBd#9qH_i{{_ZM1wVBC55G7hPQ}LeHhzunm zz=N8^0l{omBm_}GQ4DrI2&W>~2$vp{Z>}11emK}E5O@JN327K5!igMTTi_mA5;!_m)2Vo?xBjUS6}#=!lI>pOYD(U> zT8Qy+=j-fyE@&lk`HoNlHa}~-F-0+;d+8(nGNhqyj1^$0rmtbJre_X>OguGUqqL=& zQz|5mRBW#PS`muUoP7JqriQ1hbtz{U)z7DlV!j=3e47}CEAG_q^UnkG7~kZf|DMNz zNhRB}ga_2jrRzVwR_`5T(JuuN+&k^*3~rYpQ+ZA}(rPklH2X$~(#r>#Meu-+X*7_9 z@|MrrY}s&*1=5!hkAz9}3>?pajx`QpFf&-ugv? z?SzT4!9^=R=uO0{_}{wdDp<~W!&DwboSFVEx5}Dz&Uc`reuuB+GR|`}*8Nd+3jDSy zslGKN;hi4!>=+nCCwXI5>Vgc z^_+7LtmjPc^3G6f!BF(P(BTLsQmsD&TXT`@hgO^X zRn=lt9+3^_CNNpq{aIr-!+B*40>Qa;WglfnFwR@Y<#a5HQ2ILW<_(rM_utBVP_=O$ z^q9q4GT7D6j+$M0Wo+8R*pU7B#h3K%_qr2yDkToiJa1)EV@<#HuS8LX0F%HbqaCVd@o!gcn&b^b^crPZA z`+>|}nK6izW7#W~uwG?XxTC?0S+E_M31(cH=%P>4$qIEo^8%|cE<+~earj}4 zv;059niu1EYX@Wqj0g~2;FF1wK!$SqcT!U%X+G(L52RnDW6$@8cm*dt0OKqJXGrkwYQMkl6?!hh?_&_0>;9Woy6o&K8ON>PUUfF9tyO$#wn;hV^w=8=;Gu!$Ye( ze;}7lM5_A1wlhR=yrsov+d_wY>j}>xXW~tHM`S3{rOe9p(LtB9lu?_$SVUk?*i4p7 zcx(KfOMq@9|GZ?5@qCcVfZHNtUP#v+nY;HO8m2)bdz5Dn z1f8$S$IA0g0Cj|xAF}LS1-VlbdSeXL*X1{TF{w-Ptp|s9poFzz;#aeRX-keX@O!iw z_!0 zv%7rh@-u&6+_r?Iki;EI&3@67U%A`p$`Mv(MWIp2rj^+~-+ZWcKaWvbwXYe5nb?qw zeL#((@1CNYP4wNtKD-o?{I9k2KZl|}>A2J|HwZIxw0+NH#`(ENz&!ru4a{2~K#Yob z9#A*XZs>#SQZC8nJnWttmSMieTfY+H9GBXWi(4fhkTwvXLDJE*$#qF_CSg@ibU7kP z$?WSEzwB)^FV5D$+GK%27XJIYQJD)L-}!=b|5Lnh$2dCuAb#mgvrp#AmPZ3dvtOv3 zXskQbEQ_P#LuUfxehVlkSueAVj*MV*s22bN)wf>cnB^uD7`W%r9;=SrZ82UIh|Xn7 z8ro`Vbx^@Ud-?zC?#ln!%+`3TrsZOWU{VwnY8XVRWlCwU5n<4gGL{fEOjInjCQ1ia zEi;s8gfgwAO>8BTP_YIzdaErutz}}Twki>=h+4v}YzTfwp z=RD{8e9m*~qd;*gXovTu7p0czc0+F*3UkW`2jV+EXZWoYPIH4UI>$Q3M10zHU1ApP zZ8eEYCbXSuT>5VN^lHzks$N!G#=lly9ur=s8G>1GLJRkAujNmb&0HL{bHw=IuAoXj z1y>ro;PzD}yIBV$XHVjzA^;YY0t$a1jUFG5Yb7^0SG?dWShgLI5U7lPy2 z%+awvPqAc450_hZ5pm)qay6q$`ks+rdfiCg%_=7)7AQh+M6vJ~9)(=1sw6L}8gKO? zBHu*sAQc(W-r!mXVFC{&riqbuc}w#n8Jfku6}{#)hpF4oo@3gjwKDzrGSR$?>wR2U z_RefSG_-l4Y!N$&)Kj5l>`_Kd#oDWX!Rt8*7;=*kw}nU9<+4~l!&yeJY{(qCuUnRNuu^$6bz zz^NjXLAnd8;xd6>E3b;1sdt-m;~I>#@a96$>KeD>MNzDlHMZwC^OJ59Ew2IACq)}V zJ38t7Ln2iHNd$sk_DdA);)AxK`&j!L0(ZnUybQ129mXq2rcXD{5QF5G z17g3S8eBIjY_g?bf1xdnGI9M+boo-IhSNnV%d9tT(@#k1h>_z|-C|IdxXr!cGR7|$ zXB0$A9_#xnRZ1ycqrfE|>j`n`x*`yDJSXfl;C-*H(#El^Hy%*uvc;E3a3Q`w3+Fa|~zZLT%{Sj%Fe= z@N8g$lIdmL(cZ=th>EbU)e(`EfnCat=}S2$o2aRF|LNIDAdCwI{0GGx@_>>ZwF%kI z5F{AH&O8-f)s7!XJS-wclJePz#mT;4PLj`?-D~95kES!>J|x0AyxdS*_^Pn^cjLY_-dDQybiope$iT`cDKfF4SfoVny zkaY*~0NE3cy*K-9RKNN-wtC+zaaaZj`pQ=?2!|W*SLXI~H6X|PrYn9eJg46GcG4UG zto8f0>qFlk_Ll!0OYQ~$hnoY+Pirrfzy^OL(8>u*b_#m|0Uy&z1z6Ix10_?0eAwR> zE(z!-T4?Y6m(KY-k_PD-14QQCeJspZ25SCr%@^1`2|6f7I|>l$lvNnW?PFoBI#6BB z-<3!TiPe8oEdMn?_(;w;b*}*e+V~IvMVB5I cand2 in wmg wmgOrd = 1 if (wmgMap[cand1][cand2] > 0) else 0 # cand1 > cand2 in ranking @@ -52,17 +53,17 @@ def getCandScoresMap(self, profile): rankWeights[ranking] += abs(wmgMap[cand1][cand2]) bestScore = min(rankWeights.values()) - winningRankings = [] + self.winningRankings = [] for ranking in rankWeights.keys(): if rankWeights[ranking] == bestScore: - winningRankings.append(ranking) + self.winningRankings.append(ranking) - if len(winningRankings) > 1: - winRank = tiebreakRankings(winningRankings) + if len(self.winningRankings) > 1: + winRank = tiebreakRankings(self.winningRankings) else: - winRank = winningRankings[0] + winRank = self.winningRankings[0] - return convertRankingToCandMap(winRank) + return self.convertRankingToCandMap(winRank) #===================================================================================== @@ -81,13 +82,21 @@ def convertRankingToCandMap(self, ranking): #===================================================================================== - def tiebreakRankings(self, winningRankings): + def tiebreakRankings(self, wRankings): """ Returns a tuple that is the winning ranking. - :ivar List winningRankings: A list of tuples that represent preference rankings. + :ivar List wRankings: A list of tuples that represent preference rankings. """ - return winningRankings[0] + return wRankings[0] + + #===================================================================================== + + def getWinningRankings(self): + """ + Returns a list of the winning rankings found from last winner calculation. + """ + return self.winningRankings #===================================================================================== #===================================================================================== diff --git a/runKemeny.py b/runKemeny.py index 66cf01e..2527a31 100644 --- a/runKemeny.py +++ b/runKemeny.py @@ -1,3 +1,4 @@ +import sys import prefpy from prefpy import preference from prefpy import profile @@ -10,11 +11,22 @@ #===================================================================================== def main(): - data = Profile({},[]) - data.importPreflibFile("input0") + data = Profile({},[]) + # filename = "input1" + filename = input("Enter name of election data file: ").lower() + data.importPreflibFile(filename) + print("Imported file") kemenyMech = MechanismKemeny() + print("Created KemenyMechanism obj") + + kemWinner1 = kemenyMech.getWinners(data) + kemWinRank1 = kemenyMech.getWinningRankings() + print("W* = " + str(kemWinRank1) + ", winner = " + str(kemWinner1)) + + # data.exportPreflibFile(filename + "-output") + # print("Created output file") # myList = [(4, 'a', 'b'), (3, 'b', 'c'), (3, 'c', 'd'), (2, 'd', 'b'), (2, 'c', 'a'), (4, 'd', 'a')] # #print(rankpairMech.getWinners(edges = myList)) From 7c0b3b8817590d65a347d8e7b6c4929f5c6c9645 Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Thu, 8 Dec 2016 18:56:40 -0500 Subject: [PATCH 04/17] Created kemenyILP class Made the actual calculation of the winner be a separate (and thus overridable) function. Basic version still uses WMG, new kemenyILP overrides and uses Gurobi ILP optimization. --- input2 | 10 +++ prefpy/kemeny.py | 30 ++++++--- prefpy/kemenyILP.py | 122 ++++++++++++++++++++++++++++++++++ runKemeny.py | 158 +++++++++++++++++++++++++++++++------------- runKemenyBasic.py | 47 +++++++++++++ 5 files changed, 314 insertions(+), 53 deletions(-) create mode 100644 input2 create mode 100644 prefpy/kemenyILP.py create mode 100644 runKemenyBasic.py diff --git a/input2 b/input2 new file mode 100644 index 0000000..ca93a4a --- /dev/null +++ b/input2 @@ -0,0 +1,10 @@ +4 +1,a +2,b +3,c +4,d +8,8,4 +1,1,2,3,4 +2,4,3,2,1 +3,3,2,1,4 +2,1,4,2,3 \ No newline at end of file diff --git a/prefpy/kemeny.py b/prefpy/kemeny.py index 95b66cf..9294040 100644 --- a/prefpy/kemeny.py +++ b/prefpy/kemeny.py @@ -11,7 +11,9 @@ class MechanismKemeny(Mechanism): """ - The Kemeny mechanism. + The Kemeny mechanism. Calculates winning ranking(s)/candidate(s) based on the sums of + the weights of edges of a given profile's WMG that are inconsistent with those of the + WMG for each possible ranking. """ #===================================================================================== @@ -35,6 +37,25 @@ def getCandScoresMap(self, profile): print("ERROR: unsupported election type") exit() + self.calcWinRanks(profile) + + # handle tie/multiple winning rankings + if len(self.winningRankings) > 1: + winRank = tiebreakRankings(self.winningRankings) + else: + winRank = self.winningRankings[0] + + return self.convertRankingToCandMap(winRank) + + #===================================================================================== + + def calcWinRanks(self, profile): + """ + Clears the self.winningRankings list, then fills it with any/all full rankings with + the lowest sum of edge weights inconsistent with the WMG of profile. + + :ivar Profile profile: A Profile object that represents an election profile. + """ rankWeights = dict() wmgMap = profile.getWmg() for ranking in itertools.permutations(wmgMap.keys()): @@ -58,13 +79,6 @@ def getCandScoresMap(self, profile): if rankWeights[ranking] == bestScore: self.winningRankings.append(ranking) - if len(self.winningRankings) > 1: - winRank = tiebreakRankings(self.winningRankings) - else: - winRank = self.winningRankings[0] - - return self.convertRankingToCandMap(winRank) - #===================================================================================== def convertRankingToCandMap(self, ranking): diff --git a/prefpy/kemenyILP.py b/prefpy/kemenyILP.py new file mode 100644 index 0000000..28dac6a --- /dev/null +++ b/prefpy/kemenyILP.py @@ -0,0 +1,122 @@ +''' +Authors: Tobe Ezekwenna, Sam Saks-Fithian, Aman Zargarpur +''' + +from prefpy.kemeny import MechanismKemeny +from gurobipy import * + +#===================================================================================== +#===================================================================================== + +def precedenceMatrix(preferences, counts): + n, m = sum(counts), len(preferences[0]) # n preferences, m candidates + print("m is", m) + Q = np.zeros((m,m)) + for k in range(len(preferences)): + vote = preferences[k] + for i in range(len(vote) - 1): + for j in range(i + 1, len(vote)): + Q[vote[i][0]-1][vote[j][0]-1] += 1*counts[k] #Q[vote[i]][vote[j]] += 1 + return Q / n + +#===================================================================================== +#===================================================================================== + +class MechanismKemenyILP(MechanismKemeny): + """ + The Kemeny mechanism. Calculates winning ranking(s)/candidate(s) based on Gurobi + optimization of ILP formula. + """ + #===================================================================================== + + def __init__(self): + super(MechanismKemenyILP, self).__init__() + + #===================================================================================== + + def calcWinRanks(self, profile): + """ + Clears the self.winningRankings list, then fills it with any/all full rankings formed + from the optimization of the ILP description: + + Goal: minimize SUMMATION_a,b( Q_ab * X_ba + Q_ba * X_ab ) + where Q is the precedence matrix formed from profile + i.e. Q_ab is the fraction of times a>b across all rankings in profile + Constraints: + X_ab in {0, 1} + X_ab + X_ba = 1, for ALL a,b + X_ab + X_bc + X_ca >= 1, for ALL a,b,c + + :ivar Profile profile: A Profile object that represents an election profile. + """ + try: + # Create a new model + m = Model("kemeny") + + binaryMap = {} + candMap = profile.candMap + keys = candMap.keys() + # print(keys) + + precedence = precedenceMatrix(profile.getOrderVectors(), profile.getPreferenceCounts()) + + # Begin constructing the objective + obj = LinExpr() + for i in range(len(keys)-1): + for j in range(i+1, len(keys)): + + # Create variables (2, 3) + binaryMap[(i,j)] = m.addVar(vtype=GRB.BINARY, name=candMap[i+1]+candMap[j+1]) + binaryMap[(j,i)] = m.addVar(vtype=GRB.BINARY, name=candMap[j+1]+candMap[i+1]) + # Integrate new variables + m.update() + + # Add constraint: X_ab + X_ba = 1 (4) + m.addConstr(binaryMap[(i,j)] + binaryMap[(j,i)] == 1) + obj += precedence[i][j]*binaryMap[(j,i)] + precedence[j][i]*binaryMap[(i,j)] + obj += precedence[j][i]*binaryMap[(i,j)] + precedence[i][j]*binaryMap[(j,i)] + + # Add transitivity constraint: X_ab + X_bc + X_ca >= 1 (5) + for i in range(len(keys)-2): + for j in range(i+1, len(keys)-1): + for k in range(j+1, len(keys)): + m.addConstr(binaryMap[(i,j)] + binaryMap[(j,k)] + binaryMap[k, i] >= 1) + + # Set objective + m.setObjective(obj, GRB.MINIMIZE) + m.optimize() + + # print(precedence) + # for v in m.getVars(): + # print(v.varName, v.x) + # print('Obj:', m.objVal) + + self.winningRankings = [] + self.winningRankings = self.convertOptBinVarsToRanking(m) + + except GurobiError: + print('Gurobi Error reported') + + #===================================================================================== + + def convertOptBinVarsToRanking(self, model): + """ + Returns a list containing the ranking(s) formed from the values of the binary + variables contained (and already optimized) by model. + + :ivar Model model: A Gurobi Model object that has been set and optimized. + """ + # ??????????? + pass + +#===================================================================================== +#===================================================================================== + + + + + + + + + diff --git a/runKemeny.py b/runKemeny.py index 2527a31..1823739 100644 --- a/runKemeny.py +++ b/runKemeny.py @@ -1,45 +1,113 @@ -import sys -import prefpy -from prefpy import preference -from prefpy import profile -from prefpy import io - -from prefpy.kemeny import MechanismKemeny -from prefpy.profile import Profile -from prefpy.preference import Preference - -#===================================================================================== - -def main(): - - data = Profile({},[]) - # filename = "input1" - filename = input("Enter name of election data file: ").lower() - data.importPreflibFile(filename) - print("Imported file") - - kemenyMech = MechanismKemeny() - print("Created KemenyMechanism obj") - - kemWinner1 = kemenyMech.getWinners(data) - kemWinRank1 = kemenyMech.getWinningRankings() - print("W* = " + str(kemWinRank1) + ", winner = " + str(kemWinner1)) - - # data.exportPreflibFile(filename + "-output") - # print("Created output file") - - # myList = [(4, 'a', 'b'), (3, 'b', 'c'), (3, 'c', 'd'), (2, 'd', 'b'), (2, 'c', 'a'), (4, 'd', 'a')] - # #print(rankpairMech.getWinners(edges = myList)) - # print(rankpairMech.getWinners(prof = data)) - # print(rankpairMech.getOneWinner(data)) - # edgeList=rankpairMech.getSortedEdges(data) - # rankpairMech.createNXGraph(edgeList) - - - -#===================================================================================== - -if __name__ == '__main__': - main() - - +import sys +import prefpy +from prefpy import preference +from prefpy import profile +from prefpy import io + +from prefpy.kemeny import MechanismKemeny +from prefpy.profile import Profile +from prefpy.preference import Preference + +from gurobipy import * +import numpy as np +#===================================================================================== + +def preferenceMatrix(preferences, counts): + n, m = sum(counts), len(preferences[0]) # n preferences, m candidates + print("m is", m) + Q = np.zeros((m,m)) + for k in range(len(preferences)): + vote = preferences[k] + for i in range(len(vote) - 1): + for j in range(i + 1, len(vote)): + Q[vote[i][0]-1][vote[j][0]-1] += 1*counts[k] #Q[vote[i]][vote[j]] += 1 + return Q / n + + +def main(): + + data = Profile({},[]) + + + # filename = "input1" + filename = input("Enter name of election data file: ").lower() + data.importPreflibFile(filename) + print("Imported file") + + kemenyMech = MechanismKemeny() + #print("Created KemenyMechanism obj") + + kemWinner1 = kemenyMech.getWinners(data) + kemWinRank1 = kemenyMech.getWinningRankings() + print("W* = " + str(kemWinRank1) + ", winner = " + str(kemWinner1)) + + + print(data.getPreferenceCounts()) + print(data.getOrderVectors()) + print(preferenceMatrix(data.getOrderVectors(), data.getPreferenceCounts())) + print(data.candMap) + + try: + # Create a new model + m = Model("kemeny") + + binaryMap = {} + candMap = data.candMap + keys = candMap.keys() + print(keys) + precedence = preferenceMatrix(data.getOrderVectors(), data.getPreferenceCounts()) + obj = LinExpr() + for i in range(len(keys)-1): + for j in range(i+1, len(keys)): + + # Create variables + binaryMap[(i,j)] = m.addVar(vtype=GRB.BINARY, name=candMap[i+1]+candMap[j+1]) + binaryMap[(j,i)] = m.addVar(vtype=GRB.BINARY, name=candMap[j+1]+candMap[i+1]) + # Integrate new variables + m.update() + + # Add constraint: X_ab + X_ba = 1 + m.addConstr(binaryMap[(i,j)] + binaryMap[(j,i)] == 1) + obj += precedence[i][j]*binaryMap[(j,i)] + precedence[j][i]*binaryMap[(i,j)] + obj += precedence[j][i]*binaryMap[(i,j)] + precedence[i][j]*binaryMap[(j,i)] + + + for i in range(len(keys)-2): + for j in range(i+1, len(keys)-1): + for k in range(j+1, len(keys)): + m.addConstr(binaryMap[(i,j)] + binaryMap[(j,k)] + binaryMap[k, i] >= 1) + + # Set objective + m.setObjective(obj, GRB.MINIMIZE) + + m.optimize() + + print(precedence) + + for v in m.getVars(): + print(v.varName, v.x) + + print('Obj:', m.objVal) + + except GurobiError: + print('Error reported') + + + # data.exportPreflibFile(filename + "-output") + # print("Created output file") + + # myList = [(4, 'a', 'b'), (3, 'b', 'c'), (3, 'c', 'd'), (2, 'd', 'b'), (2, 'c', 'a'), (4, 'd', 'a')] + # #print(rankpairMech.getWinners(edges = myList)) + # print(rankpairMech.getWinners(prof = data)) + # print(rankpairMech.getOneWinner(data)) + # edgeList=rankpairMech.getSortedEdges(data) + # rankpairMech.createNXGraph(edgeList) + + + +#===================================================================================== + +if __name__ == '__main__': + main() + + diff --git a/runKemenyBasic.py b/runKemenyBasic.py new file mode 100644 index 0000000..f1f4435 --- /dev/null +++ b/runKemenyBasic.py @@ -0,0 +1,47 @@ +import sys +import prefpy +from prefpy import preference +from prefpy import profile +from prefpy import io + +from prefpy.kemeny import MechanismKemeny +from prefpy.profile import Profile +from prefpy.preference import Preference + +#===================================================================================== + +def main(): + + data = Profile({},[]) + # filename = "input1" + filename = input("Enter name of election data file: ").lower() + data.importPreflibFile(filename) + print("Imported file") + + kemenyMech = MechanismKemeny() + print("Created KemenyMechanism obj") + + kemWinner1 = kemenyMech.getWinners(data) + kemWinRank1 = kemenyMech.getWinningRankings() + print("W* = " + str(kemWinRank1) + ", winner = " + str(kemWinner1)) + print(data.candMap) + print(data.getWmg()) + + # data.exportPreflibFile(filename + "-output") + # print("Created output file") + + # myList = [(4, 'a', 'b'), (3, 'b', 'c'), (3, 'c', 'd'), (2, 'd', 'b'), (2, 'c', 'a'), (4, 'd', 'a')] + # #print(rankpairMech.getWinners(edges = myList)) + # print(rankpairMech.getWinners(prof = data)) + # print(rankpairMech.getOneWinner(data)) + # edgeList=rankpairMech.getSortedEdges(data) + # rankpairMech.createNXGraph(edgeList) + + + +#===================================================================================== + +if __name__ == '__main__': + main() + + From 9ab283099fde473ddfdd891a5c728a333c029ab1 Mon Sep 17 00:00:00 2001 From: Mole Date: Thu, 8 Dec 2016 20:10:23 -0500 Subject: [PATCH 05/17] Merged gurobi solution with prefpy kemenyILP now properly functions as a mechanism and can be used like any other prefpy mechanism but it uses gurobi to solve Kemeny as an ILP. --- prefpy/kemenyILP.py | 52 ++++++++++++++++---- runKemeny - Copy.py | 113 ++++++++++++++++++++++++++++++++++++++++++++ runKemeny.py | 30 +++++++----- 3 files changed, 172 insertions(+), 23 deletions(-) create mode 100644 runKemeny - Copy.py diff --git a/prefpy/kemenyILP.py b/prefpy/kemenyILP.py index 28dac6a..a420423 100644 --- a/prefpy/kemenyILP.py +++ b/prefpy/kemenyILP.py @@ -4,13 +4,14 @@ from prefpy.kemeny import MechanismKemeny from gurobipy import * +import numpy as np #===================================================================================== #===================================================================================== def precedenceMatrix(preferences, counts): n, m = sum(counts), len(preferences[0]) # n preferences, m candidates - print("m is", m) + #print("m is", m) Q = np.zeros((m,m)) for k in range(len(preferences)): vote = preferences[k] @@ -31,10 +32,11 @@ class MechanismKemenyILP(MechanismKemeny): def __init__(self): super(MechanismKemenyILP, self).__init__() + self.maximizeCandScore = True #===================================================================================== - def calcWinRanks(self, profile): + def getCandScoresMap(self, profile): """ Clears the self.winningRankings list, then fills it with any/all full rankings formed from the optimization of the ILP description: @@ -66,8 +68,8 @@ def calcWinRanks(self, profile): for j in range(i+1, len(keys)): # Create variables (2, 3) - binaryMap[(i,j)] = m.addVar(vtype=GRB.BINARY, name=candMap[i+1]+candMap[j+1]) - binaryMap[(j,i)] = m.addVar(vtype=GRB.BINARY, name=candMap[j+1]+candMap[i+1]) + binaryMap[(i,j)] = m.addVar(vtype=GRB.BINARY, name=candMap[i+1]) + binaryMap[(j,i)] = m.addVar(vtype=GRB.BINARY, name=candMap[j+1]) # Integrate new variables m.update() @@ -77,9 +79,11 @@ def calcWinRanks(self, profile): obj += precedence[j][i]*binaryMap[(i,j)] + precedence[i][j]*binaryMap[(j,i)] # Add transitivity constraint: X_ab + X_bc + X_ca >= 1 (5) - for i in range(len(keys)-2): - for j in range(i+1, len(keys)-1): - for k in range(j+1, len(keys)): + for i in range(len(keys)): + for j in range(len(keys)): + for k in range(len(keys)): + if(i == j or j == k or i == k): + continue m.addConstr(binaryMap[(i,j)] + binaryMap[(j,k)] + binaryMap[k, i] >= 1) # Set objective @@ -91,15 +95,36 @@ def calcWinRanks(self, profile): # print(v.varName, v.x) # print('Obj:', m.objVal) + solution = self.convertOptBinVarsToCandMap(m) + self.winningRankings = [] - self.winningRankings = self.convertOptBinVarsToRanking(m) + self.winningRankings = self.convertSolutionToRanking(solution) + + return solution except GurobiError: print('Gurobi Error reported') #===================================================================================== - def convertOptBinVarsToRanking(self, model): + def convertOptBinVarsToCandMap(self, model): + """ + Returns a dictonary that associates the integer representation of each candidate with + their place in the winning ranking. + + :ivar Tuple ranking: A tuple representing the winning order ranking of the canditates. + """ + candScoresMap = dict() + for v in model.getVars(): + if(v.varName in candScoresMap.keys()): + candScoresMap[v.varName] += v.x + else: + candScoresMap.update({v.varName:v.x}) + + + return candScoresMap + + def convertSolutionToRanking(self, model): """ Returns a list containing the ranking(s) formed from the values of the binary variables contained (and already optimized) by model. @@ -107,7 +132,14 @@ def convertOptBinVarsToRanking(self, model): :ivar Model model: A Gurobi Model object that has been set and optimized. """ # ??????????? - pass + + data = model.items() + sortedData = sorted(data, key=lambda tup: tup[1], reverse=True) + winningRanking = [] + for i in range(len(sortedData)): + winningRanking.append(sortedData[i][0]) + + return winningRanking #===================================================================================== #===================================================================================== diff --git a/runKemeny - Copy.py b/runKemeny - Copy.py new file mode 100644 index 0000000..8dd288e --- /dev/null +++ b/runKemeny - Copy.py @@ -0,0 +1,113 @@ +import sys +import prefpy +from prefpy import preference +from prefpy import profile +from prefpy import io + +from prefpy.kemeny import MechanismKemeny +from prefpy.profile import Profile +from prefpy.preference import Preference + +from gurobipy import * +import numpy as np +#===================================================================================== + +def preferenceMatrix(preferences, counts): + n, m = sum(counts), len(preferences[0]) # n preferences, m candidates + print("m is", m) + Q = np.zeros((m,m)) + for k in range(len(preferences)): + vote = preferences[k] + for i in range(len(vote) - 1): + for j in range(i + 1, len(vote)): + Q[vote[i][0]-1][vote[j][0]-1] += 1*counts[k] #Q[vote[i]][vote[j]] += 1 + return Q / n + + +def main(): + + data = Profile({},[]) + + + # filename = "input1" + filename = input("Enter name of election data file: ").lower() + data.importPreflibFile(filename) + print("Imported file") + + kemenyMech = MechanismKemeny() + #print("Created KemenyMechanism obj") + + kemWinner1 = kemenyMech.getWinners(data) + kemWinRank1 = kemenyMech.getWinningRankings() + print("W* = " + str(kemWinRank1) + ", winner = " + str(kemWinner1)) + + + print(data.getPreferenceCounts()) + print(data.getOrderVectors()) + print(preferenceMatrix(data.getOrderVectors(), data.getPreferenceCounts())) + print(data.candMap) + + try: + # Create a new model + m = Model("kemeny") + + binaryMap = {} + candMap = data.candMap + keys = candMap.keys() + print(keys) + precedence = preferenceMatrix(data.getOrderVectors(), data.getPreferenceCounts()) + obj = LinExpr() + for i in range(len(keys)-1): + for j in range(i+1, len(keys)): + + # Create variables + binaryMap[(i,j)] = m.addVar(vtype=GRB.BINARY, name=candMap[i+1]+candMap[j+1]) + binaryMap[(j,i)] = m.addVar(vtype=GRB.BINARY, name=candMap[j+1]+candMap[i+1]) + # Integrate new variables + m.update() + + # Add constraint: X_ab + X_ba = 1 + m.addConstr(binaryMap[(i,j)] + binaryMap[(j,i)] == 1) + obj += precedence[i][j]*binaryMap[(j,i)] + precedence[j][i]*binaryMap[(i,j)] + obj += precedence[j][i]*binaryMap[(i,j)] + precedence[i][j]*binaryMap[(j,i)] + + + for i in range(len(keys)-2): + for j in range(i+1, len(keys)-1): + for k in range(j+1, len(keys)): + m.addConstr(binaryMap[(i,j)] + binaryMap[(j,k)] + binaryMap[k, i] >= 1) + + # Set objective + m.setObjective(obj, GRB.MINIMIZE) + + m.optimize() + + print(precedence) + + for v in m.getVars(): + print(v.varName, v.x) + + print('Obj:', m.objVal) + + except GurobiError: + print('Error reported') + + + # data.exportPreflibFile(filename + "-output") + # print("Created output file") + + # myList = [(4, 'a', 'b'), (3, 'b', 'c'), (3, 'c', 'd'), (2, 'd', 'b'), (2, 'c', 'a'), (4, 'd', 'a')] + # #print(rankpairMech.getWinners(edges = myList)) + # print(rankpairMech.getWinners(prof = data)) + # print(rankpairMech.getOneWinner(data)) + # edgeList=rankpairMech.getSortedEdges(data) + # rankpairMech.createNXGraph(edgeList) + + + +#===================================================================================== + +if __name__ == '__main__': + main() + + diff --git a/runKemeny.py b/runKemeny.py index 1823739..1a9410d 100644 --- a/runKemeny.py +++ b/runKemeny.py @@ -4,7 +4,7 @@ from prefpy import profile from prefpy import io -from prefpy.kemeny import MechanismKemeny +from prefpy.kemenyILP import MechanismKemenyILP from prefpy.profile import Profile from prefpy.preference import Preference @@ -14,7 +14,7 @@ def preferenceMatrix(preferences, counts): n, m = sum(counts), len(preferences[0]) # n preferences, m candidates - print("m is", m) + #print("m is", m) Q = np.zeros((m,m)) for k in range(len(preferences)): vote = preferences[k] @@ -34,7 +34,7 @@ def main(): data.importPreflibFile(filename) print("Imported file") - kemenyMech = MechanismKemeny() + kemenyMech = MechanismKemenyILP() #print("Created KemenyMechanism obj") kemWinner1 = kemenyMech.getWinners(data) @@ -42,11 +42,11 @@ def main(): print("W* = " + str(kemWinRank1) + ", winner = " + str(kemWinner1)) - print(data.getPreferenceCounts()) - print(data.getOrderVectors()) - print(preferenceMatrix(data.getOrderVectors(), data.getPreferenceCounts())) - print(data.candMap) - + #print(data.getPreferenceCounts()) + #print(data.getOrderVectors()) + #print(preferenceMatrix(data.getOrderVectors(), data.getPreferenceCounts())) + #print(data.candMap) + """ try: # Create a new model m = Model("kemeny") @@ -61,8 +61,8 @@ def main(): for j in range(i+1, len(keys)): # Create variables - binaryMap[(i,j)] = m.addVar(vtype=GRB.BINARY, name=candMap[i+1]+candMap[j+1]) - binaryMap[(j,i)] = m.addVar(vtype=GRB.BINARY, name=candMap[j+1]+candMap[i+1]) + binaryMap[(i,j)] = m.addVar(vtype=GRB.BINARY, name=candMap[i+1]) + binaryMap[(j,i)] = m.addVar(vtype=GRB.BINARY, name=candMap[j+1]) # Integrate new variables m.update() @@ -72,9 +72,11 @@ def main(): obj += precedence[j][i]*binaryMap[(i,j)] + precedence[i][j]*binaryMap[(j,i)] - for i in range(len(keys)-2): - for j in range(i+1, len(keys)-1): - for k in range(j+1, len(keys)): + for i in range(len(keys)): + for j in range(len(keys)): + for k in range(len(keys)): + if(i == j or j == k or i == k): + continue m.addConstr(binaryMap[(i,j)] + binaryMap[(j,k)] + binaryMap[k, i] >= 1) # Set objective @@ -92,6 +94,8 @@ def main(): except GurobiError: print('Error reported') + """ + # data.exportPreflibFile(filename + "-output") # print("Created output file") From af15575bbd14a3c8a3cbce4a76828c8e55c74902 Mon Sep 17 00:00:00 2001 From: Mole Date: Thu, 8 Dec 2016 20:11:58 -0500 Subject: [PATCH 06/17] Removed mistake copy --- runKemeny - Copy.py | 113 -------------------------------------------- 1 file changed, 113 deletions(-) delete mode 100644 runKemeny - Copy.py diff --git a/runKemeny - Copy.py b/runKemeny - Copy.py deleted file mode 100644 index 8dd288e..0000000 --- a/runKemeny - Copy.py +++ /dev/null @@ -1,113 +0,0 @@ -import sys -import prefpy -from prefpy import preference -from prefpy import profile -from prefpy import io - -from prefpy.kemeny import MechanismKemeny -from prefpy.profile import Profile -from prefpy.preference import Preference - -from gurobipy import * -import numpy as np -#===================================================================================== - -def preferenceMatrix(preferences, counts): - n, m = sum(counts), len(preferences[0]) # n preferences, m candidates - print("m is", m) - Q = np.zeros((m,m)) - for k in range(len(preferences)): - vote = preferences[k] - for i in range(len(vote) - 1): - for j in range(i + 1, len(vote)): - Q[vote[i][0]-1][vote[j][0]-1] += 1*counts[k] #Q[vote[i]][vote[j]] += 1 - return Q / n - - -def main(): - - data = Profile({},[]) - - - # filename = "input1" - filename = input("Enter name of election data file: ").lower() - data.importPreflibFile(filename) - print("Imported file") - - kemenyMech = MechanismKemeny() - #print("Created KemenyMechanism obj") - - kemWinner1 = kemenyMech.getWinners(data) - kemWinRank1 = kemenyMech.getWinningRankings() - print("W* = " + str(kemWinRank1) + ", winner = " + str(kemWinner1)) - - - print(data.getPreferenceCounts()) - print(data.getOrderVectors()) - print(preferenceMatrix(data.getOrderVectors(), data.getPreferenceCounts())) - print(data.candMap) - - try: - # Create a new model - m = Model("kemeny") - - binaryMap = {} - candMap = data.candMap - keys = candMap.keys() - print(keys) - precedence = preferenceMatrix(data.getOrderVectors(), data.getPreferenceCounts()) - obj = LinExpr() - for i in range(len(keys)-1): - for j in range(i+1, len(keys)): - - # Create variables - binaryMap[(i,j)] = m.addVar(vtype=GRB.BINARY, name=candMap[i+1]+candMap[j+1]) - binaryMap[(j,i)] = m.addVar(vtype=GRB.BINARY, name=candMap[j+1]+candMap[i+1]) - # Integrate new variables - m.update() - - # Add constraint: X_ab + X_ba = 1 - m.addConstr(binaryMap[(i,j)] + binaryMap[(j,i)] == 1) - obj += precedence[i][j]*binaryMap[(j,i)] + precedence[j][i]*binaryMap[(i,j)] - obj += precedence[j][i]*binaryMap[(i,j)] + precedence[i][j]*binaryMap[(j,i)] - - - for i in range(len(keys)-2): - for j in range(i+1, len(keys)-1): - for k in range(j+1, len(keys)): - m.addConstr(binaryMap[(i,j)] + binaryMap[(j,k)] + binaryMap[k, i] >= 1) - - # Set objective - m.setObjective(obj, GRB.MINIMIZE) - - m.optimize() - - print(precedence) - - for v in m.getVars(): - print(v.varName, v.x) - - print('Obj:', m.objVal) - - except GurobiError: - print('Error reported') - - - # data.exportPreflibFile(filename + "-output") - # print("Created output file") - - # myList = [(4, 'a', 'b'), (3, 'b', 'c'), (3, 'c', 'd'), (2, 'd', 'b'), (2, 'c', 'a'), (4, 'd', 'a')] - # #print(rankpairMech.getWinners(edges = myList)) - # print(rankpairMech.getWinners(prof = data)) - # print(rankpairMech.getOneWinner(data)) - # edgeList=rankpairMech.getSortedEdges(data) - # rankpairMech.createNXGraph(edgeList) - - - -#===================================================================================== - -if __name__ == '__main__': - main() - - From f1832ef0fa1500c58a1e3339ff8ec4a2b2a69c48 Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Thu, 8 Dec 2016 20:30:25 -0500 Subject: [PATCH 07/17] Made simplified run file specifically for ILP --- runKemenyILP.py | 57 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 57 insertions(+) create mode 100644 runKemenyILP.py diff --git a/runKemenyILP.py b/runKemenyILP.py new file mode 100644 index 0000000..82aa39f --- /dev/null +++ b/runKemenyILP.py @@ -0,0 +1,57 @@ +import sys +import prefpy +from prefpy import preference +from prefpy import profile +from prefpy import io +from prefpy import kemenyILP + +from prefpy.kemeny import MechanismKemeny +from prefpy.kemenyILP import MechanismKemenyILP +from prefpy.profile import Profile +from prefpy.preference import Preference + +#===================================================================================== + +def main(): + + data = Profile({},[]) + + # filename = "input1" + filename = input("Enter name of election data file: ").lower() + data.importPreflibFile(filename) + print("Imported file") + + kemenyMechILP = MechanismKemenyILP() + print("Created KemenyMechanismILP obj") + + kemWinner1 = kemenyMechILP.getWinners(data) + print("Calculated ILP Winner(s)") + + # print(precedence) + # for v in m.getVars(): + # print(v.varName, v.x) + # print('Obj:', m.objVal) + + kemWinRank1 = kemenyMechILP.getWinningRankings() + print("W* = " + str(kemWinRank1) + ", winner = " + str(kemWinner1)) + + + + # data.exportPreflibFile(filename + "-output") + # print("Created output file") + + # myList = [(4, 'a', 'b'), (3, 'b', 'c'), (3, 'c', 'd'), (2, 'd', 'b'), (2, 'c', 'a'), (4, 'd', 'a')] + # #print(rankpairMech.getWinners(edges = myList)) + # print(rankpairMech.getWinners(prof = data)) + # print(rankpairMech.getOneWinner(data)) + # edgeList=rankpairMech.getSortedEdges(data) + # rankpairMech.createNXGraph(edgeList) + + + +#===================================================================================== + +if __name__ == '__main__': + main() + + From 12ea794d4ff8193aad0aaea59e047069609b317f Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 9 Dec 2016 03:04:38 -0500 Subject: [PATCH 08/17] Output formatting and new test data MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Cleaned up basic run file and added ability to specify input file on initial command line call. Created some output formatting functions to convert candidates from ints to their string names, display a ranking in visual rank format (eg. “a > b > c”), etc. --- input3 | 9 +++++++++ input4 | 7 +++++++ outputFormatting.py | 45 +++++++++++++++++++++++++++++++++++++++++++++ runKemenyBasic.py | 44 +++++++++++++++++++++++++++----------------- 4 files changed, 88 insertions(+), 17 deletions(-) create mode 100644 input3 create mode 100644 input4 create mode 100644 outputFormatting.py diff --git a/input3 b/input3 new file mode 100644 index 0000000..3478be0 --- /dev/null +++ b/input3 @@ -0,0 +1,9 @@ +3 +1,a +2,b +3,c +136,136,4 +53,1,2,3 +42,2,3,1 +27,3,1,2 +14,3,2,1 \ No newline at end of file diff --git a/input4 b/input4 new file mode 100644 index 0000000..3dd6c3c --- /dev/null +++ b/input4 @@ -0,0 +1,7 @@ +3 +1,a +2,b +3,c +6,6,2 +2,1,3,2 +4,2,1,3 \ No newline at end of file diff --git a/outputFormatting.py b/outputFormatting.py new file mode 100644 index 0000000..a911dcf --- /dev/null +++ b/outputFormatting.py @@ -0,0 +1,45 @@ + + +#===================================================================================== + +def convertCandIntsToNames(candsToConvert, candMap): + convertedCands = [] + for i, candInt in enumerate(candsToConvert): + if isinstance(candInt, int): + candStr = candMap[candInt] + else: + candStr = convertCandIntsToNames(candInt, candMap) + convertedCands.append(candStr) + if isinstance(candsToConvert, tuple): + convertedCands = tuple(convertedCands) + # print("ToConvert: ", str(candsToConvert)) + # print("Converted: ", str(convertedCands)) + return convertedCands + +#===================================================================================== + +def getRankingString(ranking): + rankStr = "" + for i, cand in enumerate(ranking): + if i != 0: + rankStr += " > " + rankStr += str(cand) + return rankStr + +#===================================================================================== + +def getDictString(dict): + dictStr = "" + line = "{s}{key}: {val}{e}" + for i, k in enumerate(dict.keys()): + start = "\n{ " if (i == 0) else " " + end = " }" if (i == len(dict)-1) else ",\n" + dictStr += line.format(s=start, key=k, val=dict[k], e=end) + return dictStr + +#===================================================================================== + + + + + \ No newline at end of file diff --git a/runKemenyBasic.py b/runKemenyBasic.py index f1f4435..591286b 100644 --- a/runKemenyBasic.py +++ b/runKemenyBasic.py @@ -7,25 +7,37 @@ from prefpy.kemeny import MechanismKemeny from prefpy.profile import Profile from prefpy.preference import Preference +from outputFormatting import * #===================================================================================== -def main(): +def main(argv): + if len(argv) > 1: + filename = argv[1] + else: + filename = input("Enter name of election data file: ").lower() data = Profile({},[]) - # filename = "input1" - filename = input("Enter name of election data file: ").lower() data.importPreflibFile(filename) - print("Imported file") - + print("Imported file '" + filename + "'") + + print("Candidates: ", data.candMap) + print("WMG: ", getDictString(data.getWmg()), "\n") + kemenyMech = MechanismKemeny() - print("Created KemenyMechanism obj") + # print("Created KemenyMechanism obj") + + kemWinners = kemenyMech.getWinners(data) + kemWinnersNames = convertCandIntsToNames(kemWinners, data.candMap) + + kemWinRanksBase = kemenyMech.getWinningRankings() + kemWinRanksNames = convertCandIntsToNames(kemWinRanksBase, data.candMap) - kemWinner1 = kemenyMech.getWinners(data) - kemWinRank1 = kemenyMech.getWinningRankings() - print("W* = " + str(kemWinRank1) + ", winner = " + str(kemWinner1)) - print(data.candMap) - print(data.getWmg()) + kemWinRankStrs = [] + for ranking in kemWinRanksNames: + kemWinRankStrs.append( getRankingString(ranking) ) + winnerPrint = "W* = {ranking}, winner(s) = {w}" + print( winnerPrint.format(ranking=kemWinRankStrs, w=kemWinnersNames) ) # data.exportPreflibFile(filename + "-output") # print("Created output file") @@ -33,15 +45,13 @@ def main(): # myList = [(4, 'a', 'b'), (3, 'b', 'c'), (3, 'c', 'd'), (2, 'd', 'b'), (2, 'c', 'a'), (4, 'd', 'a')] # #print(rankpairMech.getWinners(edges = myList)) # print(rankpairMech.getWinners(prof = data)) - # print(rankpairMech.getOneWinner(data)) - # edgeList=rankpairMech.getSortedEdges(data) - # rankpairMech.createNXGraph(edgeList) - - + # print(rankpairMech.getOneWinner(data)) + # edgeList=rankpairMech.getSortedEdges(data) + # rankpairMech.createNXGraph(edgeList) #===================================================================================== if __name__ == '__main__': - main() + main(sys.argv) From 4f0e27a192216279d802e87cb3304b66d58d3c46 Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 9 Dec 2016 04:53:00 -0500 Subject: [PATCH 09/17] Tweaks/changes to kemenyILP kemenyILP is now a direct subclass of Mechanism, not MechanismKemeny, since it does/overloads basically everything itself anyway. Added several member variables to store data so it could be printed from main after the calculations. Eliminated function to convert solution to ranking, and just integrated it into the main calculation and data variable setting. --- prefpy/kemenyILP.py | 82 +++++++++++++++++++++------------------------ runKemenyBasic.py | 31 +++++++++++++++-- 2 files changed, 67 insertions(+), 46 deletions(-) diff --git a/prefpy/kemenyILP.py b/prefpy/kemenyILP.py index a420423..230c6ca 100644 --- a/prefpy/kemenyILP.py +++ b/prefpy/kemenyILP.py @@ -2,7 +2,7 @@ Authors: Tobe Ezekwenna, Sam Saks-Fithian, Aman Zargarpur ''' -from prefpy.kemeny import MechanismKemeny +from prefpy.mechanism import Mechanism from gurobipy import * import numpy as np @@ -23,34 +23,46 @@ def precedenceMatrix(preferences, counts): #===================================================================================== #===================================================================================== -class MechanismKemenyILP(MechanismKemeny): +class MechanismKemenyILP(Mechanism): """ The Kemeny mechanism. Calculates winning ranking(s)/candidate(s) based on Gurobi - optimization of ILP formula. + optimization of ILP formula: + + Goal: minimize SUMMATION_a,b( Q_ab * X_ba + Q_ba * X_ab ) + where Q is the precedence matrix formed from profile + i.e. Q_ab is the fraction of times a>b across all rankings in profile + Constraints: + X_ab in {0, 1} + X_ab + X_ba = 1, for ALL a,b + X_ab + X_bc + X_ca >= 1, for ALL a,b,c + """ #===================================================================================== def __init__(self): - super(MechanismKemenyILP, self).__init__() self.maximizeCandScore = True + self.winningRanking = [] + self.precMtx = [] + self.gModel = None #===================================================================================== def getCandScoresMap(self, profile): """ - Clears the self.winningRankings list, then fills it with any/all full rankings formed - from the optimization of the ILP description: - - Goal: minimize SUMMATION_a,b( Q_ab * X_ba + Q_ba * X_ab ) - where Q is the precedence matrix formed from profile - i.e. Q_ab is the fraction of times a>b across all rankings in profile - Constraints: - X_ab in {0, 1} - X_ab + X_ba = 1, for ALL a,b - X_ab + X_bc + X_ca >= 1, for ALL a,b,c + Returns a dictonary that associates the integer representation of each candidate + with their score from the ILP optimization. The score for each candidate is the + sum of all the binary variables that represent preference with respect to another + candidate after optimization. + Sets/saves data variables for later use (self.winningRanking, self.precMtx, self.gModel) :ivar Profile profile: A Profile object that represents an election profile. """ + # Currently, we expect the profile to contain complete ordering over candidates. + elecType = profile.getElecType() + if elecType != "soc": + print("ERROR: unsupported election type") + exit() + try: # Create a new model m = Model("kemeny") @@ -95,52 +107,36 @@ def getCandScoresMap(self, profile): # print(v.varName, v.x) # print('Obj:', m.objVal) - solution = self.convertOptBinVarsToCandMap(m) + candScoresMap = self.convertBinVarsToCandMap(m.getVars()) - self.winningRankings = [] - self.winningRankings = self.convertSolutionToRanking(solution) - - return solution + self.winningRanking = sorted(candScoresMap, key=candScoresMap.get, reverse=True) + self.precMtx = precedence + self.gModel = m + + return candScoresMap except GurobiError: print('Gurobi Error reported') #===================================================================================== - def convertOptBinVarsToCandMap(self, model): + def convertBinVarsToCandMap(self, varList): """ - Returns a dictonary that associates the integer representation of each candidate with - their place in the winning ranking. + Returns a dictonary that associates the integer representation of each candidate + with their score from the ILP optimization. The score for each candidate is the + sum of all the binary variables that represent preference with respect to another + candidate after optimization. - :ivar Tuple ranking: A tuple representing the winning order ranking of the canditates. + :ivar List varList: A list of the binary variables set by the optimization of a Gurobi model. """ candScoresMap = dict() - for v in model.getVars(): + for v in varList: if(v.varName in candScoresMap.keys()): candScoresMap[v.varName] += v.x else: candScoresMap.update({v.varName:v.x}) - - return candScoresMap - def convertSolutionToRanking(self, model): - """ - Returns a list containing the ranking(s) formed from the values of the binary - variables contained (and already optimized) by model. - - :ivar Model model: A Gurobi Model object that has been set and optimized. - """ - # ??????????? - - data = model.items() - sortedData = sorted(data, key=lambda tup: tup[1], reverse=True) - winningRanking = [] - for i in range(len(sortedData)): - winningRanking.append(sortedData[i][0]) - - return winningRanking - #===================================================================================== #===================================================================================== diff --git a/runKemenyBasic.py b/runKemenyBasic.py index 591286b..d2f5aaa 100644 --- a/runKemenyBasic.py +++ b/runKemenyBasic.py @@ -21,8 +21,8 @@ def main(argv): data.importPreflibFile(filename) print("Imported file '" + filename + "'") - print("Candidates: ", data.candMap) - print("WMG: ", getDictString(data.getWmg()), "\n") + # print("Candidates: ", data.candMap) + # print("WMG: ", getDictString(data.getWmg()), "\n") kemenyMech = MechanismKemeny() # print("Created KemenyMechanism obj") @@ -30,7 +30,7 @@ def main(argv): kemWinners = kemenyMech.getWinners(data) kemWinnersNames = convertCandIntsToNames(kemWinners, data.candMap) - kemWinRanksBase = kemenyMech.getWinningRankings() + kemWinRanksBase = kemenyMech.winningRankings kemWinRanksNames = convertCandIntsToNames(kemWinRanksBase, data.candMap) kemWinRankStrs = [] @@ -39,6 +39,31 @@ def main(argv): winnerPrint = "W* = {ranking}, winner(s) = {w}" print( winnerPrint.format(ranking=kemWinRankStrs, w=kemWinnersNames) ) + candScoresMap = kemenyMech.getCandScoresMap(data) + print("candScores: ", candScoresMap) + # sortedData = sorted(candScoresMap.items(), key=lambda tup: tup[1]) + # print("sortedData: ", sortedData) + sortedData2 = sorted(candScoresMap, key=candScoresMap.get) + print("sortedData2: ", sortedData2) + # winningRanking = [] + # for i in range(len(sortedData)): + # winningRanking.append(sortedData[i][0]) + # print("winningRanking: ", winningRanking) + + varList = [('a', -0.0),('b', 1.0), ('a', -0.0),('c', 1.0), ('a', 1.0),('d', 0.0), ('b', -0.0),('c', 1.0), ('b', 1.0),('d', 0.0), ('c', 1.0),('d', 0.0)] + + candScoresMap2 = dict() + for v,x in varList: + if(v in candScoresMap2.keys()): + candScoresMap2[v] += x + else: + candScoresMap2[v] = x + + print("candScores2: ", candScoresMap2) + + sortedData3 = sorted(candScoresMap2, key=candScoresMap2.get, reverse=True) + print("sortedData3: ", sortedData3) + # data.exportPreflibFile(filename + "-output") # print("Created output file") From 37b84f121f4b64e3b39eb501634aa26887802e8a Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 9 Dec 2016 05:32:40 -0500 Subject: [PATCH 10/17] Cleaned up Classes and Mains Got rid of redundant/unused/random tests/old code bits --- prefpy/kemeny.py | 37 +++++--------------- prefpy/kemenyILP.py | 4 +-- runKemenyBasic.py | 45 ++++-------------------- runKemenyILP.py | 85 +++++++++++++++++++++++++++++++-------------- 4 files changed, 76 insertions(+), 95 deletions(-) diff --git a/prefpy/kemeny.py b/prefpy/kemeny.py index 9294040..98a1b65 100644 --- a/prefpy/kemeny.py +++ b/prefpy/kemeny.py @@ -37,25 +37,6 @@ def getCandScoresMap(self, profile): print("ERROR: unsupported election type") exit() - self.calcWinRanks(profile) - - # handle tie/multiple winning rankings - if len(self.winningRankings) > 1: - winRank = tiebreakRankings(self.winningRankings) - else: - winRank = self.winningRankings[0] - - return self.convertRankingToCandMap(winRank) - - #===================================================================================== - - def calcWinRanks(self, profile): - """ - Clears the self.winningRankings list, then fills it with any/all full rankings with - the lowest sum of edge weights inconsistent with the WMG of profile. - - :ivar Profile profile: A Profile object that represents an election profile. - """ rankWeights = dict() wmgMap = profile.getWmg() for ranking in itertools.permutations(wmgMap.keys()): @@ -79,6 +60,14 @@ def calcWinRanks(self, profile): if rankWeights[ranking] == bestScore: self.winningRankings.append(ranking) + # handle tie/multiple winning rankings + if len(self.winningRankings) > 1: + winRank = tiebreakRankings(self.winningRankings) + else: + winRank = self.winningRankings[0] + + return self.convertRankingToCandMap(winRank) + #===================================================================================== def convertRankingToCandMap(self, ranking): @@ -98,20 +87,12 @@ def convertRankingToCandMap(self, ranking): def tiebreakRankings(self, wRankings): """ - Returns a tuple that is the winning ranking. + Returns a tuple that is the single winning ranking. :ivar List wRankings: A list of tuples that represent preference rankings. """ return wRankings[0] - #===================================================================================== - - def getWinningRankings(self): - """ - Returns a list of the winning rankings found from last winner calculation. - """ - return self.winningRankings - #===================================================================================== #===================================================================================== diff --git a/prefpy/kemenyILP.py b/prefpy/kemenyILP.py index 230c6ca..9baa79b 100644 --- a/prefpy/kemenyILP.py +++ b/prefpy/kemenyILP.py @@ -131,10 +131,10 @@ def convertBinVarsToCandMap(self, varList): """ candScoresMap = dict() for v in varList: - if(v.varName in candScoresMap.keys()): + if v.varName in candScoresMap.keys(): candScoresMap[v.varName] += v.x else: - candScoresMap.update({v.varName:v.x}) + candScoresMap[v.varName] = v.x return candScoresMap #===================================================================================== diff --git a/runKemenyBasic.py b/runKemenyBasic.py index d2f5aaa..a67ec72 100644 --- a/runKemenyBasic.py +++ b/runKemenyBasic.py @@ -21,59 +21,28 @@ def main(argv): data.importPreflibFile(filename) print("Imported file '" + filename + "'") - # print("Candidates: ", data.candMap) - # print("WMG: ", getDictString(data.getWmg()), "\n") + print("Candidates: ", data.candMap) + print("WMG: ", getDictString(data.getWmg()), "\n") kemenyMech = MechanismKemeny() # print("Created KemenyMechanism obj") + # individual winner kemWinners = kemenyMech.getWinners(data) kemWinnersNames = convertCandIntsToNames(kemWinners, data.candMap) - kemWinRanksBase = kemenyMech.winningRankings + # winning ranking(s) + kemWinRanksBase = kemenyMech.winningRanking kemWinRanksNames = convertCandIntsToNames(kemWinRanksBase, data.candMap) + # winning ranking(s) formatted as strings in the form "a > b > c" kemWinRankStrs = [] for ranking in kemWinRanksNames: kemWinRankStrs.append( getRankingString(ranking) ) + winnerPrint = "W* = {ranking}, winner(s) = {w}" print( winnerPrint.format(ranking=kemWinRankStrs, w=kemWinnersNames) ) - candScoresMap = kemenyMech.getCandScoresMap(data) - print("candScores: ", candScoresMap) - # sortedData = sorted(candScoresMap.items(), key=lambda tup: tup[1]) - # print("sortedData: ", sortedData) - sortedData2 = sorted(candScoresMap, key=candScoresMap.get) - print("sortedData2: ", sortedData2) - # winningRanking = [] - # for i in range(len(sortedData)): - # winningRanking.append(sortedData[i][0]) - # print("winningRanking: ", winningRanking) - - varList = [('a', -0.0),('b', 1.0), ('a', -0.0),('c', 1.0), ('a', 1.0),('d', 0.0), ('b', -0.0),('c', 1.0), ('b', 1.0),('d', 0.0), ('c', 1.0),('d', 0.0)] - - candScoresMap2 = dict() - for v,x in varList: - if(v in candScoresMap2.keys()): - candScoresMap2[v] += x - else: - candScoresMap2[v] = x - - print("candScores2: ", candScoresMap2) - - sortedData3 = sorted(candScoresMap2, key=candScoresMap2.get, reverse=True) - print("sortedData3: ", sortedData3) - - # data.exportPreflibFile(filename + "-output") - # print("Created output file") - - # myList = [(4, 'a', 'b'), (3, 'b', 'c'), (3, 'c', 'd'), (2, 'd', 'b'), (2, 'c', 'a'), (4, 'd', 'a')] - # #print(rankpairMech.getWinners(edges = myList)) - # print(rankpairMech.getWinners(prof = data)) - # print(rankpairMech.getOneWinner(data)) - # edgeList=rankpairMech.getSortedEdges(data) - # rankpairMech.createNXGraph(edgeList) - #===================================================================================== if __name__ == '__main__': diff --git a/runKemenyILP.py b/runKemenyILP.py index 82aa39f..a43f818 100644 --- a/runKemenyILP.py +++ b/runKemenyILP.py @@ -3,55 +3,86 @@ from prefpy import preference from prefpy import profile from prefpy import io -from prefpy import kemenyILP -from prefpy.kemeny import MechanismKemeny from prefpy.kemenyILP import MechanismKemenyILP from prefpy.profile import Profile from prefpy.preference import Preference +from outputFormatting import * #===================================================================================== -def main(): +def main(argv): + if len(argv) > 1: + filename = argv[1] + else: + filename = input("Enter name of election data file: ").lower() data = Profile({},[]) - - # filename = "input1" - filename = input("Enter name of election data file: ").lower() data.importPreflibFile(filename) - print("Imported file") + print("Imported file '" + filename + "'") + + print("Candidates: ", data.candMap) + print("WMG: ", getDictString(data.getWmg()), "\n") - kemenyMechILP = MechanismKemenyILP() + kemenyMech = MechanismKemenyILP() print("Created KemenyMechanismILP obj") - kemWinner1 = kemenyMechILP.getWinners(data) + kemWinners = kemenyMech.getWinners(data) print("Calculated ILP Winner(s)") - # print(precedence) - # for v in m.getVars(): - # print(v.varName, v.x) - # print('Obj:', m.objVal) - - kemWinRank1 = kemenyMechILP.getWinningRankings() - print("W* = " + str(kemWinRank1) + ", winner = " + str(kemWinner1)) + # print precedence matrix + print("Precedence matrix: ", kemenyMech.precMtx) - - - # data.exportPreflibFile(filename + "-output") - # print("Created output file") + # print variables + print("Optimized Binary Variables: ") + for v in kemenyMech.gModel.getVars(): + print(v.varName, v.x) + + print('Obj: ', kemenyMech.gModel.objVal) + + # individual winner + kemWinners = kemenyMech.getWinners(data) + kemWinnersNames = convertCandIntsToNames(kemWinners, data.candMap) + + # winning ranking(s) + kemWinRanksBase = kemenyMech.winningRanking + kemWinRanksNames = convertCandIntsToNames(kemWinRanksBase, data.candMap) + + # winning ranking(s) formatted as strings in the form "a > b > c" + kemWinRankStrs = [] + for ranking in kemWinRanksNames: + kemWinRankStrs.append( getRankingString(ranking) ) + + winnerPrint = "W* = {ranking}, winner(s) = {w}" + print( winnerPrint.format(ranking=kemWinRankStrs, w=kemWinnersNames) ) + +#===================================================================================== + +def testVarSumScoreAndSortRanking(): + varList = [('a', -0.0),('b', 1.0), ('a', -0.0),('c', 1.0), ('a', 1.0),('d', 0.0), ('b', -0.0),('c', 1.0), ('b', 1.0),('d', 0.0), ('c', 1.0),('d', 0.0)] + candMap = [(1,"a"), (2,"b"), (3,"c"), (4,"d")] + + # sum binary variables + candScoresMap = dict() + for v,x in varList: + if(v in candScoresMap.keys()): + candScoresMap[v] += x + else: + candScoresMap[v] = x + print("candScoresMap: ", candScoresMap) - # myList = [(4, 'a', 'b'), (3, 'b', 'c'), (3, 'c', 'd'), (2, 'd', 'b'), (2, 'c', 'a'), (4, 'd', 'a')] - # #print(rankpairMech.getWinners(edges = myList)) - # print(rankpairMech.getWinners(prof = data)) - # print(rankpairMech.getOneWinner(data)) - # edgeList=rankpairMech.getSortedEdges(data) - # rankpairMech.createNXGraph(edgeList) + # sort solution scores to get ranking + sortedDataWithScores = sorted(candScoresMap.items(), key=lambda tup: tup[1], reverse=True) + print("sortedDataWithScores: ", sortedDataWithScores) + sortedDataRanking = sorted(candScoresMap, key=candScoresMap.get, reverse=True) + print("sortedDataRanking: ", sortedDataRanking) + print("Winning Ranking: ", getRankingString(sortedDataRanking)) #===================================================================================== if __name__ == '__main__': - main() + main(sys.argv) From b500200941aee0c5e99bbee64c8b3cce816a4bd0 Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 9 Dec 2016 06:07:03 -0500 Subject: [PATCH 11/17] Added ability to run multiple files at once from initial command line Added output formatting to change the keys of dictionaries from numbers to corresponding candidate names. --- outputFormatting.py | 22 +++++++++++++++++----- prefpy/kemeny.py | 2 +- prefpy/kemenyILP.py | 4 ++-- runKemenyBasic.py | 21 +++++++++++++++------ runKemenyILP.py | 17 ++++++++++++----- 5 files changed, 47 insertions(+), 19 deletions(-) diff --git a/outputFormatting.py b/outputFormatting.py index a911dcf..eaceeb3 100644 --- a/outputFormatting.py +++ b/outputFormatting.py @@ -18,6 +18,19 @@ def convertCandIntsToNames(candsToConvert, candMap): #===================================================================================== +def convertDictionaryCandIntsToNames(candDictToConvert, candMap): + convertedCands = dict() + for candInt, val in candDictToConvert.items(): + candStr = candMap[candInt] + if isinstance(val, dict): + val = convertDictionaryCandIntsToNames(val, candMap) + convertedCands[candStr] = val + # print("ToConvert: ", getDictString(candDictToConvert)) + # print("Converted: ", getDictString(convertedCands)) + return convertedCands + +#===================================================================================== + def getRankingString(ranking): rankStr = "" for i, cand in enumerate(ranking): @@ -28,13 +41,13 @@ def getRankingString(ranking): #===================================================================================== -def getDictString(dict): +def getDictString(dictionary): dictStr = "" line = "{s}{key}: {val}{e}" - for i, k in enumerate(dict.keys()): + for i, k in enumerate(dictionary.keys()): start = "\n{ " if (i == 0) else " " - end = " }" if (i == len(dict)-1) else ",\n" - dictStr += line.format(s=start, key=k, val=dict[k], e=end) + end = " }" if (i == len(dictionary)-1) else ",\n" + dictStr += line.format(s=start, key=k, val=dictionary[k], e=end) return dictStr #===================================================================================== @@ -42,4 +55,3 @@ def getDictString(dict): - \ No newline at end of file diff --git a/prefpy/kemeny.py b/prefpy/kemeny.py index 98a1b65..6a53405 100644 --- a/prefpy/kemeny.py +++ b/prefpy/kemeny.py @@ -62,7 +62,7 @@ def getCandScoresMap(self, profile): # handle tie/multiple winning rankings if len(self.winningRankings) > 1: - winRank = tiebreakRankings(self.winningRankings) + winRank = self.tiebreakRankings(self.winningRankings) else: winRank = self.winningRankings[0] diff --git a/prefpy/kemenyILP.py b/prefpy/kemenyILP.py index 9baa79b..ff4665d 100644 --- a/prefpy/kemenyILP.py +++ b/prefpy/kemenyILP.py @@ -41,7 +41,7 @@ class MechanismKemenyILP(Mechanism): def __init__(self): self.maximizeCandScore = True - self.winningRanking = [] + self.winningRankings = [] self.precMtx = [] self.gModel = None @@ -109,7 +109,7 @@ def getCandScoresMap(self, profile): candScoresMap = self.convertBinVarsToCandMap(m.getVars()) - self.winningRanking = sorted(candScoresMap, key=candScoresMap.get, reverse=True) + self.winningRankings = sorted(candScoresMap, key=candScoresMap.get, reverse=True) self.precMtx = precedence self.gModel = m diff --git a/runKemenyBasic.py b/runKemenyBasic.py index a67ec72..1e06c6b 100644 --- a/runKemenyBasic.py +++ b/runKemenyBasic.py @@ -12,17 +12,26 @@ #===================================================================================== def main(argv): - if len(argv) > 1: - filename = argv[1] - else: + if len(argv) == 1: filename = input("Enter name of election data file: ").lower() + solveFile(filename) + else: + for i in range(1, len(argv)): + print("============================{}============================".format(argv[i])) + solveFile(argv[i]) + print("------------------------end of {}------------------------\n".format(argv[i])) +#===================================================================================== + +def solveFile(filename): data = Profile({},[]) data.importPreflibFile(filename) print("Imported file '" + filename + "'") print("Candidates: ", data.candMap) - print("WMG: ", getDictString(data.getWmg()), "\n") + # print("WMG: ", getDictString(data.getWmg()), "\n") + print("WMG w/ names:", getDictString(convertDictionaryCandIntsToNames(data.getWmg(), data.candMap)), "\n" ) + kemenyMech = MechanismKemeny() # print("Created KemenyMechanism obj") @@ -32,7 +41,7 @@ def main(argv): kemWinnersNames = convertCandIntsToNames(kemWinners, data.candMap) # winning ranking(s) - kemWinRanksBase = kemenyMech.winningRanking + kemWinRanksBase = kemenyMech.winningRankings kemWinRanksNames = convertCandIntsToNames(kemWinRanksBase, data.candMap) # winning ranking(s) formatted as strings in the form "a > b > c" @@ -40,7 +49,7 @@ def main(argv): for ranking in kemWinRanksNames: kemWinRankStrs.append( getRankingString(ranking) ) - winnerPrint = "W* = {ranking}, winner(s) = {w}" + winnerPrint = "W* = {ranking}\nWinner(s) = {w}" print( winnerPrint.format(ranking=kemWinRankStrs, w=kemWinnersNames) ) #===================================================================================== diff --git a/runKemenyILP.py b/runKemenyILP.py index a43f818..0e7efc5 100644 --- a/runKemenyILP.py +++ b/runKemenyILP.py @@ -12,11 +12,18 @@ #===================================================================================== def main(argv): - if len(argv) > 1: - filename = argv[1] - else: + if len(argv) == 1: filename = input("Enter name of election data file: ").lower() + solveFile(filename) + else: + for i in range(1, len(argv)): + print("============================{}============================".format(argv[i])) + solveFile(argv[i]) + print("------------------------end of {}------------------------\n".format(argv[i])) + +#===================================================================================== +def solveFile(filename): data = Profile({},[]) data.importPreflibFile(filename) print("Imported file '" + filename + "'") @@ -45,7 +52,7 @@ def main(argv): kemWinnersNames = convertCandIntsToNames(kemWinners, data.candMap) # winning ranking(s) - kemWinRanksBase = kemenyMech.winningRanking + kemWinRanksBase = kemenyMech.winningRankings kemWinRanksNames = convertCandIntsToNames(kemWinRanksBase, data.candMap) # winning ranking(s) formatted as strings in the form "a > b > c" @@ -53,7 +60,7 @@ def main(argv): for ranking in kemWinRanksNames: kemWinRankStrs.append( getRankingString(ranking) ) - winnerPrint = "W* = {ranking}, winner(s) = {w}" + winnerPrint = "W* = {ranking}\nWinner(s) = {w}" print( winnerPrint.format(ranking=kemWinRankStrs, w=kemWinnersNames) ) #===================================================================================== From 91502eed6c6aac03ada2bd3d7f5685659149bf44 Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 9 Dec 2016 16:09:40 -0500 Subject: [PATCH 12/17] Created program to generate new input test case files --- generateInputProfile.py | 118 ++++++++++++++++++++++++++++++++++++++++ input5 | 11 ++++ input6 | 16 ++++++ input7 | 28 ++++++++++ 4 files changed, 173 insertions(+) create mode 100644 generateInputProfile.py create mode 100644 input5 create mode 100644 input6 create mode 100644 input7 diff --git a/generateInputProfile.py b/generateInputProfile.py new file mode 100644 index 0000000..ba3e8de --- /dev/null +++ b/generateInputProfile.py @@ -0,0 +1,118 @@ +import sys +import random +import itertools +import prefpy +from prefpy import preference +from prefpy import profile +from prefpy import io + +from prefpy.profile import Profile +from prefpy.preference import Preference +from outputFormatting import * + +#===================================================================================== + +def main(argv): + filename, numCands, numUniqueRankings, maxVotesPerRanking = handleInput(argv) + + candOptions = "0abcdefghijklmnopqrstuvwxyz" + candMap = dict() + for i in range(1, numCands+1): + candMap[i] = candOptions[i] + + preferencesList = [] + + allRankingOptions = [] + for ranking in itertools.permutations(candMap.keys()): + allRankingOptions.append(ranking) + + for i in range(numUniqueRankings): + rankNum = random.randint(0, len(allRankingOptions)) + ranking = allRankingOptions[rankNum] + wmgMap = genWmgMapFromRankMap( convertRankingToRankMap(ranking) ) + + voteCount = random.randint(0, maxVotesPerRanking) + + newPref = Preference(wmgMap,voteCount) + preferencesList.append(newPref) + + generatedProfile = Profile(candMap, preferencesList) + generatedProfile.exportPreflibFile(filename) + print("Generated file '" + filename + "'") + +#===================================================================================== + +def handleInput(argv): + if len(argv) >= 2: + filename = argv[1].lower() + else: + filename = input("Enter name of file to generate: ").lower() + if len(argv) >= 3: + numCands = int(argv[2]) + else: + numCands = int(input("Enter the number of candidates: ")) + if len(argv) >= 4: + numUniqueRankings = int(argv[3]) + else: + numUniqueRankings = int(input("Enter the number of unique votes/rankings: ")) + if len(argv) >= 5: + maxVotesPerRanking = int(argv[4]) + else: + maxVotesPerRanking = int(input("Enter the maximum number of votes for each ranking: ")) + + return filename, numCands, numUniqueRankings, maxVotesPerRanking + +#===================================================================================== + +def convertRankingToRankMap(ranking): + rankMap = dict() + for i, cand in enumerate(ranking): + rankMap[cand] = i + return rankMap + +#===================================================================================== + +def genWmgMapFromRankMap(rankMap): + """ + Converts a single rankMap into a weighted majorty graph (wmg). We return the wmg as a + two-dimensional dictionary that associates integer representations of each pair of candidates, + cand1 and cand2, with the number of times cand1 is ranked above cand2 minus the number of times + cand2 is ranked above cand1. + + :ivar dict rankMap: Associates integer representations of each candidate with its + ranking in a single vote. + """ + + wmgMap = dict() + for cand1, cand2 in itertools.combinations(rankMap.keys(), 2): + + # Check whether or not the candidates are already present in the dictionary. + if cand1 not in wmgMap.keys(): + wmgMap[cand1] = dict() + if cand2 not in wmgMap.keys(): + wmgMap[cand2] = dict() + + # Check which candidate is ranked above the other. Then assign 1 or -1 as appropriate. + if rankMap[cand1] < rankMap[cand2]: + wmgMap[cand1][cand2] = 1 + wmgMap[cand2][cand1] = -1 + elif rankMap[cand1] > rankMap[cand2]: + wmgMap[cand1][cand2] = -1 + wmgMap[cand2][cand1] = 1 + + # If the two candidates are tied, We make 0 the number of edges between them. + elif rankMap[cand1] == rankMap[cand2]: + wmgMap[cand1][cand2] = 0 + wmgMap[cand2][cand1] = 0 + + return wmgMap + +#===================================================================================== + +if __name__ == '__main__': + main(sys.argv) + + + + + diff --git a/input5 b/input5 new file mode 100644 index 0000000..ece362b --- /dev/null +++ b/input5 @@ -0,0 +1,11 @@ +4 +1,a +2,b +3,c +4,d +23,23,5 +3,2,4,3,1 +7,3,2,4,1 +5,2,1,3,4 +2,1,3,4,2 +6,4,1,3,2 \ No newline at end of file diff --git a/input6 b/input6 new file mode 100644 index 0000000..0a52290 --- /dev/null +++ b/input6 @@ -0,0 +1,16 @@ +6 +1,a +2,b +3,c +4,d +5,e +6,f +43,43,8 +9,6,1,4,5,3,2 +5,4,3,2,5,1,6 +7,3,5,6,1,2,4 +11,5,1,4,3,2,6 +6,5,1,6,4,3,2 +2,6,3,4,5,1,2 +2,2,1,6,4,5,3 +1,5,6,4,1,2,3 \ No newline at end of file diff --git a/input7 b/input7 new file mode 100644 index 0000000..bcf7356 --- /dev/null +++ b/input7 @@ -0,0 +1,28 @@ +6 +1,a +2,b +3,c +4,d +5,e +6,f +119,119,20 +12,6,4,1,5,3,2 +1,2,4,3,6,1,5 +2,3,6,2,1,4,5 +9,4,6,5,2,3,1 +1,3,2,1,6,4,5 +8,2,5,1,4,6,3 +11,6,2,3,4,5,1 +7,1,5,3,4,6,2 +8,4,2,3,5,1,6 +12,4,1,6,2,5,3 +1,6,3,4,1,5,2 +10,5,4,6,1,3,2 +4,1,2,4,6,5,3 +10,6,4,2,3,5,1 +7,5,4,3,6,1,2 +5,2,5,6,4,3,1 +1,1,3,4,2,6,5 +3,3,2,1,6,5,4 +4,5,2,6,1,3,4 +3,4,2,3,1,6,5 \ No newline at end of file From a45eb789a265b53cc538cb1b48008fae8fae3fec Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 9 Dec 2016 16:27:57 -0500 Subject: [PATCH 13/17] Tweaked input generation MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Super memory inefficient so won’t generate large files. Will fix soon. --- generateInputProfile.py | 2 + input8 | 1010 +++++++++++++++++++++++++++++++++++++++ 2 files changed, 1012 insertions(+) create mode 100644 input8 diff --git a/generateInputProfile.py b/generateInputProfile.py index ba3e8de..b321fb2 100644 --- a/generateInputProfile.py +++ b/generateInputProfile.py @@ -22,6 +22,8 @@ def main(argv): preferencesList = [] + '''TODO: pick indices first, only store a certain number of rankings at any one time and + delete old ones until reaching the desired index''' allRankingOptions = [] for ranking in itertools.permutations(candMap.keys()): allRankingOptions.append(ranking) diff --git a/input8 b/input8 new file mode 100644 index 0000000..cd66b82 --- /dev/null +++ b/input8 @@ -0,0 +1,1010 @@ +8 +1,a +2,b +3,c +4,d +5,e +6,f +7,g +8,h +49444,49444,1000 +23,4,8,3,1,6,5,2,7 +4,2,8,3,6,4,7,5,1 +54,7,6,4,5,2,8,1,3 +74,8,7,1,4,3,5,6,2 +72,8,5,3,4,1,6,2,7 +87,6,5,3,1,7,8,2,4 +95,4,3,5,2,8,1,7,6 +9,1,8,7,5,3,6,4,2 +29,7,2,1,6,3,5,4,8 +67,3,7,8,1,5,6,4,2 +10,5,3,8,7,2,1,6,4 +70,5,3,6,1,4,8,2,7 +48,5,7,1,2,6,3,8,4 +82,8,7,6,3,1,4,5,2 +68,7,1,5,2,8,3,6,4 +36,4,2,5,7,6,3,8,1 +86,4,6,5,2,3,1,7,8 +81,7,2,8,5,6,1,4,3 +24,8,4,2,6,7,5,1,3 +56,2,8,3,6,4,1,5,7 +17,7,5,1,8,2,3,4,6 +91,2,7,3,6,1,8,5,4 +88,5,6,8,1,7,2,4,3 +43,5,1,2,3,6,8,4,7 +48,3,2,8,7,5,6,1,4 +44,6,1,7,8,4,3,2,5 +52,3,5,1,6,2,7,8,4 +5,3,8,2,5,7,1,4,6 +39,3,4,5,2,8,7,6,1 +36,2,3,1,4,8,6,7,5 +67,4,2,3,8,7,5,6,1 +98,1,2,8,5,4,6,7,3 +48,5,8,7,6,3,1,4,2 +88,3,2,4,7,8,6,5,1 +53,7,4,2,8,1,3,6,5 +21,8,2,5,3,4,1,6,7 +14,8,5,7,1,4,6,2,3 +8,8,5,4,1,2,7,3,6 +66,1,8,5,2,3,7,6,4 +73,1,5,4,8,6,3,2,7 +17,8,3,1,4,7,6,2,5 +86,3,6,5,8,4,1,7,2 +98,8,2,4,7,1,5,6,3 +23,4,3,8,5,7,6,2,1 +47,2,1,7,6,5,8,4,3 +70,1,3,8,4,5,7,6,2 +38,4,8,1,6,3,7,5,2 +87,2,4,1,8,6,7,3,5 +95,6,2,1,3,4,5,7,8 +74,4,6,1,8,2,7,3,5 +79,2,3,4,6,1,8,5,7 +57,8,6,3,4,7,5,1,2 +65,3,7,5,1,4,6,2,8 +59,3,5,7,2,6,8,1,4 +10,2,8,5,3,4,7,6,1 +34,8,7,5,2,3,4,1,6 +93,2,6,4,7,8,3,1,5 +86,8,5,6,3,7,1,4,2 +63,5,6,8,3,1,4,7,2 +21,1,7,5,4,6,2,3,8 +14,3,5,8,4,2,1,6,7 +25,6,3,4,2,7,1,8,5 +69,3,6,2,1,4,8,7,5 +90,5,7,4,1,2,3,6,8 +85,6,2,1,5,3,7,4,8 +36,1,4,5,7,8,6,2,3 +76,2,3,7,1,8,5,6,4 +96,1,3,7,6,8,5,4,2 +92,7,2,8,1,5,3,6,4 +85,2,5,8,6,3,1,7,4 +47,3,8,5,2,6,7,1,4 +68,6,8,4,2,1,3,7,5 +38,2,3,5,6,8,4,7,1 +0,8,3,5,4,7,2,6,1 +11,6,8,5,4,1,3,2,7 +95,2,5,6,1,3,4,7,8 +99,1,7,6,2,8,3,5,4 +26,1,7,8,2,4,5,3,6 +91,1,3,8,5,6,4,7,2 +39,2,5,6,7,4,8,3,1 +60,8,5,4,7,1,2,3,6 +80,2,3,5,7,1,8,6,4 +3,1,4,6,7,8,2,3,5 +48,4,8,3,1,5,2,6,7 +52,2,7,6,1,3,8,5,4 +72,3,7,8,4,1,5,2,6 +100,2,5,7,4,3,6,8,1 +98,7,1,4,6,2,3,5,8 +59,3,2,5,6,4,8,1,7 +80,8,7,5,1,6,4,3,2 +40,4,3,1,8,6,5,7,2 +25,2,4,6,5,8,1,3,7 +27,6,4,7,8,3,5,1,2 +57,2,1,5,4,7,6,8,3 +84,7,3,6,1,2,4,5,8 +79,2,8,7,5,1,3,4,6 +44,1,3,4,5,8,7,6,2 +63,1,7,8,6,2,3,5,4 +6,5,6,4,7,3,8,1,2 +49,5,8,4,3,2,1,6,7 +66,5,1,4,6,7,2,3,8 +98,6,4,3,2,7,8,5,1 +100,7,1,8,3,2,5,6,4 +52,5,6,4,3,1,8,7,2 +71,6,1,8,3,2,5,4,7 +62,7,3,5,8,4,2,1,6 +11,7,1,5,3,2,6,8,4 +24,8,6,2,1,5,3,7,4 +54,7,1,5,4,2,8,6,3 +46,1,3,6,2,4,8,5,7 +86,7,2,3,1,4,6,8,5 +66,8,4,6,5,2,1,7,3 +77,1,8,2,6,5,4,3,7 +82,6,5,1,2,7,4,3,8 +1,1,6,4,7,3,8,5,2 +59,5,2,7,8,3,6,1,4 +64,7,5,3,6,4,2,1,8 +23,3,4,2,1,5,6,8,7 +38,2,4,8,7,5,6,3,1 +95,6,4,3,8,5,7,1,2 +92,3,6,5,4,2,7,8,1 +79,7,2,3,1,4,6,5,8 +93,8,7,4,6,5,2,3,1 +1,6,4,7,1,2,5,8,3 +95,4,1,2,6,5,3,7,8 +63,3,7,4,5,6,2,8,1 +50,3,5,2,6,7,8,1,4 +26,4,1,5,7,3,6,2,8 +75,1,6,3,5,4,7,8,2 +45,5,7,4,3,8,6,1,2 +27,7,6,1,2,4,5,3,8 +14,1,4,3,7,8,5,2,6 +89,1,8,5,7,2,6,3,4 +11,5,8,2,7,6,1,4,3 +24,3,2,7,8,5,6,1,4 +81,8,3,7,4,1,6,5,2 +45,4,3,6,7,5,2,1,8 +10,8,6,3,2,1,4,7,5 +41,2,8,6,4,5,1,7,3 +14,4,2,6,3,7,1,5,8 +90,7,1,6,4,8,3,2,5 +27,7,6,5,3,4,2,8,1 +33,8,1,3,4,7,5,2,6 +26,6,2,3,1,7,4,8,5 +11,2,6,5,3,8,7,1,4 +33,4,8,5,7,2,3,6,1 +44,4,8,3,2,6,5,7,1 +18,7,5,2,6,8,1,4,3 +45,4,1,5,8,7,3,6,2 +95,4,3,2,6,5,8,7,1 +90,4,1,5,7,6,3,2,8 +70,2,4,5,7,1,6,8,3 +94,5,8,6,7,2,3,4,1 +9,1,7,4,2,5,3,8,6 +69,5,2,3,4,6,7,8,1 +90,1,2,7,4,5,3,6,8 +100,1,3,4,5,8,6,2,7 +7,1,7,5,6,8,2,4,3 +94,7,5,1,2,3,4,6,8 +87,2,6,3,5,7,1,8,4 +20,6,1,3,5,2,4,8,7 +44,7,3,8,1,4,5,6,2 +93,5,3,1,4,2,8,7,6 +57,3,4,8,6,1,5,7,2 +96,4,5,3,1,8,2,7,6 +14,5,4,8,2,1,6,3,7 +94,7,4,3,8,1,6,2,5 +99,2,5,4,3,1,8,7,6 +6,7,1,8,5,3,4,2,6 +9,6,4,3,2,1,5,7,8 +31,4,2,1,8,6,7,5,3 +2,5,6,4,7,8,3,2,1 +54,4,1,2,5,8,7,6,3 +6,6,4,2,5,3,7,8,1 +88,5,4,3,8,6,1,2,7 +37,1,7,2,4,3,8,5,6 +57,7,1,3,6,4,5,8,2 +76,6,7,1,3,5,2,4,8 +8,8,1,4,7,5,3,2,6 +16,1,5,2,7,4,3,6,8 +40,4,3,2,1,5,8,7,6 +61,3,7,8,4,5,1,2,6 +37,7,6,8,1,2,5,3,4 +8,2,1,4,6,3,5,7,8 +76,5,7,6,4,2,8,3,1 +59,1,5,2,3,6,4,7,8 +53,8,4,2,6,5,7,1,3 +79,3,4,5,8,1,2,6,7 +74,1,8,6,4,2,7,5,3 +37,3,7,2,1,8,6,4,5 +90,1,7,8,4,2,6,3,5 +79,1,2,3,7,4,5,6,8 +51,1,6,5,4,3,2,7,8 +59,2,7,4,3,6,5,1,8 +32,2,1,8,5,4,3,6,7 +73,7,3,5,6,4,1,2,8 +45,1,5,6,8,2,7,3,4 +73,1,3,4,8,6,2,7,5 +14,2,7,6,4,1,5,3,8 +88,1,2,5,7,8,3,6,4 +62,6,4,5,3,2,8,1,7 +67,4,1,2,8,7,3,5,6 +15,1,6,3,2,4,5,7,8 +20,7,5,6,1,8,2,4,3 +46,4,1,8,7,3,5,6,2 +58,3,4,8,2,7,1,5,6 +32,4,6,7,8,2,5,3,1 +18,7,5,6,4,3,1,8,2 +65,3,8,1,2,4,7,6,5 +35,4,8,3,7,1,2,5,6 +21,5,6,3,2,8,7,1,4 +71,2,3,1,5,8,7,4,6 +61,1,7,8,3,5,6,4,2 +98,7,5,4,2,1,8,3,6 +43,6,7,3,1,8,2,4,5 +42,7,4,2,8,1,6,5,3 +64,5,8,2,7,4,1,3,6 +94,1,4,5,6,7,8,2,3 +32,6,4,5,3,8,1,2,7 +94,6,1,8,3,4,2,7,5 +20,1,8,4,3,2,7,5,6 +76,1,2,5,6,3,4,7,8 +89,1,5,7,2,6,8,3,4 +47,6,2,4,1,7,5,3,8 +94,1,6,2,7,3,5,8,4 +49,5,6,8,7,1,3,2,4 +77,8,2,6,1,7,5,4,3 +27,4,5,3,6,8,2,7,1 +58,2,3,7,5,6,4,1,8 +90,6,2,8,4,5,3,7,1 +50,6,3,1,5,8,7,2,4 +89,8,7,3,6,5,4,1,2 +29,3,6,7,2,4,5,1,8 +58,7,8,3,2,6,5,1,4 +72,1,7,3,4,8,5,2,6 +65,4,6,1,5,2,8,3,7 +57,8,3,1,4,6,2,5,7 +52,5,6,7,3,2,8,1,4 +3,3,7,4,8,6,5,1,2 +29,1,4,5,7,3,2,8,6 +42,2,4,6,3,1,5,8,7 +34,2,3,5,4,8,7,6,1 +77,3,7,2,6,5,8,1,4 +41,6,3,2,7,8,4,5,1 +38,1,5,3,6,4,2,7,8 +24,8,4,6,2,1,3,5,7 +51,2,8,6,7,4,1,5,3 +3,3,8,1,5,4,7,6,2 +57,3,4,1,6,5,7,8,2 +70,8,7,4,6,2,1,5,3 +58,6,2,3,5,4,8,7,1 +42,3,1,6,2,5,7,8,4 +47,8,1,4,2,5,6,3,7 +81,8,2,4,3,7,5,1,6 +28,6,8,3,4,2,5,7,1 +58,1,3,8,7,4,2,5,6 +46,4,3,6,7,5,2,8,1 +51,3,7,5,8,4,1,6,2 +49,4,6,7,8,5,3,1,2 +27,5,7,8,4,2,1,3,6 +85,2,6,5,8,4,7,1,3 +45,1,6,3,5,2,7,8,4 +91,5,7,6,1,4,8,3,2 +9,7,2,5,3,4,6,8,1 +58,8,6,7,2,5,4,1,3 +82,8,2,3,7,4,5,6,1 +1,5,8,4,1,7,6,3,2 +89,4,2,7,3,5,6,1,8 +56,2,4,6,1,5,3,7,8 +49,1,8,4,5,2,7,3,6 +36,6,7,8,5,2,4,1,3 +30,7,1,3,2,5,6,4,8 +1,7,5,1,4,2,6,8,3 +89,1,5,2,3,6,7,8,4 +15,5,7,4,1,2,3,6,8 +59,4,2,8,6,7,5,3,1 +84,7,3,1,4,2,6,8,5 +28,7,4,2,1,5,6,8,3 +76,6,5,4,3,7,1,8,2 +54,4,7,1,5,6,3,8,2 +50,8,1,5,7,4,2,6,3 +40,5,8,4,7,2,6,1,3 +2,5,2,8,6,1,4,7,3 +19,6,3,8,4,2,7,5,1 +16,3,7,1,2,6,8,5,4 +80,6,7,5,3,1,8,4,2 +9,5,8,4,3,2,7,6,1 +50,5,4,7,8,1,3,2,6 +96,6,7,1,8,2,5,4,3 +7,6,1,2,3,5,4,7,8 +96,3,5,2,8,4,1,7,6 +81,8,3,1,5,2,4,6,7 +1,7,1,6,8,4,5,3,2 +1,3,5,6,7,2,1,8,4 +52,7,4,6,5,2,1,8,3 +34,4,2,7,8,3,6,5,1 +84,2,1,8,6,4,5,7,3 +88,5,3,1,4,8,6,7,2 +47,3,4,5,7,6,2,8,1 +31,3,5,1,2,7,8,6,4 +68,7,6,2,3,5,4,8,1 +74,8,6,7,1,2,5,3,4 +6,7,2,3,4,1,6,5,8 +36,3,7,4,5,8,6,2,1 +68,2,7,8,1,4,3,6,5 +22,8,2,3,6,1,5,4,7 +23,4,6,1,7,3,5,2,8 +14,8,1,2,7,6,5,4,3 +6,2,1,5,3,8,7,4,6 +98,5,7,2,3,1,6,4,8 +74,7,4,6,5,2,8,3,1 +27,2,8,3,1,7,4,5,6 +20,5,1,6,7,8,2,4,3 +63,1,2,8,4,3,5,7,6 +79,5,3,7,1,6,2,4,8 +28,8,2,3,1,6,4,5,7 +22,8,7,5,2,4,6,3,1 +41,3,1,2,4,6,8,7,5 +31,1,6,2,5,8,3,7,4 +22,4,8,1,7,3,6,5,2 +52,5,7,6,2,4,8,1,3 +56,3,6,5,4,7,2,8,1 +1,2,1,7,5,6,8,4,3 +24,6,4,2,7,8,5,1,3 +12,7,6,3,2,5,1,8,4 +8,1,3,8,7,2,4,5,6 +77,2,7,6,5,4,1,8,3 +78,7,3,1,2,5,6,4,8 +5,7,6,1,3,4,5,8,2 +81,2,6,8,4,3,1,7,5 +18,2,5,3,4,1,7,6,8 +54,5,3,4,6,7,2,1,8 +26,3,1,5,2,6,7,4,8 +51,4,2,3,1,8,7,5,6 +20,3,8,6,2,7,1,4,5 +27,7,2,4,8,6,1,5,3 +62,3,7,4,6,5,1,8,2 +50,3,8,7,5,6,2,4,1 +62,7,6,5,1,4,2,3,8 +94,7,4,5,2,6,1,3,8 +52,5,3,6,2,4,7,1,8 +40,4,8,6,2,7,5,1,3 +62,3,5,8,1,6,7,4,2 +16,7,2,4,1,8,6,5,3 +72,1,7,8,5,3,6,2,4 +87,4,1,7,8,2,3,6,5 +37,5,7,3,8,1,4,2,6 +71,1,8,5,2,7,3,6,4 +4,7,2,8,3,1,5,6,4 +100,1,7,4,3,6,2,5,8 +3,5,6,7,8,4,2,3,1 +28,1,6,2,4,3,8,5,7 +62,7,8,2,5,6,4,1,3 +10,3,1,4,5,8,7,6,2 +55,8,4,1,7,2,6,5,3 +21,7,5,1,6,3,4,8,2 +67,4,2,6,7,5,1,8,3 +11,5,3,7,6,4,1,8,2 +27,6,3,8,7,4,1,5,2 +87,1,2,8,7,6,4,3,5 +68,4,1,2,6,3,7,5,8 +15,7,6,4,8,2,1,5,3 +19,4,2,7,3,6,8,5,1 +82,2,6,8,1,5,3,4,7 +50,2,7,3,4,1,5,8,6 +16,8,3,6,5,2,7,1,4 +55,4,3,7,2,6,8,5,1 +59,8,2,3,4,1,6,7,5 +47,1,5,2,8,4,6,3,7 +42,3,1,2,7,4,6,8,5 +30,1,5,2,4,3,7,6,8 +55,1,8,2,5,3,7,6,4 +43,1,6,7,3,4,5,2,8 +7,6,3,8,1,7,2,5,4 +90,4,3,5,1,2,7,8,6 +93,8,7,6,1,2,3,4,5 +48,1,6,5,7,3,8,2,4 +43,7,1,3,5,2,4,6,8 +89,3,5,4,1,2,8,7,6 +36,7,2,3,6,4,5,8,1 +59,1,3,7,8,2,5,4,6 +22,5,7,3,2,1,6,4,8 +94,5,3,2,1,8,4,6,7 +9,8,5,3,4,7,6,2,1 +63,4,3,5,8,7,2,1,6 +54,5,7,3,8,2,1,4,6 +33,8,2,4,7,1,5,3,6 +77,5,4,8,6,7,1,2,3 +24,2,1,7,4,3,6,5,8 +15,8,6,3,4,7,2,5,1 +70,3,1,7,5,8,2,4,6 +12,2,1,6,8,7,5,4,3 +17,8,4,1,2,7,3,6,5 +39,1,8,7,5,3,2,6,4 +12,2,5,1,7,8,4,6,3 +35,6,4,2,8,3,7,5,1 +50,3,8,2,6,7,1,4,5 +38,6,5,8,7,1,3,4,2 +33,4,8,1,3,5,2,7,6 +86,3,7,5,6,2,1,4,8 +18,2,5,4,3,6,1,8,7 +2,4,2,8,7,6,3,1,5 +63,5,8,2,4,3,1,6,7 +67,1,4,2,3,6,5,7,8 +97,5,2,6,3,4,1,8,7 +98,2,3,4,7,6,1,8,5 +66,5,6,7,4,1,8,3,2 +9,3,5,2,4,6,7,8,1 +18,7,4,2,1,6,3,5,8 +33,2,3,5,1,6,4,8,7 +25,3,7,2,8,1,5,6,4 +84,3,8,5,1,2,7,6,4 +15,7,8,6,2,1,4,3,5 +41,7,1,6,5,8,4,2,3 +47,5,3,8,4,1,2,6,7 +14,3,2,6,5,4,1,7,8 +9,1,7,3,5,2,8,6,4 +29,4,8,1,5,6,3,2,7 +5,3,5,1,2,8,6,4,7 +57,1,4,5,2,7,8,3,6 +21,4,3,2,7,1,8,6,5 +74,7,1,4,2,8,5,6,3 +73,3,2,5,8,4,7,6,1 +32,5,7,3,4,8,1,6,2 +83,7,6,2,3,4,8,5,1 +75,1,6,5,8,4,3,2,7 +30,4,6,1,5,8,7,3,2 +35,5,7,3,4,1,8,6,2 +55,2,7,6,3,8,5,4,1 +32,3,5,6,4,1,8,7,2 +6,2,1,5,7,3,4,6,8 +89,7,6,3,8,5,1,2,4 +47,1,5,3,4,2,8,6,7 +75,3,7,5,2,6,8,1,4 +15,3,6,5,8,7,2,1,4 +55,1,3,6,4,8,2,7,5 +77,3,7,8,4,5,2,1,6 +25,5,4,7,1,2,8,6,3 +16,2,5,4,8,7,6,1,3 +74,7,3,5,2,4,1,6,8 +94,1,6,7,2,3,5,4,8 +92,2,7,8,3,1,5,4,6 +72,8,3,2,4,7,1,5,6 +33,2,3,8,5,1,7,6,4 +85,7,1,6,5,4,8,3,2 +63,7,6,8,1,5,2,4,3 +51,3,7,6,5,2,8,1,4 +28,1,8,6,3,7,2,4,5 +12,5,4,1,2,8,6,3,7 +12,2,7,4,3,8,1,6,5 +78,2,6,5,8,4,7,3,1 +17,8,4,2,5,6,1,3,7 +39,3,8,1,6,4,7,2,5 +87,2,5,6,4,7,8,1,3 +0,4,8,6,2,7,3,1,5 +5,4,6,1,8,5,7,3,2 +4,1,6,5,3,2,8,4,7 +8,4,6,3,1,7,8,2,5 +81,2,4,5,7,6,8,3,1 +51,3,1,2,6,8,4,7,5 +55,2,8,3,1,7,5,6,4 +33,2,7,4,1,5,8,6,3 +26,3,6,4,2,1,5,7,8 +23,5,2,3,1,7,4,8,6 +62,1,6,5,4,8,2,3,7 +57,2,4,6,5,1,3,8,7 +98,1,5,4,7,3,2,8,6 +47,2,1,8,3,5,7,6,4 +64,4,1,6,5,3,8,7,2 +15,4,7,1,3,2,5,6,8 +74,2,6,1,8,7,5,4,3 +96,6,1,7,5,2,4,8,3 +54,7,6,3,5,8,2,4,1 +83,6,1,7,3,4,8,2,5 +91,1,3,6,7,8,4,2,5 +95,4,1,7,3,6,8,5,2 +78,6,4,3,1,5,8,7,2 +55,1,2,8,6,7,3,5,4 +55,1,2,6,5,3,8,4,7 +57,7,3,4,1,2,8,6,5 +1,7,1,8,3,6,4,2,5 +59,3,6,8,5,7,4,2,1 +88,2,5,8,7,6,3,4,1 +36,4,5,2,1,6,3,8,7 +39,1,4,5,6,8,2,3,7 +6,3,7,4,1,2,8,6,5 +45,2,1,4,3,8,5,6,7 +0,4,6,2,3,7,1,8,5 +44,4,6,5,2,8,1,7,3 +96,4,5,7,2,8,1,3,6 +31,5,8,7,1,6,4,2,3 +35,4,1,8,2,6,5,7,3 +66,3,1,2,4,7,6,8,5 +11,5,2,4,8,1,6,7,3 +99,7,3,2,1,8,5,4,6 +56,2,5,7,8,6,1,3,4 +47,6,5,1,3,8,2,4,7 +86,3,1,4,7,5,2,8,6 +71,6,3,4,1,7,8,5,2 +77,8,2,7,6,1,4,3,5 +49,1,4,2,3,6,8,5,7 +54,4,5,7,6,3,8,1,2 +20,5,1,7,6,2,8,3,4 +15,4,6,5,3,7,1,2,8 +67,1,3,7,5,2,4,8,6 +36,5,8,7,1,6,2,3,4 +35,7,4,8,3,6,1,5,2 +96,6,2,3,8,1,4,5,7 +80,6,1,5,3,4,2,8,7 +99,2,3,4,8,5,1,7,6 +47,7,1,4,2,6,8,3,5 +62,6,1,2,4,8,3,5,7 +77,7,1,8,6,5,3,4,2 +32,6,1,4,8,5,3,7,2 +71,1,7,5,4,8,2,3,6 +11,4,3,8,7,6,1,2,5 +69,6,8,4,5,3,7,1,2 +18,5,8,2,1,3,4,7,6 +85,3,6,4,2,5,1,7,8 +10,2,7,4,1,3,5,6,8 +53,2,3,5,8,1,7,6,4 +46,1,3,8,7,6,5,2,4 +25,3,8,5,7,6,1,4,2 +57,4,2,5,1,8,3,6,7 +8,5,7,6,8,2,3,1,4 +31,6,1,3,5,2,8,7,4 +5,3,1,8,4,7,6,5,2 +12,5,7,1,8,6,2,3,4 +90,8,2,1,6,3,4,5,7 +69,3,8,7,5,2,1,4,6 +79,6,1,4,3,7,5,2,8 +60,5,8,4,6,7,1,2,3 +60,1,7,5,2,8,3,4,6 +14,5,1,2,3,7,4,8,6 +82,7,5,1,3,8,4,2,6 +81,2,7,8,4,6,1,3,5 +23,4,3,5,2,6,8,1,7 +6,4,5,3,2,8,1,6,7 +34,1,3,2,5,7,4,6,8 +90,5,4,1,7,2,8,6,3 +50,8,5,2,7,4,1,6,3 +86,5,1,4,3,8,6,7,2 +26,3,2,6,8,7,4,5,1 +18,3,7,2,5,4,1,8,6 +50,3,2,4,8,6,1,5,7 +11,1,8,5,2,6,7,4,3 +83,8,6,2,4,3,5,7,1 +64,8,5,6,4,2,7,3,1 +18,1,7,4,6,2,5,8,3 +73,7,8,5,6,2,4,3,1 +58,2,7,8,6,3,4,5,1 +95,4,3,6,1,8,2,5,7 +17,8,4,5,1,7,6,2,3 +6,2,6,3,4,5,1,8,7 +48,4,6,3,7,5,1,2,8 +49,1,2,8,3,4,5,6,7 +81,5,1,7,8,2,6,4,3 +66,3,4,8,2,1,7,6,5 +17,4,2,7,6,5,8,1,3 +33,6,5,8,2,7,3,1,4 +27,4,2,3,6,5,7,8,1 +92,7,1,3,4,5,8,2,6 +14,6,7,1,4,3,2,5,8 +62,2,3,8,1,5,4,7,6 +43,5,7,2,8,4,1,3,6 +32,6,3,8,1,5,2,7,4 +13,5,2,6,8,4,7,1,3 +45,6,5,4,7,2,3,1,8 +58,1,6,4,7,3,2,5,8 +92,8,5,1,2,7,4,6,3 +24,8,5,2,1,4,7,3,6 +21,6,5,8,1,7,3,4,2 +23,3,6,7,1,5,8,4,2 +60,5,2,8,1,7,4,3,6 +21,7,5,6,2,3,4,8,1 +12,4,1,6,3,8,7,2,5 +96,8,5,7,1,2,3,4,6 +64,3,1,4,7,8,6,2,5 +20,5,1,4,7,8,6,3,2 +62,8,4,7,3,2,6,5,1 +0,8,5,6,1,7,3,4,2 +50,1,8,2,4,7,6,3,5 +2,8,7,3,2,1,4,6,5 +56,8,3,1,6,4,5,7,2 +69,6,4,1,7,5,2,3,8 +70,3,4,8,6,1,5,2,7 +36,5,3,2,6,8,4,1,7 +90,3,5,7,2,1,8,4,6 +39,7,6,8,1,3,5,4,2 +9,6,5,7,8,2,4,1,3 +70,1,3,8,6,7,2,5,4 +86,2,8,4,1,3,6,7,5 +97,5,4,6,3,8,7,1,2 +30,3,7,1,2,6,8,5,4 +66,3,1,4,8,5,7,2,6 +45,1,2,6,8,5,7,3,4 +19,7,3,5,6,2,8,1,4 +95,1,3,5,2,8,6,4,7 +26,2,6,3,1,8,4,7,5 +86,3,4,7,2,6,8,5,1 +49,2,7,4,8,1,3,5,6 +96,2,1,8,7,6,4,5,3 +85,6,7,1,2,4,8,5,3 +61,6,7,5,2,4,3,1,8 +98,6,4,7,3,2,1,8,5 +90,7,4,3,1,6,2,5,8 +28,1,8,2,4,6,3,7,5 +85,6,3,4,8,7,1,5,2 +56,3,7,4,2,6,8,1,5 +3,8,6,7,3,5,4,1,2 +26,8,5,1,2,4,7,6,3 +97,1,7,2,6,4,8,3,5 +99,8,7,5,2,6,1,4,3 +40,6,7,1,5,4,3,2,8 +56,4,8,1,2,5,6,3,7 +94,2,5,1,8,3,7,6,4 +10,6,2,7,5,1,4,8,3 +91,1,6,5,7,8,3,2,4 +59,7,2,6,3,1,8,5,4 +100,8,7,2,4,3,1,5,6 +69,7,3,6,1,8,5,4,2 +92,8,5,1,3,2,6,7,4 +93,1,4,3,7,5,2,8,6 +78,7,2,1,5,3,4,6,8 +79,8,1,5,7,3,2,6,4 +94,8,7,1,6,4,2,3,5 +21,7,6,8,5,1,3,2,4 +37,4,7,2,6,8,5,1,3 +33,5,7,4,1,2,8,3,6 +75,6,1,7,3,8,5,2,4 +76,6,1,2,8,5,4,7,3 +100,5,2,6,4,3,8,1,7 +24,5,1,4,8,7,6,2,3 +9,5,2,4,8,6,7,3,1 +88,7,3,1,4,8,6,5,2 +84,2,5,1,4,6,8,3,7 +20,3,5,4,2,6,8,7,1 +73,7,5,1,3,6,8,2,4 +14,4,7,1,8,3,2,5,6 +56,6,3,2,7,8,1,5,4 +43,3,6,4,2,7,1,5,8 +56,2,4,1,5,8,3,7,6 +80,3,7,1,2,5,6,8,4 +24,6,4,3,7,8,5,1,2 +29,4,3,5,2,6,1,7,8 +4,2,4,7,3,6,5,1,8 +60,2,8,3,5,1,7,6,4 +58,5,2,8,3,4,6,1,7 +6,3,7,2,4,8,5,6,1 +95,4,7,3,1,8,2,6,5 +66,2,4,6,8,7,1,5,3 +44,1,4,5,6,3,8,2,7 +86,8,6,1,2,5,7,4,3 +5,1,4,8,6,7,5,2,3 +83,2,4,6,7,5,1,8,3 +81,7,8,5,4,6,3,1,2 +86,1,5,6,4,2,8,3,7 +75,2,3,5,8,6,7,4,1 +45,6,5,8,4,2,1,7,3 +67,8,3,7,4,2,5,6,1 +85,8,4,1,2,3,6,5,7 +23,7,8,4,2,6,5,1,3 +35,2,7,4,3,8,5,6,1 +43,8,2,3,5,6,4,7,1 +90,8,2,1,4,7,5,6,3 +35,8,4,1,3,5,2,6,7 +98,2,6,5,1,3,8,4,7 +17,7,5,4,2,1,8,6,3 +18,8,3,1,2,6,5,7,4 +28,7,1,3,5,4,8,6,2 +85,1,4,8,5,2,6,3,7 +46,5,6,4,8,1,3,2,7 +81,7,8,6,2,4,1,3,5 +22,4,2,3,6,1,5,7,8 +86,2,5,4,8,1,6,7,3 +46,2,4,8,7,6,5,3,1 +42,8,6,5,4,1,3,7,2 +36,3,5,1,8,2,4,7,6 +43,2,6,7,5,4,1,3,8 +30,6,1,3,4,2,7,8,5 +31,7,4,8,6,5,2,1,3 +10,4,8,7,2,6,5,3,1 +84,8,2,3,4,6,7,1,5 +97,5,6,2,8,1,7,3,4 +85,4,2,8,7,3,1,6,5 +61,4,8,2,5,7,1,6,3 +38,6,5,4,2,8,7,1,3 +79,4,6,8,1,7,2,5,3 +45,7,1,4,8,6,2,3,5 +12,5,3,2,7,6,1,8,4 +68,2,8,7,4,1,3,5,6 +90,4,6,7,8,2,1,3,5 +72,1,6,4,3,8,5,7,2 +85,8,4,6,5,3,2,7,1 +38,1,8,7,4,2,5,3,6 +19,3,1,7,8,5,4,2,6 +64,1,6,2,3,5,8,4,7 +4,3,8,6,5,1,4,7,2 +96,1,5,3,6,7,8,4,2 +42,5,4,1,3,7,2,8,6 +51,5,4,6,1,8,7,2,3 +98,5,8,7,3,2,4,1,6 +5,2,1,7,3,4,6,8,5 +28,4,3,8,6,7,2,5,1 +17,8,3,5,4,1,2,6,7 +39,7,3,5,6,4,1,2,8 +25,6,8,1,2,4,7,5,3 +57,6,2,4,1,3,7,8,5 +68,6,8,5,1,7,3,4,2 +36,3,2,7,8,5,4,6,1 +22,7,2,3,6,5,1,8,4 +36,6,2,1,7,3,4,8,5 +45,2,3,4,7,5,8,6,1 +82,7,3,1,2,8,5,6,4 +36,3,4,6,2,1,5,8,7 +85,8,6,7,4,3,2,1,5 +100,7,1,2,8,4,6,3,5 +4,3,5,8,7,4,1,6,2 +19,1,2,3,4,5,7,8,6 +47,8,1,5,3,7,4,6,2 +0,7,4,6,1,5,8,3,2 +20,8,2,6,7,5,4,1,3 +51,8,6,5,2,4,3,1,7 +94,6,2,4,3,8,5,1,7 +29,1,6,4,5,8,2,3,7 +70,7,2,8,4,6,5,1,3 +55,1,3,8,5,2,6,4,7 +6,1,8,3,7,2,4,5,6 +40,1,8,3,5,2,4,6,7 +20,3,2,1,6,8,7,5,4 +65,1,8,4,5,2,6,3,7 +48,6,1,3,4,8,2,5,7 +44,4,8,5,3,2,7,6,1 +57,4,1,5,6,2,7,8,3 +59,5,3,1,6,4,7,2,8 +35,2,1,6,5,3,8,7,4 +29,5,4,7,8,2,1,6,3 +25,7,6,3,8,2,4,1,5 +71,6,2,4,1,7,5,8,3 +6,8,7,2,4,3,5,1,6 +21,7,5,2,3,8,4,1,6 +89,4,1,7,3,8,5,2,6 +12,6,3,2,1,7,5,4,8 +20,3,6,4,8,7,5,1,2 +55,3,6,2,8,4,5,7,1 +80,1,3,5,7,8,6,2,4 +4,8,5,6,7,4,2,1,3 +78,2,6,8,4,7,3,1,5 +20,8,6,7,5,4,2,1,3 +57,2,4,7,3,6,8,5,1 +78,1,7,5,8,4,2,6,3 +33,6,2,3,7,1,5,4,8 +87,2,6,5,8,1,7,3,4 +43,7,6,5,1,3,2,8,4 +21,1,4,5,8,7,6,2,3 +54,8,4,7,5,6,3,1,2 +21,4,7,5,1,3,2,8,6 +7,1,5,4,8,2,7,6,3 +75,6,5,8,3,7,4,1,2 +59,5,3,7,6,4,8,2,1 +49,8,2,1,3,5,4,7,6 +28,7,6,4,3,2,5,1,8 +14,4,5,7,8,6,3,2,1 +82,6,8,3,1,4,2,5,7 +88,7,1,2,6,5,4,3,8 +88,3,1,7,5,8,4,6,2 +44,1,7,6,2,4,5,3,8 +18,3,1,5,6,8,4,7,2 +47,1,4,7,3,6,8,5,2 +100,8,4,6,1,5,2,3,7 +77,7,5,6,8,1,4,3,2 +44,6,1,3,4,7,8,5,2 +50,6,5,1,2,7,3,8,4 +87,8,3,4,7,5,6,1,2 +26,4,7,6,5,8,2,3,1 +3,4,7,8,1,3,6,2,5 +6,6,5,8,2,4,1,7,3 +80,7,1,4,8,3,2,6,5 +80,3,7,1,5,2,8,4,6 +37,4,2,7,1,8,5,6,3 +48,4,2,7,1,8,6,3,5 +46,7,8,4,2,6,3,5,1 +35,1,7,4,2,5,6,8,3 +2,2,3,4,5,6,7,8,1 +48,6,5,8,7,4,3,2,1 +40,8,4,6,1,3,7,5,2 +35,3,4,6,7,1,2,8,5 +8,4,7,2,3,6,5,8,1 +65,2,3,7,5,6,4,1,8 +15,4,5,1,2,8,7,3,6 +75,2,7,4,5,1,6,3,8 +11,6,8,3,5,4,2,7,1 +40,4,1,5,7,8,2,3,6 +71,1,2,6,5,7,3,8,4 +60,4,5,8,1,2,7,3,6 +98,8,4,6,5,1,7,3,2 +54,8,2,7,3,1,6,5,4 +10,2,3,5,8,6,7,1,4 +50,7,6,5,3,2,4,8,1 +75,3,2,7,1,5,6,4,8 +27,1,2,3,8,4,6,7,5 +59,4,6,5,3,1,7,8,2 +93,8,7,6,1,4,5,3,2 +35,6,3,2,4,1,5,8,7 +75,6,3,2,5,7,4,8,1 +56,4,5,2,6,1,3,8,7 +17,7,2,3,5,1,4,6,8 +16,1,8,4,2,6,5,3,7 +27,7,8,3,5,4,6,1,2 +58,4,1,7,6,2,8,3,5 +32,2,1,3,7,4,5,8,6 +7,1,6,8,4,7,5,2,3 +28,8,5,7,1,2,4,3,6 +9,3,2,5,1,8,4,6,7 +30,1,7,8,2,4,6,5,3 +73,6,8,1,7,4,5,3,2 +36,7,1,2,5,8,4,3,6 +52,2,5,4,3,6,7,1,8 +3,7,3,5,2,6,8,4,1 +30,5,6,8,4,1,7,3,2 +39,8,4,3,7,1,2,6,5 +91,6,3,1,5,8,4,7,2 +90,3,8,4,6,1,7,2,5 +50,5,1,2,3,4,8,6,7 +52,3,1,8,4,2,6,7,5 +51,6,1,4,3,7,8,2,5 +46,5,1,2,3,7,8,4,6 +7,6,7,4,3,1,2,8,5 +3,6,1,4,5,8,3,2,7 +40,4,8,6,7,3,2,1,5 +73,7,2,4,5,6,1,8,3 +44,7,4,5,3,1,2,8,6 +42,5,4,3,8,6,2,1,7 +71,4,5,1,6,2,3,8,7 +63,1,5,7,2,8,4,3,6 +23,8,6,5,3,4,7,1,2 +11,8,7,6,3,2,4,1,5 +67,6,2,8,7,1,4,5,3 +2,6,3,8,5,7,4,1,2 +54,7,2,6,5,1,4,3,8 +32,3,7,1,6,2,5,4,8 +67,1,7,2,5,4,6,3,8 +29,1,7,8,6,2,5,4,3 +70,3,5,4,6,2,1,8,7 +36,1,8,2,6,4,5,7,3 +20,3,6,1,2,5,4,8,7 +49,4,7,8,3,1,5,2,6 +21,1,8,3,4,7,6,2,5 +11,3,6,1,7,2,4,8,5 +8,3,6,8,1,5,7,4,2 +60,7,5,6,3,4,8,2,1 +34,7,8,6,2,4,5,3,1 +35,5,7,3,8,6,2,1,4 +51,8,6,5,1,4,3,7,2 +51,5,1,8,2,6,3,7,4 +11,3,6,4,1,5,8,2,7 +47,2,3,1,5,8,7,4,6 +52,4,1,8,3,7,6,2,5 +40,7,5,8,4,1,2,6,3 +31,3,5,2,1,4,8,7,6 +35,8,3,4,5,1,2,6,7 +83,7,4,2,6,1,8,5,3 +59,3,8,7,1,4,2,5,6 +27,1,6,4,8,7,5,2,3 +8,8,6,7,1,2,4,3,5 +29,5,3,8,4,7,6,2,1 +75,7,4,1,5,3,2,8,6 +35,3,5,6,2,7,4,8,1 +55,6,8,2,4,3,7,1,5 +83,4,7,6,3,8,5,2,1 +32,5,1,7,8,6,2,3,4 +5,2,7,1,5,4,6,3,8 +14,4,6,5,1,7,2,3,8 +96,6,2,4,8,5,7,1,3 +91,5,7,3,1,6,4,8,2 +53,4,7,1,6,8,2,5,3 +6,8,6,2,7,4,3,1,5 +32,6,2,1,5,4,3,8,7 +93,5,3,4,1,2,8,6,7 +13,2,4,6,7,8,3,1,5 +91,4,5,1,6,7,8,2,3 +7,5,8,4,2,3,1,7,6 +98,1,5,7,8,2,3,4,6 +64,6,8,1,5,3,2,7,4 +100,5,2,6,4,7,3,8,1 +43,6,8,4,3,5,2,1,7 +63,3,6,7,2,5,8,1,4 +70,7,3,6,1,5,8,2,4 +66,3,5,1,4,6,8,7,2 +20,8,3,4,1,7,2,5,6 +62,6,5,4,8,1,3,2,7 +87,3,5,1,7,6,4,8,2 +33,5,6,3,4,2,8,7,1 +4,4,7,2,3,5,1,8,6 +6,4,2,8,6,3,1,5,7 +81,6,5,3,8,4,7,2,1 +65,1,8,6,2,3,4,7,5 +49,3,4,7,1,8,2,5,6 +77,8,2,4,6,7,1,5,3 +83,6,7,4,2,3,1,5,8 +0,6,4,8,3,1,2,7,5 +96,5,3,8,2,6,4,7,1 +87,8,4,2,7,6,1,5,3 +35,7,2,3,8,1,5,4,6 +59,7,1,3,6,2,8,4,5 +47,3,4,6,2,1,5,7,8 +23,1,3,8,4,6,5,2,7 +93,8,5,7,6,3,2,4,1 +76,7,3,5,4,1,2,8,6 +29,2,5,7,3,4,6,8,1 +23,6,5,4,8,1,3,7,2 +20,2,4,5,3,8,1,6,7 +81,1,8,2,7,3,6,5,4 +6,6,2,7,3,8,1,5,4 +31,4,6,3,2,7,5,8,1 +28,5,6,2,1,7,4,8,3 +29,5,1,2,6,4,8,7,3 +34,7,8,3,2,1,5,6,4 +51,2,5,3,1,4,6,7,8 +52,7,6,1,4,8,5,3,2 +17,2,3,5,7,1,6,4,8 +91,1,7,2,4,5,8,6,3 +89,5,7,6,2,4,3,1,8 +26,5,6,7,3,2,1,4,8 +6,2,1,5,3,4,6,8,7 +44,1,2,3,6,8,5,4,7 +91,8,3,2,1,6,5,4,7 +89,7,2,8,3,1,4,6,5 +47,8,7,1,2,6,3,4,5 +27,4,8,5,7,6,3,1,2 +32,4,3,7,2,6,5,1,8 +14,5,2,6,7,4,1,8,3 +98,1,7,6,4,2,3,8,5 +67,1,3,6,4,2,7,8,5 +55,1,2,8,3,5,4,6,7 +5,7,8,4,5,2,1,6,3 +47,1,3,8,6,2,4,7,5 +35,1,5,6,7,4,2,8,3 +30,1,4,5,7,2,3,8,6 +33,3,6,8,1,4,2,5,7 +47,5,7,1,2,4,3,8,6 +98,8,7,2,5,4,6,1,3 +58,1,6,5,7,2,4,8,3 +88,2,3,1,6,4,5,8,7 +34,7,1,4,3,6,5,2,8 +49,4,3,7,2,5,6,1,8 +11,2,7,6,8,5,3,1,4 +34,2,1,3,6,5,8,7,4 +17,3,7,6,8,4,2,1,5 +70,7,4,3,6,8,2,5,1 +94,7,5,4,6,8,1,2,3 +41,2,5,7,1,3,8,4,6 +3,5,3,6,7,4,8,1,2 +73,7,2,1,8,6,5,4,3 +84,5,3,2,7,6,4,8,1 +69,3,7,4,1,2,6,8,5 +47,3,4,8,2,5,7,6,1 +50,2,3,7,5,1,4,6,8 +22,4,7,8,3,5,6,2,1 +10,1,6,5,3,7,2,8,4 +54,2,5,6,8,3,4,1,7 +14,1,7,8,2,4,3,5,6 +76,6,5,2,4,1,8,7,3 +38,5,3,8,6,7,2,1,4 +8,6,1,2,7,5,3,8,4 +47,5,3,7,4,8,1,6,2 +44,8,4,2,5,7,3,6,1 +40,2,1,5,3,7,4,8,6 +44,1,6,8,7,2,4,3,5 +15,4,6,2,1,7,5,8,3 +92,7,2,5,6,1,3,4,8 +5,7,2,4,5,3,1,8,6 +73,5,3,7,4,8,2,6,1 +89,4,7,6,1,8,3,2,5 +2,7,1,5,4,3,6,8,2 +34,3,8,5,4,7,2,6,1 +0,2,8,6,4,1,7,5,3 +20,8,6,2,4,5,1,7,3 +46,6,2,5,1,8,4,7,3 +45,6,7,1,2,5,4,3,8 +36,3,5,8,4,7,1,6,2 +73,2,6,7,4,8,3,1,5 +79,5,1,2,8,3,4,6,7 +21,2,7,4,6,3,5,8,1 +44,6,2,7,5,4,8,3,1 +0,5,6,2,4,3,8,1,7 +70,8,2,6,4,7,3,1,5 +55,6,2,5,7,3,1,8,4 +30,6,3,4,5,7,8,2,1 +89,7,2,4,5,8,1,6,3 +1,2,1,3,4,7,5,6,8 +66,4,7,8,1,3,5,6,2 +66,7,1,6,4,2,8,5,3 +24,1,3,7,8,2,5,6,4 +51,6,1,3,2,4,7,5,8 +62,8,3,6,5,2,4,1,7 +58,7,3,8,4,5,2,1,6 +25,2,7,6,4,5,1,3,8 +35,4,1,7,2,3,6,8,5 +15,6,8,7,1,4,3,2,5 \ No newline at end of file From 204ad23476759ce53d6a901e0e5a0cc49f09fe95 Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 9 Dec 2016 17:00:47 -0500 Subject: [PATCH 14/17] Tweaked input generation to be more memory efficient Still slow, because it potentially goes through all the permutations of candidate rankings, but only stores as many as requested for the file. --- generateInputProfile.py | 35 +- input9 | 1014 +++++++++++++++++++++++++++++++++++++++ 2 files changed, 1040 insertions(+), 9 deletions(-) create mode 100644 input9 diff --git a/generateInputProfile.py b/generateInputProfile.py index b321fb2..097ac19 100644 --- a/generateInputProfile.py +++ b/generateInputProfile.py @@ -1,5 +1,6 @@ import sys import random +import math import itertools import prefpy from prefpy import preference @@ -22,17 +23,10 @@ def main(argv): preferencesList = [] - '''TODO: pick indices first, only store a certain number of rankings at any one time and - delete old ones until reaching the desired index''' - allRankingOptions = [] - for ranking in itertools.permutations(candMap.keys()): - allRankingOptions.append(ranking) + ranksWithNums = pickRankings(candMap, numUniqueRankings) - for i in range(numUniqueRankings): - rankNum = random.randint(0, len(allRankingOptions)) - ranking = allRankingOptions[rankNum] + for ranking in ranksWithNums.values(): wmgMap = genWmgMapFromRankMap( convertRankingToRankMap(ranking) ) - voteCount = random.randint(0, maxVotesPerRanking) newPref = Preference(wmgMap,voteCount) @@ -44,6 +38,29 @@ def main(argv): #===================================================================================== +def pickRankings(candMap, numUniqueRankings): + numPosRankings = math.factorial(len(candMap.keys())) + + ranksWithNums = dict() + # pick the random indices for the rankings to be chosen + while len(ranksWithNums.keys()) < numUniqueRankings: + rankNum = random.randint(0, numPosRankings) + ranksWithNums[rankNum] = 0 + + numFound = 0 + rankNum = 0 + for ranking in itertools.permutations(candMap.keys()): + if rankNum in ranksWithNums.keys(): + ranksWithNums[rankNum] = ranking + numFound += 1 + if numFound >= numUniqueRankings: + break + rankNum += 1 + + return ranksWithNums + +#===================================================================================== + def handleInput(argv): if len(argv) >= 2: filename = argv[1].lower() diff --git a/input9 b/input9 new file mode 100644 index 0000000..6548cb5 --- /dev/null +++ b/input9 @@ -0,0 +1,1014 @@ +12 +1,a +2,b +3,c +4,d +5,e +6,f +7,g +8,h +9,i +10,j +11,k +12,l +51286,51286,1000 +52,12,7,5,2,1,4,6,9,8,10,3,11 +45,2,1,11,6,10,8,5,7,3,4,9,12 +50,2,12,4,8,5,11,9,1,7,10,3,6 +97,8,2,10,6,9,3,1,11,4,5,7,12 +100,6,10,1,5,3,4,2,7,9,11,12,8 +13,5,9,6,10,4,1,7,2,8,12,3,11 +97,8,5,6,1,2,12,10,9,3,7,11,4 +54,1,9,11,6,5,2,10,4,3,12,7,8 +60,7,9,11,4,1,3,8,10,6,12,2,5 +42,1,12,6,9,8,2,4,5,11,7,3,10 +25,8,2,4,11,7,1,3,12,9,6,5,10 +23,9,8,10,7,2,5,1,3,11,12,6,4 +38,2,7,12,6,11,10,8,1,4,5,9,3 +17,2,10,9,6,12,5,1,8,11,3,7,4 +11,8,5,12,1,11,6,4,10,7,3,2,9 +25,3,6,10,1,7,9,5,11,12,8,4,2 +53,11,5,10,12,1,7,6,2,4,8,3,9 +57,8,11,7,10,2,12,6,4,1,5,3,9 +33,6,11,7,9,10,1,5,3,2,8,12,4 +10,4,10,5,7,12,2,3,6,1,8,11,9 +93,5,4,11,1,3,8,9,6,12,2,7,10 +4,12,5,3,10,6,9,8,2,1,11,7,4 +59,1,8,9,2,4,3,10,6,5,7,11,12 +77,9,5,6,2,4,1,7,12,3,8,11,10 +88,5,12,1,11,3,6,4,10,7,9,2,8 +75,4,6,8,11,5,1,12,9,2,7,10,3 +55,10,11,2,3,7,9,1,12,4,8,5,6 +88,1,10,12,3,6,7,8,9,2,11,5,4 +98,8,11,2,12,4,6,3,10,7,5,1,9 +37,8,4,7,10,2,3,6,5,1,9,12,11 +15,3,8,5,7,12,10,6,11,4,9,2,1 +13,8,5,12,6,2,11,4,7,3,10,1,9 +87,7,8,12,11,6,2,5,1,10,4,9,3 +98,9,3,12,4,2,10,1,5,6,7,11,8 +95,12,11,2,1,3,4,8,9,10,5,6,7 +77,7,1,10,5,8,2,4,3,9,12,11,6 +43,2,12,3,7,6,1,11,9,10,5,4,8 +97,1,3,6,10,5,9,7,8,4,2,12,11 +35,1,11,6,2,9,10,12,5,3,8,4,7 +95,8,12,5,6,4,10,9,7,1,3,11,2 +58,12,9,6,3,2,11,8,7,10,4,1,5 +9,7,12,1,3,11,8,6,9,5,2,10,4 +64,10,9,3,5,8,2,12,6,4,11,1,7 +76,8,12,7,9,10,3,5,2,11,4,1,6 +87,9,2,10,11,5,7,8,3,6,1,12,4 +78,9,1,12,2,6,8,4,10,5,11,7,3 +2,5,9,6,8,11,7,2,1,3,4,10,12 +99,6,12,7,3,10,5,1,9,2,8,4,11 +4,12,9,6,2,1,8,5,4,11,3,10,7 +57,11,9,2,1,3,8,7,6,4,12,5,10 +73,3,1,2,12,4,11,8,5,10,9,7,6 +23,5,8,7,10,6,9,3,2,1,4,12,11 +0,10,11,1,3,7,5,12,4,8,9,6,2 +87,1,11,2,6,9,5,4,10,12,3,7,8 +65,8,2,4,5,1,11,10,12,9,6,3,7 +4,4,7,12,10,11,8,9,3,1,2,6,5 +89,4,1,3,6,5,12,2,10,11,9,7,8 +35,7,10,3,8,11,12,2,1,4,6,5,9 +51,12,11,4,3,9,5,1,7,2,8,6,10 +0,11,12,6,3,9,4,8,7,2,10,5,1 +83,2,4,9,8,11,6,12,1,7,3,5,10 +45,11,12,10,1,2,4,3,6,8,7,5,9 +58,4,5,12,9,7,10,2,8,1,11,3,6 +96,4,10,3,11,6,2,9,7,5,12,8,1 +9,8,2,5,7,9,6,10,11,3,12,1,4 +79,10,12,3,4,6,5,11,1,8,2,9,7 +92,2,7,11,6,3,8,12,1,5,9,10,4 +67,4,12,3,8,11,10,7,9,6,2,5,1 +64,5,11,8,4,9,1,7,6,2,10,3,12 +34,7,4,1,10,6,2,9,3,12,8,11,5 +21,11,4,6,5,3,9,1,12,8,7,2,10 +0,3,4,11,8,12,9,7,2,10,5,6,1 +25,12,6,7,10,4,2,11,8,5,9,3,1 +78,9,3,8,2,12,1,10,11,4,6,5,7 +50,9,5,6,12,1,10,11,7,8,2,4,3 +91,4,12,5,9,3,10,2,6,11,7,1,8 +90,1,9,11,2,12,10,4,8,6,3,7,5 +42,5,11,6,9,4,8,1,7,12,10,2,3 +29,3,6,5,8,9,1,4,12,2,7,11,10 +34,11,8,4,6,10,2,9,7,1,5,12,3 +85,4,8,7,10,12,6,11,1,2,9,3,5 +93,1,6,7,11,9,8,12,2,10,5,4,3 +92,4,3,7,12,1,2,9,8,6,10,11,5 +20,5,8,3,6,2,12,11,7,4,10,1,9 +94,1,3,8,4,5,2,9,6,7,12,10,11 +44,7,10,4,12,6,8,1,3,9,5,2,11 +92,2,3,10,8,9,4,6,12,11,7,5,1 +100,9,3,11,1,12,7,6,5,2,4,8,10 +20,10,8,12,5,9,1,4,3,2,7,11,6 +59,12,10,8,3,11,6,1,4,2,9,5,7 +89,12,10,5,11,1,8,6,9,7,3,2,4 +93,1,3,11,9,10,8,4,2,6,5,7,12 +81,9,4,11,12,7,10,1,8,2,3,5,6 +41,3,12,5,7,10,9,8,2,4,6,11,1 +2,3,4,12,11,2,8,1,7,10,5,6,9 +22,4,10,2,9,12,11,5,7,3,8,6,1 +3,8,10,9,7,1,2,11,6,5,4,3,12 +54,6,7,11,5,8,3,4,1,12,9,10,2 +50,8,10,5,12,7,1,4,9,6,11,2,3 +8,7,1,2,10,11,8,3,9,12,4,5,6 +87,5,2,8,7,4,11,12,10,9,3,1,6 +61,1,4,6,5,12,10,8,2,3,9,7,11 +32,8,11,7,10,9,12,1,4,5,3,2,6 +55,5,8,3,9,1,10,6,2,11,12,4,7 +33,10,11,9,12,6,8,4,1,5,2,7,3 +79,5,4,10,8,1,9,11,2,3,6,12,7 +79,5,7,3,4,9,2,11,10,12,1,6,8 +2,4,11,5,9,7,10,2,1,3,8,12,6 +86,4,5,11,6,10,7,8,9,3,1,12,2 +66,6,12,9,1,11,3,10,7,5,4,2,8 +84,1,5,3,10,12,9,7,2,6,8,11,4 +11,8,12,2,9,11,3,4,6,5,10,1,7 +86,8,4,11,5,2,10,12,6,3,9,7,1 +78,11,6,10,9,4,3,2,5,12,8,1,7 +42,5,1,12,2,10,3,7,9,4,6,8,11 +100,3,8,6,9,12,11,2,5,1,7,4,10 +55,11,7,9,10,8,5,12,2,4,6,1,3 +59,4,6,9,1,5,3,12,10,11,8,7,2 +21,8,10,5,11,3,1,9,4,7,12,2,6 +75,4,6,2,9,11,1,12,10,7,8,5,3 +28,4,11,5,8,7,2,6,12,3,10,9,1 +34,5,1,3,12,11,4,10,9,8,6,2,7 +0,9,7,5,10,4,12,8,3,6,11,2,1 +10,11,4,1,5,2,12,7,10,8,3,6,9 +36,9,2,5,4,1,8,11,6,7,10,3,12 +16,8,10,3,6,11,4,5,7,12,2,1,9 +31,6,3,10,2,12,8,1,5,4,7,11,9 +89,7,4,11,5,10,12,9,2,3,8,1,6 +46,3,10,1,5,6,9,8,12,11,7,4,2 +0,9,3,4,5,11,6,7,10,1,12,8,2 +45,2,10,7,9,3,11,6,8,5,12,1,4 +48,4,5,9,10,8,11,2,7,6,3,12,1 +85,9,10,12,8,6,4,7,3,11,2,5,1 +20,8,11,10,12,6,2,5,9,1,3,4,7 +18,10,12,2,3,9,6,4,1,5,7,11,8 +72,10,8,5,9,1,6,4,12,11,7,3,2 +78,8,9,11,3,5,12,7,4,6,1,10,2 +56,3,5,4,11,12,6,7,2,10,9,1,8 +96,9,12,10,8,4,2,1,6,11,5,7,3 +39,8,11,4,12,5,3,2,7,1,6,10,9 +67,2,7,6,5,9,11,10,8,3,12,4,1 +97,7,12,11,6,10,4,5,9,3,1,8,2 +95,9,11,7,3,12,2,6,1,8,5,10,4 +77,5,7,9,12,2,8,11,4,6,1,3,10 +54,1,5,9,3,7,2,12,8,4,10,6,11 +77,10,8,4,1,3,9,12,11,5,2,7,6 +11,5,10,4,8,6,12,3,7,9,1,2,11 +73,10,8,2,11,3,12,1,4,7,6,5,9 +66,11,9,5,7,8,12,6,10,3,4,2,1 +96,6,12,5,7,2,11,8,3,10,1,4,9 +22,2,6,12,8,3,11,10,5,4,9,7,1 +61,7,1,8,9,11,12,4,5,2,10,3,6 +51,6,2,10,9,12,3,5,1,11,8,4,7 +57,11,3,5,8,4,1,9,12,2,6,7,10 +16,9,4,1,3,11,2,6,5,12,8,7,10 +50,2,1,10,8,6,12,5,9,4,11,3,7 +19,2,8,6,9,3,10,7,11,5,4,12,1 +96,3,11,6,10,4,1,5,8,2,7,12,9 +89,8,11,1,3,12,9,6,10,5,7,4,2 +95,12,7,4,1,3,10,9,5,2,8,6,11 +19,11,3,6,9,1,12,5,10,7,2,8,4 +15,12,4,3,11,6,7,10,9,2,1,8,5 +70,10,9,12,3,5,6,1,7,8,11,4,2 +26,7,3,8,4,1,12,11,5,6,9,10,2 +45,11,5,9,2,8,10,12,7,4,1,3,6 +14,1,11,7,9,6,12,4,3,8,5,2,10 +48,11,2,7,8,6,10,3,1,4,5,9,12 +98,10,2,7,5,6,8,4,1,9,3,11,12 +17,10,7,9,8,12,2,6,5,3,1,4,11 +75,9,1,7,2,6,11,4,8,5,3,12,10 +23,2,7,6,12,3,4,5,10,11,8,1,9 +61,10,1,7,9,8,5,4,2,6,3,11,12 +35,2,12,10,11,5,9,8,1,6,4,7,3 +92,4,10,7,9,1,2,8,12,6,11,5,3 +20,8,2,11,3,7,10,5,4,1,12,6,9 +24,3,11,10,2,12,4,8,7,9,5,6,1 +44,1,2,12,3,7,4,10,11,9,6,8,5 +71,9,8,2,10,3,12,5,11,1,4,6,7 +48,3,6,4,9,7,1,10,12,5,8,11,2 +16,12,4,9,10,8,7,1,5,2,11,3,6 +11,11,5,2,10,9,8,3,6,7,4,1,12 +42,4,2,11,9,12,7,5,10,3,6,1,8 +79,11,3,2,12,6,7,1,10,5,8,9,4 +35,1,2,12,6,3,5,7,8,9,11,4,10 +38,11,1,8,4,6,2,3,10,12,7,5,9 +88,5,11,4,1,10,3,7,2,9,6,12,8 +69,12,10,7,9,1,8,3,5,2,11,6,4 +21,1,4,7,12,3,6,2,8,9,10,5,11 +61,6,4,10,1,2,8,5,3,9,11,12,7 +56,11,6,10,5,7,8,1,12,9,4,3,2 +47,3,6,10,11,9,7,4,2,8,12,1,5 +29,4,10,8,5,2,3,12,6,7,9,11,1 +10,2,5,8,4,10,12,7,6,11,9,1,3 +25,6,2,1,7,9,11,3,8,12,5,10,4 +25,2,11,1,3,6,7,5,4,9,10,8,12 +39,9,4,1,11,3,8,5,2,7,6,10,12 +48,9,2,12,6,10,11,1,3,4,8,7,5 +2,6,5,10,12,2,11,1,7,3,4,9,8 +78,6,10,12,2,11,1,5,4,9,7,3,8 +4,6,4,2,8,7,12,1,5,3,10,9,11 +20,10,7,1,12,3,9,4,8,11,6,5,2 +55,1,8,11,6,9,3,2,10,4,12,5,7 +82,8,1,11,9,2,12,4,6,3,10,7,5 +7,10,12,5,4,2,8,6,7,1,3,11,9 +60,6,12,10,9,2,1,7,4,11,5,8,3 +81,1,4,6,3,11,7,5,2,9,12,10,8 +71,10,11,2,3,4,7,12,5,1,9,8,6 +54,2,1,5,8,12,7,6,11,4,3,9,10 +62,1,9,12,6,3,7,5,2,8,10,11,4 +78,12,10,7,5,8,3,4,2,9,11,1,6 +65,12,7,9,3,11,5,2,10,1,6,4,8 +96,12,1,2,3,8,5,7,6,4,11,9,10 +16,7,8,11,10,1,9,6,3,12,5,2,4 +66,11,4,12,6,3,5,9,7,8,2,10,1 +57,3,8,11,5,1,7,4,9,6,12,10,2 +67,4,2,6,3,8,1,9,10,12,11,5,7 +86,5,4,6,9,7,10,11,12,8,3,1,2 +29,5,9,6,7,1,2,4,8,12,11,10,3 +84,12,2,8,11,5,3,4,9,6,7,10,1 +64,9,2,4,11,10,6,12,5,8,1,3,7 +53,3,6,12,11,9,7,2,8,5,1,4,10 +7,1,3,9,10,6,4,12,11,8,5,7,2 +0,10,5,9,2,11,1,12,6,4,3,7,8 +17,9,12,7,1,4,8,2,3,10,6,11,5 +24,1,5,4,8,12,2,10,3,6,7,11,9 +66,10,8,9,11,1,2,12,6,7,3,5,4 +56,3,5,9,2,6,4,11,7,10,8,12,1 +52,6,1,11,2,5,4,12,8,3,9,10,7 +37,2,6,11,8,4,12,5,1,9,3,7,10 +6,11,4,10,5,3,6,7,9,1,12,8,2 +86,3,8,10,12,7,6,5,2,9,4,1,11 +22,3,7,6,10,12,2,5,8,1,9,11,4 +17,3,8,2,7,12,5,1,4,9,6,11,10 +20,2,11,6,8,3,1,5,7,10,4,9,12 +27,10,12,3,5,11,9,2,4,7,6,8,1 +99,9,1,4,10,11,5,8,6,2,3,12,7 +41,5,4,12,8,6,2,10,1,11,3,7,9 +74,10,6,9,7,3,8,4,11,1,2,12,5 +96,1,8,7,12,6,9,11,2,3,10,5,4 +58,10,8,12,1,2,5,4,7,11,9,3,6 +78,3,10,4,1,12,7,11,8,2,5,9,6 +87,7,3,12,1,5,8,4,6,2,11,9,10 +3,6,4,5,3,12,11,8,9,2,7,10,1 +84,3,6,12,9,2,1,8,10,5,11,4,7 +80,10,4,9,3,1,12,7,5,8,6,11,2 +0,7,11,3,5,10,8,1,2,9,12,4,6 +24,5,7,8,10,9,1,2,3,4,11,12,6 +81,3,10,2,8,1,11,9,4,7,6,5,12 +23,5,11,4,8,7,1,2,9,6,3,10,12 +74,3,2,10,9,8,4,1,7,6,11,5,12 +44,6,12,7,5,4,11,8,2,9,1,10,3 +53,5,7,8,10,1,2,12,4,11,3,6,9 +33,9,7,1,8,4,11,12,10,2,5,6,3 +30,6,11,12,10,7,2,5,3,9,8,1,4 +98,7,9,6,4,11,8,5,3,10,2,12,1 +35,10,1,7,8,9,4,11,3,2,5,6,12 +53,6,11,5,8,3,1,7,9,4,12,10,2 +37,3,11,12,9,6,4,1,8,2,10,7,5 +31,1,9,2,8,4,5,6,7,10,11,12,3 +3,12,4,3,10,11,1,9,8,5,6,7,2 +97,4,1,2,7,5,8,9,11,10,6,12,3 +89,7,6,1,11,2,12,5,9,10,8,4,3 +12,8,9,6,12,1,2,11,5,10,4,3,7 +11,9,2,8,4,10,3,1,6,5,11,12,7 +39,6,10,8,3,7,4,2,11,1,12,5,9 +53,10,12,3,5,8,6,2,9,1,11,7,4 +71,5,4,7,10,8,2,1,6,9,11,12,3 +58,12,11,9,8,4,7,5,2,3,6,1,10 +9,9,10,3,12,8,6,5,11,1,2,7,4 +88,5,2,6,12,8,10,7,11,9,1,3,4 +2,12,11,3,9,4,5,8,7,2,10,1,6 +51,4,2,8,7,6,12,11,10,3,1,5,9 +47,4,7,12,11,6,1,9,5,8,2,10,3 +20,1,11,8,2,6,10,5,4,7,12,3,9 +1,6,8,3,2,4,9,12,7,5,11,10,1 +1,5,7,11,1,8,6,2,3,4,12,9,10 +49,12,8,7,10,1,11,5,9,4,2,6,3 +4,4,5,7,9,6,12,2,10,3,8,1,11 +88,2,12,1,8,9,10,5,11,6,4,7,3 +48,3,2,7,1,11,5,10,12,8,9,4,6 +50,10,12,5,9,7,3,11,6,4,8,2,1 +34,5,2,10,4,1,8,7,12,3,9,6,11 +95,7,5,4,9,3,8,1,12,11,2,10,6 +53,5,11,8,3,9,10,12,7,4,1,2,6 +74,1,10,12,5,6,8,4,11,9,7,2,3 +9,2,11,12,1,7,9,4,6,10,5,3,8 +100,12,6,5,10,2,1,3,7,4,9,11,8 +6,2,8,10,11,4,1,6,3,12,5,7,9 +69,9,3,7,1,10,11,5,2,8,4,12,6 +23,10,2,1,3,12,8,6,9,7,4,5,11 +92,1,2,12,7,4,6,9,11,5,10,8,3 +22,7,5,10,11,1,9,4,8,6,12,3,2 +67,12,1,6,9,5,8,7,2,3,10,4,11 +3,6,9,5,8,10,2,7,4,3,1,12,11 +79,2,4,9,1,6,7,8,12,10,11,5,3 +86,2,7,4,5,12,11,8,9,1,6,3,10 +89,4,7,11,12,3,10,1,5,8,6,2,9 +39,8,7,1,12,2,10,3,4,5,6,11,9 +15,11,4,6,5,9,7,10,2,12,1,8,3 +50,5,6,4,1,7,8,3,12,11,10,2,9 +40,10,4,8,6,3,1,7,12,9,2,11,5 +36,11,7,5,1,10,6,9,2,3,4,12,8 +48,7,9,1,6,4,5,10,2,3,12,11,8 +2,11,6,12,7,3,2,9,10,1,5,8,4 +72,5,11,1,6,2,10,4,12,8,3,7,9 +63,1,5,11,8,7,10,4,6,3,2,12,9 +97,8,4,10,3,1,9,11,12,7,5,2,6 +46,10,7,2,9,1,6,4,3,12,5,11,8 +5,6,4,12,9,5,11,8,2,10,3,7,1 +44,1,11,9,8,12,7,2,4,5,10,3,6 +10,12,11,3,2,10,6,9,8,5,4,1,7 +62,5,3,11,1,4,10,12,9,7,8,2,6 +14,10,7,8,3,2,4,6,5,1,9,12,11 +96,9,6,4,3,2,10,7,5,12,1,11,8 +10,5,3,6,4,7,12,2,10,9,1,11,8 +43,11,1,7,6,8,3,9,2,12,10,4,5 +89,2,12,6,3,7,1,8,4,10,11,5,9 +35,4,10,2,5,7,1,9,11,6,12,8,3 +14,3,4,9,12,11,7,2,1,8,5,6,10 +1,6,8,3,1,9,12,11,10,7,5,2,4 +49,6,1,3,12,2,9,5,11,4,7,10,8 +51,1,7,3,11,2,6,10,5,4,12,9,8 +63,5,6,1,2,3,12,9,10,8,7,4,11 +40,12,6,5,3,11,8,10,4,2,1,9,7 +87,1,9,2,7,3,10,4,12,5,6,8,11 +38,12,10,3,5,7,11,6,2,1,8,9,4 +93,6,3,7,2,11,8,9,4,12,5,10,1 +87,12,6,8,9,3,10,4,5,11,7,2,1 +60,12,10,2,1,5,8,4,3,9,11,6,7 +91,11,3,6,10,4,5,7,8,2,9,12,1 +81,4,3,9,6,5,2,11,7,1,12,10,8 +54,11,6,7,3,1,8,12,10,4,2,5,9 +6,9,12,11,6,5,7,4,8,1,2,3,10 +86,7,5,3,6,2,9,8,4,10,11,12,1 +11,9,2,10,12,8,4,6,1,5,11,3,7 +94,4,1,7,2,10,9,3,5,8,6,11,12 +62,6,5,1,2,3,8,4,7,12,11,10,9 +98,4,10,2,7,9,1,8,12,3,5,6,11 +19,7,3,12,9,6,11,2,4,8,1,5,10 +31,10,5,3,12,8,4,11,7,6,1,9,2 +33,11,6,10,12,8,7,4,2,5,3,1,9 +52,5,3,12,8,2,4,7,10,6,1,11,9 +6,10,3,11,6,5,12,7,9,2,4,8,1 +88,8,10,11,2,12,6,4,5,9,1,3,7 +33,3,5,8,6,7,11,1,10,9,4,2,12 +26,11,6,9,4,5,1,2,3,10,12,8,7 +1,7,10,12,9,8,4,6,5,3,11,2,1 +6,1,11,9,2,6,10,3,5,12,7,8,4 +6,3,1,5,4,7,2,9,6,8,11,10,12 +45,3,5,9,11,7,2,12,10,6,8,1,4 +90,10,1,5,4,9,8,6,7,2,12,3,11 +17,11,3,4,10,1,2,7,12,8,5,6,9 +23,3,10,8,5,6,9,12,7,2,11,1,4 +18,3,9,1,11,4,6,2,5,10,8,7,12 +8,8,6,11,9,5,4,2,7,3,1,12,10 +20,12,2,8,9,6,7,3,11,4,5,1,10 +45,6,3,7,8,1,2,5,9,11,12,4,10 +33,10,2,4,5,11,8,7,3,9,1,6,12 +27,9,11,10,7,1,4,5,8,6,3,2,12 +72,2,8,9,10,7,4,6,12,5,11,1,3 +51,5,2,1,7,12,9,11,3,4,8,6,10 +8,6,4,10,11,12,5,7,3,9,1,8,2 +44,2,6,5,3,10,9,7,8,1,11,4,12 +17,1,3,2,8,10,12,11,6,9,7,4,5 +46,8,11,5,6,9,1,12,3,7,10,4,2 +25,9,1,8,5,10,4,6,12,11,2,3,7 +57,3,2,1,10,9,5,7,6,11,8,4,12 +93,1,3,2,6,8,7,4,10,12,11,9,5 +72,5,2,10,6,9,1,12,7,3,4,11,8 +52,1,10,12,8,7,2,9,4,11,6,5,3 +49,4,2,10,5,9,8,7,12,3,6,1,11 +56,12,2,11,4,10,1,9,8,3,5,7,6 +29,4,12,11,7,3,8,10,1,9,2,5,6 +92,4,5,1,2,6,3,8,7,11,9,12,10 +26,12,9,2,3,6,7,8,5,11,4,10,1 +33,4,5,2,7,1,10,9,12,6,8,3,11 +5,6,7,5,3,9,4,10,11,1,8,2,12 +10,4,1,7,3,5,6,11,9,2,12,8,10 +95,5,11,9,3,2,6,7,12,8,4,1,10 +22,4,5,3,1,11,9,12,8,10,7,2,6 +18,7,12,1,9,2,4,10,5,8,11,6,3 +53,9,4,5,7,11,8,2,6,12,3,1,10 +95,12,4,3,6,9,7,10,1,5,2,8,11 +6,12,7,3,2,5,8,9,11,4,1,6,10 +47,1,8,9,7,12,3,2,4,5,6,10,11 +47,7,5,4,2,6,11,9,10,1,3,12,8 +21,11,5,4,12,2,7,3,1,8,10,6,9 +25,3,8,2,6,5,11,12,7,1,4,10,9 +44,10,7,2,11,8,1,6,9,3,12,4,5 +75,11,7,3,4,2,1,9,6,5,8,12,10 +97,6,11,1,7,9,2,12,10,3,4,5,8 +77,10,5,1,3,2,9,8,4,6,11,7,12 +81,1,10,12,7,4,11,8,2,5,9,6,3 +85,6,1,11,3,10,12,7,5,9,4,8,2 +77,4,6,5,11,9,1,12,10,3,2,7,8 +56,1,5,8,3,12,9,11,10,7,4,6,2 +76,2,8,12,1,4,11,9,6,7,10,3,5 +82,12,3,8,1,5,10,6,4,9,11,2,7 +58,6,1,9,8,12,7,3,4,11,2,5,10 +36,10,7,8,1,6,4,11,12,2,5,3,9 +35,2,9,11,1,7,12,6,5,3,4,10,8 +80,12,4,7,3,9,1,10,11,5,8,2,6 +19,4,11,10,9,8,2,6,12,1,7,3,5 +70,7,2,11,12,5,6,1,3,8,10,4,9 +3,2,1,7,5,12,11,10,6,4,3,8,9 +83,11,5,8,1,7,9,10,12,2,6,3,4 +46,2,4,3,11,1,10,9,8,7,12,6,5 +9,7,5,10,12,6,8,4,11,9,3,2,1 +86,4,2,10,12,8,3,7,5,9,1,6,11 +35,11,10,12,6,9,3,5,8,7,4,1,2 +44,6,11,5,12,9,10,7,8,3,2,4,1 +65,8,7,2,3,10,4,11,6,1,5,9,12 +19,5,11,3,12,2,8,10,1,6,9,4,7 +88,2,4,8,10,6,5,9,11,1,7,12,3 +68,9,2,3,12,7,1,4,5,11,8,6,10 +13,11,3,9,8,6,5,2,4,12,7,10,1 +65,6,2,5,8,11,7,10,12,3,1,4,9 +40,10,6,9,12,2,11,1,5,8,7,4,3 +52,10,2,7,11,3,8,12,1,6,9,5,4 +51,6,5,1,3,12,4,9,2,8,7,11,10 +15,6,12,5,7,8,11,2,4,10,9,1,3 +49,4,10,12,8,3,11,1,5,7,2,9,6 +69,2,9,6,1,3,11,7,12,4,5,10,8 +59,3,4,1,6,2,5,7,12,8,10,9,11 +2,4,3,2,8,7,6,10,1,9,12,5,11 +55,1,12,4,11,3,7,9,10,2,8,5,6 +90,4,7,3,5,1,6,8,9,2,12,11,10 +41,9,8,12,11,6,2,3,7,5,10,4,1 +70,7,3,12,5,1,11,4,2,9,10,8,6 +84,11,4,9,10,5,8,7,12,2,6,3,1 +7,12,3,10,4,8,7,6,9,5,1,2,11 +36,3,8,1,5,10,6,9,4,2,11,7,12 +46,9,11,1,8,12,10,3,5,7,6,4,2 +98,1,11,10,3,5,4,6,9,2,12,7,8 +80,4,6,11,10,12,2,5,9,1,8,7,3 +70,3,11,12,8,5,10,1,2,6,4,7,9 +30,2,1,11,8,4,5,6,3,7,9,12,10 +59,6,7,8,11,12,3,9,2,10,1,4,5 +73,5,3,2,1,10,9,11,12,7,4,6,8 +18,4,2,11,6,1,8,5,3,12,10,7,9 +63,7,4,12,2,9,3,1,8,10,6,11,5 +45,7,11,12,10,1,3,8,6,4,5,2,9 +73,3,8,9,7,1,6,12,5,4,10,11,2 +82,9,5,3,2,8,1,4,10,12,7,11,6 +80,5,12,7,4,9,11,1,10,3,2,6,8 +63,1,3,4,9,10,8,7,12,6,11,2,5 +12,4,8,12,5,9,6,7,3,11,2,10,1 +89,2,1,8,12,7,5,10,3,6,4,11,9 +98,2,10,8,7,1,11,6,5,12,9,4,3 +7,7,5,11,2,12,1,9,3,10,4,8,6 +48,6,12,4,3,5,9,11,2,7,8,1,10 +59,4,7,10,2,12,3,5,6,11,8,1,9 +92,8,7,3,1,6,2,5,4,12,9,11,10 +23,1,9,7,3,2,5,12,11,10,6,4,8 +90,6,5,7,4,1,2,3,9,10,8,11,12 +16,4,8,9,3,10,7,5,1,2,6,11,12 +9,7,9,4,1,6,3,11,12,2,8,5,10 +79,1,8,11,12,6,3,2,4,10,5,9,7 +21,1,3,4,6,9,8,7,2,5,12,10,11 +62,1,7,8,5,11,12,6,4,9,3,10,2 +94,4,2,7,10,11,6,1,5,3,8,12,9 +10,2,7,1,9,8,6,5,3,10,12,11,4 +17,6,7,5,3,10,9,8,4,12,11,1,2 +53,7,5,11,9,2,12,10,1,4,8,3,6 +92,1,10,8,11,2,7,4,12,9,6,3,5 +13,1,8,4,7,11,12,6,5,10,9,3,2 +82,11,9,7,5,12,4,1,10,6,8,2,3 +98,5,4,10,12,6,11,1,7,9,2,8,3 +10,7,6,2,9,3,12,5,8,1,11,10,4 +3,12,4,1,5,10,6,7,2,8,3,11,9 +81,2,10,12,6,8,5,1,9,11,3,7,4 +89,3,7,5,4,11,6,2,12,1,8,10,9 +82,5,12,3,11,4,2,1,7,6,9,8,10 +20,4,8,2,10,11,6,7,5,12,9,1,3 +36,9,11,5,8,3,10,1,7,4,6,12,2 +53,8,7,1,11,3,9,5,12,2,6,4,10 +4,3,4,2,9,12,8,7,10,1,6,11,5 +83,12,4,1,2,3,11,10,5,9,7,6,8 +53,5,3,11,4,1,2,12,10,9,6,8,7 +42,6,10,2,12,7,9,3,1,4,11,5,8 +88,4,8,10,9,2,1,3,12,11,5,6,7 +88,7,1,6,5,3,10,2,11,12,9,8,4 +42,11,7,10,1,12,2,8,4,6,3,5,9 +14,12,10,5,11,3,7,4,6,9,2,8,1 +94,7,5,2,4,3,1,10,9,11,8,12,6 +79,7,1,12,5,4,2,9,10,6,11,8,3 +53,12,9,6,10,4,2,5,1,7,8,11,3 +75,2,10,4,11,6,8,12,3,7,5,9,1 +86,5,1,12,10,7,3,9,11,6,8,2,4 +68,4,5,2,10,3,12,1,8,9,11,6,7 +38,11,12,2,4,9,10,1,8,3,6,5,7 +69,5,9,6,7,12,11,1,4,2,8,10,3 +65,10,8,3,5,7,12,11,9,4,1,2,6 +46,6,4,12,2,7,5,10,9,11,1,8,3 +70,10,12,11,2,7,9,8,4,6,3,1,5 +86,8,2,11,10,12,6,9,1,4,5,3,7 +62,2,12,1,11,3,6,4,5,8,9,7,10 +90,12,2,6,3,10,4,8,5,7,1,9,11 +6,2,8,5,6,4,11,12,3,10,9,7,1 +39,4,5,2,12,6,3,1,10,7,8,9,11 +62,8,7,1,4,10,6,2,12,11,5,3,9 +10,12,6,7,5,2,10,11,9,1,4,3,8 +53,7,3,6,10,2,4,12,5,8,11,9,1 +59,4,9,2,8,1,6,7,12,10,3,11,5 +47,10,7,2,11,6,9,1,4,12,8,3,5 +1,12,4,7,2,11,10,1,8,5,3,9,6 +29,7,5,1,3,12,2,11,9,8,10,4,6 +42,10,12,7,8,9,4,1,11,6,2,3,5 +17,5,6,12,3,1,11,10,8,2,9,7,4 +25,4,7,11,8,12,2,10,5,1,9,3,6 +84,1,9,7,4,10,12,3,2,8,6,11,5 +14,2,11,9,4,1,12,7,6,10,5,8,3 +14,4,10,1,9,11,7,12,6,5,3,2,8 +52,3,5,1,11,8,6,10,9,4,7,2,12 +37,3,1,10,8,4,6,12,11,5,9,2,7 +9,3,12,4,5,2,11,8,6,1,10,9,7 +7,3,5,8,11,2,4,6,7,9,10,12,1 +63,10,3,4,9,7,11,5,8,1,6,2,12 +72,3,8,7,6,11,2,9,5,12,4,10,1 +63,6,9,3,4,12,7,1,2,10,5,11,8 +75,3,7,8,5,6,12,4,2,11,1,10,9 +19,4,7,5,1,6,11,2,9,3,8,12,10 +18,1,12,4,9,7,3,5,6,2,10,8,11 +91,2,7,5,9,10,6,3,1,4,11,12,8 +94,9,11,4,6,1,7,10,8,5,2,12,3 +8,4,9,7,2,3,1,5,6,8,10,12,11 +77,5,11,10,3,7,12,9,4,1,2,8,6 +55,7,9,8,5,3,11,2,6,12,4,1,10 +100,12,10,9,11,3,7,2,5,8,6,4,1 +81,6,5,1,9,2,11,12,3,7,4,8,10 +64,9,8,7,3,1,12,2,6,4,5,11,10 +4,12,3,7,10,1,9,8,11,5,4,2,6 +27,11,12,6,3,9,10,8,5,7,4,2,1 +39,10,6,3,12,11,7,1,4,8,9,2,5 +41,9,11,8,3,6,12,1,4,2,5,10,7 +7,7,11,6,3,9,5,8,12,10,2,1,4 +84,12,10,7,1,5,2,9,8,3,11,6,4 +59,1,2,12,5,10,8,6,11,3,4,7,9 +10,3,10,11,12,1,6,7,9,4,5,8,2 +62,6,2,11,7,4,8,12,3,1,9,5,10 +69,3,11,2,10,7,12,6,1,4,8,9,5 +70,10,7,9,12,8,1,3,4,11,5,2,6 +72,6,9,8,10,5,4,7,2,3,1,11,12 +95,4,10,1,2,8,6,5,12,9,7,3,11 +19,2,8,5,3,6,10,4,7,12,11,9,1 +53,11,3,10,12,6,2,9,8,1,4,7,5 +22,9,11,5,1,7,2,6,3,8,4,12,10 +80,10,12,7,1,11,3,9,8,4,6,2,5 +41,6,1,4,10,2,7,9,11,3,5,8,12 +13,2,3,11,1,4,10,12,8,6,7,5,9 +96,12,1,2,11,9,6,10,8,4,7,5,3 +47,1,5,4,3,8,6,9,2,7,12,10,11 +41,2,4,9,5,1,10,11,7,6,3,8,12 +98,6,1,3,7,12,5,10,2,8,9,11,4 +23,4,7,12,8,3,11,5,2,10,1,6,9 +3,4,8,7,10,5,11,6,9,3,1,12,2 +13,6,11,4,3,7,1,9,12,5,2,8,10 +65,8,9,3,12,10,1,7,11,2,6,5,4 +92,5,11,3,9,12,7,1,8,4,6,2,10 +23,11,9,10,12,8,6,7,2,5,1,3,4 +71,1,9,4,2,10,8,12,7,11,3,6,5 +10,10,11,3,2,4,5,7,12,9,6,1,8 +19,4,1,7,2,11,10,5,12,6,8,9,3 +66,1,6,2,10,11,12,4,7,9,5,3,8 +95,1,8,4,6,12,3,10,11,7,2,9,5 +47,5,7,1,8,6,3,10,4,11,12,9,2 +31,8,3,9,6,5,7,4,1,2,11,10,12 +6,5,6,10,7,2,11,9,8,3,12,4,1 +93,4,9,12,6,2,8,10,3,7,1,5,11 +82,12,5,7,1,11,9,8,4,2,10,6,3 +52,4,6,11,10,8,2,7,9,3,1,12,5 +44,9,12,3,10,11,5,8,7,1,2,4,6 +0,12,2,9,8,11,5,3,6,10,1,4,7 +33,4,5,3,1,8,9,11,6,2,12,7,10 +45,11,2,12,4,1,3,7,9,6,5,10,8 +55,10,12,2,3,5,4,1,9,7,6,11,8 +91,4,1,2,3,8,5,12,7,6,10,9,11 +80,5,10,2,7,8,12,4,11,9,6,3,1 +73,6,4,7,1,2,11,12,5,8,9,3,10 +78,10,8,9,4,12,1,6,7,3,11,2,5 +3,2,9,8,5,7,3,6,1,12,11,10,4 +80,6,10,2,12,5,7,11,4,1,9,3,8 +98,12,3,1,5,11,7,9,10,6,4,8,2 +63,7,10,12,6,4,5,9,3,1,2,8,11 +81,9,7,1,11,8,5,4,10,2,3,12,6 +52,8,4,5,6,10,9,11,1,3,12,2,7 +96,12,11,9,3,5,2,7,4,8,6,10,1 +8,6,10,5,8,12,3,11,7,9,1,4,2 +64,2,7,1,4,12,5,11,6,10,8,3,9 +25,4,7,2,8,10,1,5,9,11,3,12,6 +97,5,3,2,6,4,9,11,7,10,8,12,1 +76,9,4,11,12,6,5,2,1,3,7,8,10 +69,8,5,7,11,9,2,12,1,6,10,4,3 +53,4,9,6,12,1,2,11,10,7,5,8,3 +65,1,8,9,4,7,11,6,12,10,5,3,2 +49,10,1,2,5,8,6,3,11,7,9,4,12 +46,8,1,12,5,4,3,10,9,6,7,2,11 +5,7,10,12,1,6,5,9,3,4,11,2,8 +51,5,2,12,8,1,3,6,9,7,11,10,4 +94,1,5,4,6,3,8,2,12,7,11,10,9 +74,7,8,3,4,5,11,6,10,9,2,1,12 +14,9,11,3,4,10,1,7,5,12,8,6,2 +18,11,8,2,6,7,3,4,9,1,5,10,12 +67,11,8,9,1,2,10,5,6,7,3,4,12 +59,8,1,6,9,7,5,4,3,2,12,11,10 +64,4,2,12,9,6,3,11,1,7,5,10,8 +86,4,9,3,7,12,6,8,2,1,10,5,11 +28,5,8,12,4,1,10,11,9,2,6,7,3 +98,4,12,9,11,8,1,10,3,6,7,5,2 +75,7,1,6,5,11,12,4,9,8,3,10,2 +58,8,3,4,2,7,6,12,9,11,1,5,10 +88,4,7,10,5,8,12,1,3,11,2,9,6 +9,12,2,9,5,10,7,11,1,8,6,4,3 +82,10,3,4,12,8,1,2,11,5,6,9,7 +45,1,2,9,12,8,7,10,5,11,4,3,6 +96,2,1,8,4,6,5,7,9,12,11,3,10 +5,9,12,3,2,6,11,10,1,7,8,4,5 +67,2,7,10,3,6,12,4,11,8,9,5,1 +100,6,1,11,3,7,10,5,8,9,4,12,2 +40,8,5,6,12,10,2,7,3,4,11,1,9 +71,7,11,3,10,12,6,4,8,9,5,1,2 +40,4,11,2,7,9,3,10,6,8,12,1,5 +27,5,8,3,12,7,11,1,6,10,2,9,4 +88,5,6,4,9,12,7,11,8,2,1,3,10 +86,12,9,2,7,8,4,3,11,1,5,6,10 +22,11,1,9,5,2,6,10,12,4,8,3,7 +14,2,4,11,1,12,8,9,6,5,3,10,7 +24,12,10,1,4,7,8,9,2,6,3,5,11 +12,1,11,7,9,5,6,10,2,8,3,12,4 +84,4,12,3,11,6,5,1,8,9,7,2,10 +48,11,10,4,1,12,7,9,2,5,3,8,6 +89,8,7,4,2,3,1,11,12,5,6,9,10 +53,7,3,10,2,9,5,4,12,6,8,11,1 +90,6,11,1,9,2,8,4,7,5,12,10,3 +89,6,3,10,2,4,12,7,11,9,5,8,1 +28,7,2,1,11,10,4,5,3,12,6,8,9 +60,10,8,6,5,3,12,4,9,1,7,11,2 +59,8,10,1,2,7,6,12,11,9,4,5,3 +72,2,11,12,3,1,6,4,10,5,7,8,9 +88,3,7,1,11,8,6,10,12,9,2,4,5 +42,7,3,4,8,9,12,1,11,2,10,5,6 +74,4,3,10,11,2,5,6,1,9,8,12,7 +49,1,4,11,8,7,2,5,10,6,12,3,9 +1,11,2,9,5,1,12,3,6,10,4,8,7 +96,7,6,2,3,4,9,5,12,11,8,1,10 +13,2,5,9,11,12,1,7,8,6,3,10,4 +95,9,5,10,4,3,6,7,2,8,1,12,11 +15,11,8,10,9,3,6,2,5,7,12,1,4 +61,9,8,10,6,7,11,12,4,3,2,1,5 +100,9,8,1,2,10,3,7,6,11,12,5,4 +21,1,3,11,12,9,5,10,2,4,7,8,6 +25,6,2,3,9,8,12,4,1,5,11,7,10 +51,5,2,1,12,7,10,3,9,8,6,4,11 +93,5,4,12,1,9,3,7,11,8,6,2,10 +100,11,3,9,12,6,8,5,10,2,4,1,7 +62,12,9,3,7,10,1,6,4,2,8,11,5 +71,11,3,1,5,7,6,9,2,10,4,12,8 +67,2,8,7,1,6,10,3,11,9,12,4,5 +37,8,6,11,2,5,7,10,9,1,4,3,12 +65,8,5,3,10,4,1,12,11,9,6,7,2 +83,12,7,4,8,6,2,11,9,1,5,3,10 +4,2,9,5,10,12,4,8,11,3,1,6,7 +90,6,12,8,5,11,7,9,3,10,4,2,1 +71,1,5,3,8,10,2,6,11,12,9,4,7 +82,2,7,4,8,11,10,1,3,6,9,12,5 +16,7,6,3,10,12,11,9,2,8,4,5,1 +5,4,12,10,3,6,5,2,7,1,8,11,9 +34,6,2,9,8,7,1,11,4,10,3,12,5 +3,12,11,2,7,1,4,10,9,3,8,5,6 +1,10,5,6,1,7,3,8,12,4,2,11,9 +52,1,11,10,9,6,7,5,12,2,8,3,4 +20,9,2,8,10,1,6,4,11,5,7,3,12 +100,3,12,10,6,8,1,4,11,5,9,2,7 +26,9,5,10,4,6,7,12,1,3,11,8,2 +72,3,6,11,1,12,2,8,5,4,10,7,9 +95,2,1,9,12,6,5,11,8,3,10,7,4 +24,3,1,12,6,8,5,7,2,9,11,4,10 +100,6,12,4,10,2,11,5,1,8,7,9,3 +4,3,4,12,8,6,1,7,11,2,5,9,10 +41,8,10,7,11,6,9,12,1,3,5,2,4 +36,9,5,2,7,4,8,11,6,1,10,12,3 +41,1,2,10,8,6,9,5,4,11,3,7,12 +76,4,8,6,2,1,12,3,5,9,10,11,7 +13,6,4,5,7,11,2,9,1,12,3,8,10 +12,2,10,3,12,4,9,6,7,8,1,5,11 +24,2,1,12,10,11,6,8,7,3,9,5,4 +27,6,4,8,9,11,1,7,12,2,3,5,10 +90,1,7,10,9,4,5,11,2,12,3,8,6 +28,8,6,4,5,1,9,12,10,2,3,11,7 +80,4,11,3,1,8,9,12,5,6,2,10,7 +4,7,11,3,12,1,10,4,5,6,8,2,9 +51,7,3,4,11,12,5,2,1,10,8,6,9 +99,6,1,7,9,2,12,10,5,8,4,11,3 +49,12,7,3,6,8,2,10,1,11,4,9,5 +80,7,10,5,9,4,8,11,6,3,1,2,12 +68,4,3,9,5,8,10,12,2,11,6,7,1 +94,5,2,12,10,1,8,3,4,6,7,11,9 +22,2,8,1,4,5,6,11,3,10,7,9,12 +29,6,7,12,4,1,3,5,9,11,2,10,8 +15,11,3,2,7,6,9,5,12,4,8,10,1 +26,6,5,11,4,7,8,2,1,12,10,3,9 +94,5,1,9,2,3,10,4,6,8,12,11,7 +4,2,9,7,11,4,1,10,8,5,12,3,6 +37,3,7,6,12,5,11,10,8,1,9,2,4 +16,11,12,5,2,8,9,6,3,10,4,7,1 +64,10,8,5,9,3,12,1,7,6,4,11,2 +53,12,9,5,10,3,11,8,2,7,4,1,6 +26,8,10,2,4,6,3,1,9,11,5,12,7 +69,2,8,3,1,5,4,10,6,9,7,11,12 +21,11,9,4,8,7,12,10,6,5,3,2,1 +38,10,5,11,12,8,2,6,4,9,1,7,3 +89,8,12,7,5,11,6,2,3,4,1,9,10 +25,8,11,10,5,1,2,7,6,12,3,9,4 +87,5,4,9,11,10,3,7,1,2,12,6,8 +59,4,2,9,6,8,11,5,12,7,1,10,3 +88,3,11,7,9,12,10,5,1,8,6,4,2 +45,9,8,3,2,6,12,1,7,11,4,5,10 +38,3,9,6,7,5,12,10,2,4,11,8,1 +97,3,12,4,10,6,7,2,8,9,1,5,11 +100,1,4,12,3,9,11,6,10,8,5,7,2 +22,3,6,12,9,2,4,11,8,10,7,1,5 +27,8,9,3,6,1,11,12,7,4,2,10,5 +100,1,5,8,3,9,10,7,11,4,12,2,6 +80,6,11,9,4,1,10,5,2,8,12,7,3 +58,4,2,9,8,11,7,6,12,10,5,3,1 +66,3,12,7,1,5,2,6,10,4,8,9,11 +76,3,5,10,6,11,8,12,1,4,9,2,7 +99,10,12,4,8,1,3,11,5,6,7,9,2 +77,6,11,7,8,9,3,12,10,1,5,2,4 +84,7,1,5,6,4,12,11,8,3,2,9,10 +64,9,11,1,12,5,7,4,2,8,3,10,6 +44,4,12,3,5,8,2,7,10,6,9,11,1 +95,6,7,1,12,9,2,5,8,11,3,10,4 +81,9,6,8,1,5,3,2,10,4,7,12,11 +14,6,7,5,9,3,1,8,2,4,12,11,10 +51,5,8,6,11,3,4,1,7,10,2,9,12 +28,6,3,2,10,12,1,11,7,4,8,9,5 +19,3,6,4,7,1,5,8,10,2,11,9,12 +10,3,9,4,12,1,5,6,8,11,7,10,2 +58,12,3,10,5,11,9,6,4,8,7,2,1 +10,12,9,7,2,5,8,10,4,1,6,3,11 +62,3,4,11,6,12,5,9,1,10,2,8,7 +20,8,11,2,1,4,6,7,5,10,3,12,9 +8,10,8,9,7,11,3,2,5,1,4,6,12 +12,4,7,8,9,10,3,2,12,1,6,11,5 +0,10,9,3,5,12,11,8,7,2,1,4,6 +19,12,4,3,5,8,2,9,1,6,11,10,7 +100,8,9,12,7,6,1,4,2,11,3,5,10 +87,1,3,8,6,5,7,11,2,12,4,10,9 +59,12,1,9,7,2,11,3,4,10,8,6,5 +56,1,9,6,11,10,12,5,2,7,8,4,3 +41,9,6,1,4,5,8,2,7,12,10,3,11 +77,3,8,6,10,7,2,9,1,5,4,11,12 +90,2,7,10,5,4,12,11,9,3,1,8,6 +33,7,4,5,9,10,1,3,6,2,8,12,11 +82,3,10,8,6,5,7,9,2,1,11,4,12 +36,1,4,3,7,6,11,5,12,9,8,2,10 +68,11,3,7,9,4,10,1,2,12,8,5,6 +86,10,11,9,5,7,2,12,8,4,6,3,1 +12,12,10,2,6,5,1,3,11,9,4,7,8 +85,6,8,3,7,4,12,9,1,5,11,2,10 +71,4,12,10,9,8,7,11,1,3,5,6,2 +56,1,5,2,11,9,10,8,6,3,7,4,12 +27,11,8,6,1,7,3,10,4,5,12,9,2 +43,11,9,2,7,6,4,12,8,10,3,5,1 +89,1,5,6,7,3,2,4,12,9,8,10,11 +87,10,6,3,1,12,4,5,9,7,8,11,2 +87,4,10,6,9,2,3,8,7,1,12,11,5 +66,6,9,11,8,10,12,1,3,4,5,2,7 +36,8,1,2,4,10,3,6,11,5,7,9,12 +73,3,1,6,11,5,8,7,12,2,9,4,10 +34,11,8,12,4,7,5,9,10,1,6,2,3 +45,10,4,6,2,3,5,11,8,12,9,1,7 +69,12,3,10,2,7,6,1,11,9,8,5,4 +75,10,6,7,9,8,2,1,12,4,5,3,11 +2,8,9,7,5,2,11,6,4,1,12,3,10 +70,8,10,5,3,11,2,6,9,1,7,4,12 +62,5,9,7,11,3,2,6,1,10,8,4,12 +51,1,7,4,12,3,2,6,5,9,8,11,10 +59,10,9,2,12,3,8,7,1,6,11,4,5 +1,7,11,1,12,9,3,6,8,10,2,5,4 +28,5,1,3,6,8,2,12,10,4,11,7,9 +42,9,2,3,4,10,8,12,5,11,6,7,1 +100,5,6,12,9,3,1,2,10,8,7,4,11 +17,11,12,6,1,9,8,10,3,7,5,4,2 +88,2,1,7,8,12,9,3,10,5,4,11,6 +24,4,1,8,3,11,5,7,10,12,6,9,2 +74,11,4,12,8,3,10,2,1,6,9,7,5 +9,6,7,2,8,12,11,1,3,10,5,4,9 +61,3,4,11,9,8,1,2,7,12,10,5,6 +25,6,5,11,8,4,3,7,2,10,9,12,1 +39,12,6,4,9,10,8,3,11,5,1,2,7 +21,4,8,7,12,1,5,3,9,10,11,6,2 +74,3,12,1,9,7,10,8,6,5,11,2,4 +51,5,11,4,10,6,8,9,2,1,12,3,7 +31,8,10,9,12,3,6,7,5,1,11,4,2 +67,4,1,6,12,10,7,2,8,9,11,5,3 +63,6,9,7,5,11,4,1,8,12,10,2,3 +14,8,10,5,11,7,2,6,3,12,9,4,1 +99,3,10,6,7,5,9,11,2,8,12,1,4 +94,7,6,11,2,3,5,12,8,1,9,4,10 +7,1,5,12,9,7,8,3,11,2,6,10,4 +78,4,1,11,5,6,2,8,3,10,7,9,12 +61,2,6,7,5,9,8,4,11,12,3,1,10 +97,9,10,4,8,12,3,6,1,5,2,7,11 +67,12,9,7,10,8,4,3,6,11,5,2,1 +85,8,10,12,1,6,9,4,3,7,2,5,11 +8,10,9,7,1,4,12,2,5,8,3,11,6 +87,11,8,4,10,9,5,6,12,3,2,7,1 +43,7,2,12,9,5,6,11,8,10,1,4,3 +12,8,3,2,6,4,12,1,7,11,9,10,5 +68,2,9,8,12,11,1,6,5,4,7,3,10 +90,1,11,3,2,4,7,5,10,9,6,8,12 +81,8,4,10,12,1,5,9,11,7,3,6,2 +97,2,8,11,9,1,12,6,5,3,4,7,10 +34,8,7,12,3,4,11,2,6,10,5,1,9 +80,1,3,12,4,7,8,6,2,10,9,5,11 +46,8,2,9,4,1,11,12,5,3,6,7,10 +25,9,4,6,10,5,7,12,1,2,3,11,8 +63,10,2,1,8,5,11,7,4,12,3,9,6 +36,12,4,3,11,10,9,2,7,8,5,6,1 +56,10,5,12,6,1,11,4,7,3,2,9,8 +74,6,7,1,10,2,12,4,3,11,8,5,9 +18,7,12,1,8,5,9,10,11,6,2,4,3 +51,12,3,8,4,10,6,7,2,5,1,11,9 +0,3,8,7,11,6,9,12,4,1,10,5,2 +78,6,2,8,3,9,12,10,1,7,5,4,11 +14,12,5,7,11,10,3,2,4,8,9,6,1 +54,9,12,11,7,3,10,5,8,2,6,4,1 +100,9,12,2,3,7,4,1,5,8,6,10,11 +71,7,11,5,3,8,1,9,12,6,4,10,2 +22,7,5,1,11,8,10,4,9,6,12,3,2 +37,5,4,11,8,7,3,9,10,6,1,2,12 +44,11,7,8,2,4,3,10,1,9,6,5,12 +75,1,7,3,4,8,9,6,5,12,11,10,2 +25,9,7,6,3,12,10,8,11,1,2,4,5 +15,7,2,3,11,8,4,1,5,10,12,9,6 +74,7,3,1,8,6,12,4,9,5,11,2,10 +94,5,11,3,10,6,2,12,9,1,7,8,4 +84,8,5,10,1,6,7,9,4,11,2,12,3 +19,6,11,12,1,4,7,5,10,3,2,8,9 +99,3,5,1,7,12,11,2,8,9,10,6,4 +99,6,10,12,1,2,5,7,3,9,4,8,11 +75,4,7,5,1,2,3,6,9,12,8,11,10 +94,12,5,1,10,3,11,4,6,8,2,9,7 +73,10,11,7,12,6,1,2,8,9,3,5,4 +50,11,6,12,10,5,4,3,1,8,9,7,2 +8,1,10,7,5,6,11,4,12,2,8,9,3 +69,2,10,8,4,6,5,11,7,3,9,12,1 +16,9,7,2,11,1,4,10,3,6,8,5,12 +0,9,7,4,2,3,11,6,1,8,10,12,5 +67,5,3,7,4,2,8,12,1,11,6,9,10 +47,3,2,7,6,4,5,8,10,12,9,1,11 +10,10,1,8,11,4,3,6,5,12,2,7,9 +63,9,6,8,7,3,1,10,12,11,2,4,5 +14,12,2,1,9,7,6,3,8,11,5,10,4 +31,4,12,5,6,2,1,8,7,9,10,3,11 +44,3,4,8,5,2,9,1,7,10,12,6,11 +21,8,1,12,7,2,3,11,10,5,9,6,4 +3,5,7,1,3,9,10,2,8,12,6,11,4 +34,3,6,5,2,4,7,12,10,1,8,11,9 +55,12,9,5,7,11,1,6,2,10,4,3,8 +94,12,10,11,7,9,6,8,1,5,2,3,4 +61,1,12,2,10,3,7,8,11,9,5,4,6 +74,2,1,4,10,5,12,11,9,3,8,7,6 +30,7,11,2,5,4,8,1,3,6,9,10,12 +6,7,6,11,9,1,2,4,10,8,12,5,3 +5,5,10,12,4,2,9,3,1,7,11,6,8 +20,3,7,8,1,11,5,2,10,12,9,6,4 +55,2,11,4,3,1,10,12,5,9,6,8,7 +56,2,5,12,8,7,9,6,11,10,1,3,4 +17,9,2,5,1,3,10,4,7,8,6,11,12 +35,1,4,11,2,6,5,12,9,8,7,10,3 +89,1,8,6,3,7,5,4,10,9,11,12,2 +48,10,7,11,1,3,9,8,5,12,2,6,4 +96,9,8,7,11,4,6,1,2,12,10,5,3 +76,8,10,9,6,4,11,3,5,7,12,1,2 +86,7,11,5,6,2,1,10,9,12,4,3,8 +89,5,7,11,10,1,8,9,6,3,2,12,4 +82,7,11,9,6,8,12,2,3,5,10,1,4 +52,10,4,8,5,3,11,12,9,1,2,7,6 +30,5,1,3,10,7,6,4,8,12,2,11,9 +82,3,4,2,8,12,6,1,5,9,7,11,10 +2,5,2,9,11,10,4,3,7,12,6,8,1 +44,2,6,5,8,3,11,9,10,7,4,1,12 +49,7,10,9,2,11,5,12,3,1,6,8,4 +89,1,3,6,10,5,8,12,11,2,4,9,7 +53,4,9,8,12,1,11,5,6,7,2,3,10 +76,1,3,4,11,8,5,10,2,12,6,7,9 +44,10,1,9,11,7,5,2,8,3,12,6,4 +32,3,7,10,9,12,2,8,1,6,11,5,4 +28,5,9,10,12,7,6,11,4,2,3,8,1 +42,2,10,1,11,3,12,9,8,4,5,6,7 +94,9,1,7,10,3,4,2,6,5,11,8,12 +82,6,3,9,4,1,10,5,12,2,11,7,8 +45,6,7,10,2,11,8,5,9,4,1,12,3 +80,6,2,7,8,1,4,3,11,9,10,5,12 +20,2,6,10,3,7,4,1,9,12,5,11,8 +25,4,12,8,10,7,3,11,5,6,1,2,9 +65,3,2,7,12,9,1,8,10,5,4,6,11 +21,6,1,9,10,11,4,8,5,2,7,3,12 +47,9,6,4,2,1,3,11,10,5,7,12,8 +40,10,3,11,12,7,5,4,8,9,6,1,2 +59,6,3,7,10,12,9,8,2,1,11,5,4 +35,12,2,3,8,9,6,5,11,1,4,7,10 +82,3,2,12,8,5,6,1,9,4,7,11,10 +17,1,12,10,6,5,3,7,11,2,8,4,9 +83,7,4,11,3,8,6,12,9,2,5,1,10 +85,3,11,9,8,1,6,10,12,2,7,5,4 +71,5,6,2,7,8,12,4,10,9,11,1,3 +47,8,5,4,2,7,9,12,11,3,1,6,10 +69,10,2,8,11,12,5,6,3,1,7,9,4 +88,11,5,12,7,2,3,8,9,10,4,1,6 +87,3,6,11,4,1,8,9,12,7,2,10,5 +36,3,8,1,7,11,5,4,2,10,12,9,6 +91,4,7,8,11,9,2,1,12,10,6,3,5 +14,3,6,1,2,5,7,12,11,10,8,4,9 +65,3,11,6,1,8,9,10,2,5,7,4,12 +97,5,9,12,6,3,4,8,11,2,1,7,10 +4,2,12,4,10,7,8,1,3,9,5,11,6 +32,2,8,6,4,9,1,5,7,3,11,10,12 +33,9,12,6,2,7,8,10,11,5,3,1,4 +43,10,6,4,1,5,7,8,3,9,2,11,12 +26,2,8,3,9,1,4,7,11,5,6,12,10 +92,8,6,7,5,9,2,11,12,3,4,1,10 +11,2,10,5,3,12,6,4,11,9,7,1,8 +77,8,10,12,3,1,7,4,5,9,2,11,6 +69,8,5,3,9,12,6,1,11,2,7,10,4 +25,4,10,3,7,9,8,6,11,1,5,2,12 +16,7,11,5,1,12,10,8,3,4,2,6,9 +6,6,9,2,7,8,10,12,5,11,4,3,1 +96,1,10,6,3,11,4,12,8,9,7,2,5 +24,8,3,4,2,10,12,11,6,9,1,5,7 +25,7,3,11,2,9,10,6,1,4,12,5,8 +77,12,11,8,6,2,1,4,7,10,9,3,5 +40,9,6,2,8,11,12,1,10,7,3,5,4 +66,9,8,3,4,5,7,2,6,12,10,1,11 +28,7,4,5,8,6,3,9,11,10,2,12,1 +8,7,9,1,5,2,6,12,3,4,10,8,11 +40,5,9,1,12,8,7,3,10,4,11,6,2 +92,5,12,7,4,6,8,10,2,1,11,3,9 +41,6,3,7,5,8,4,9,12,1,11,10,2 +10,11,4,8,7,9,3,6,10,1,2,12,5 +61,9,11,8,12,4,7,2,10,5,6,3,1 +11,1,8,2,5,7,11,9,3,4,12,6,10 +92,9,6,4,7,5,11,2,12,10,8,3,1 +32,11,4,5,2,6,7,9,3,10,12,8,1 +35,7,12,3,11,9,4,2,8,10,1,5,6 +87,2,3,12,4,1,11,5,6,9,8,7,10 +56,6,3,10,9,11,7,12,8,1,2,5,4 +16,7,9,1,11,2,12,5,8,3,4,6,10 +92,1,10,11,8,7,12,4,2,3,9,5,6 +6,12,2,8,11,4,3,10,1,9,5,6,7 +79,5,10,6,9,4,12,3,1,8,7,11,2 +16,3,4,9,7,5,8,2,11,10,1,12,6 +48,2,5,7,11,12,4,8,9,1,3,6,10 +32,4,10,3,9,12,11,7,1,8,5,2,6 +68,6,7,11,2,9,4,10,5,3,1,8,12 +50,8,5,11,3,6,4,7,1,9,10,12,2 +26,9,3,7,5,1,2,10,8,12,4,11,6 +55,6,4,2,1,3,11,10,8,9,5,7,12 +27,3,4,5,12,11,7,6,9,1,8,10,2 +28,5,8,10,6,4,12,1,3,11,7,9,2 +92,6,12,4,7,5,8,11,9,10,1,2,3 +28,8,9,4,10,1,12,2,6,7,5,3,11 +43,11,1,8,6,7,2,5,9,3,4,10,12 +39,7,5,9,4,12,6,3,1,11,2,8,10 +76,1,11,6,10,12,2,9,3,7,8,5,4 +34,6,4,1,5,2,9,8,10,11,7,12,3 +3,8,9,2,7,10,6,4,3,1,12,5,11 +40,6,10,1,7,12,4,5,9,11,3,8,2 +62,7,6,10,4,9,8,2,12,3,1,5,11 +86,9,11,6,2,10,4,1,3,5,7,8,12 +84,4,6,9,10,5,3,11,7,1,12,2,8 +54,3,9,1,8,10,11,4,7,2,12,6,5 +37,4,2,8,12,10,9,7,5,3,1,6,11 +61,10,7,12,8,6,9,4,5,11,3,2,1 +65,9,10,1,7,2,8,5,4,3,6,12,11 +12,12,2,4,6,3,11,7,5,1,9,8,10 +26,4,10,7,5,8,1,11,3,12,2,9,6 +83,4,3,11,1,7,9,5,2,6,12,8,10 +5,11,2,6,1,5,12,4,3,10,8,9,7 +31,1,3,2,5,7,4,12,11,8,10,9,6 +17,3,10,6,11,1,7,12,4,8,2,9,5 +55,12,7,9,6,2,1,5,10,11,3,4,8 +54,6,10,8,1,12,4,5,7,11,3,9,2 +66,7,3,8,12,6,5,4,9,10,11,1,2 +58,2,3,4,11,10,5,8,9,6,1,7,12 +73,10,9,4,11,7,3,1,6,2,5,12,8 +55,6,2,8,10,3,4,7,1,11,5,9,12 +62,2,3,7,5,12,1,8,6,11,9,4,10 +68,5,1,8,11,12,7,3,10,4,2,6,9 +52,7,12,8,1,2,4,5,11,6,3,9,10 +97,3,2,4,8,9,11,12,7,1,5,6,10 +6,10,9,6,12,3,1,4,8,7,2,5,11 +82,11,12,7,10,3,4,8,2,6,9,5,1 +63,4,9,12,10,5,6,1,11,8,7,3,2 +19,6,2,7,4,10,3,9,11,8,1,5,12 +28,7,9,5,11,10,2,8,6,1,3,12,4 +56,6,7,5,12,3,8,11,10,9,4,2,1 \ No newline at end of file From c09ec4a3d7f0a5100830e0ad8b50562a89336fe7 Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 9 Dec 2016 18:33:35 -0500 Subject: [PATCH 15/17] Renamed input files to be more descriptive/useful --- input9 => input-12c-1000r | 0 input4 => input-3c-2r | 0 input3 => input-3c-4r-highvotetotal | 0 input0 => input-3c-all6rankings | 0 input1 => input-4c-4r-hw1 | 0 input2 => input-4c-4r-midterm | 0 input5 => input-4c-5r | 0 input7 => input-6c-20r | 0 input6 => input-6c-8r | 0 input8 => input-8c-1000r | 0 10 files changed, 0 insertions(+), 0 deletions(-) rename input9 => input-12c-1000r (100%) rename input4 => input-3c-2r (100%) rename input3 => input-3c-4r-highvotetotal (100%) rename input0 => input-3c-all6rankings (100%) rename input1 => input-4c-4r-hw1 (100%) rename input2 => input-4c-4r-midterm (100%) rename input5 => input-4c-5r (100%) rename input7 => input-6c-20r (100%) rename input6 => input-6c-8r (100%) rename input8 => input-8c-1000r (100%) diff --git a/input9 b/input-12c-1000r similarity index 100% rename from input9 rename to input-12c-1000r diff --git a/input4 b/input-3c-2r similarity index 100% rename from input4 rename to input-3c-2r diff --git a/input3 b/input-3c-4r-highvotetotal similarity index 100% rename from input3 rename to input-3c-4r-highvotetotal diff --git a/input0 b/input-3c-all6rankings similarity index 100% rename from input0 rename to input-3c-all6rankings diff --git a/input1 b/input-4c-4r-hw1 similarity index 100% rename from input1 rename to input-4c-4r-hw1 diff --git a/input2 b/input-4c-4r-midterm similarity index 100% rename from input2 rename to input-4c-4r-midterm diff --git a/input5 b/input-4c-5r similarity index 100% rename from input5 rename to input-4c-5r diff --git a/input7 b/input-6c-20r similarity index 100% rename from input7 rename to input-6c-20r diff --git a/input6 b/input-6c-8r similarity index 100% rename from input6 rename to input-6c-8r diff --git a/input8 b/input-8c-1000r similarity index 100% rename from input8 rename to input-8c-1000r From 2b7c40dff846c3d018cc0d42a794d1c9458a3d83 Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 9 Dec 2016 18:45:45 -0500 Subject: [PATCH 16/17] Created 13 candidate input file --- input-13c-1000r | 1015 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1015 insertions(+) create mode 100644 input-13c-1000r diff --git a/input-13c-1000r b/input-13c-1000r new file mode 100644 index 0000000..1d37e5c --- /dev/null +++ b/input-13c-1000r @@ -0,0 +1,1015 @@ +13 +1,a +2,b +3,c +4,d +5,e +6,f +7,g +8,h +9,i +10,j +11,k +12,l +13,m +50257,50257,1000 +34,12,10,6,8,11,3,7,9,1,2,4,5,13 +42,10,4,9,13,8,7,2,1,6,12,5,11,3 +38,3,5,8,13,10,2,4,7,1,12,11,9,6 +98,12,5,10,3,2,1,11,8,4,9,13,6,7 +13,1,12,3,10,4,13,8,9,5,2,6,11,7 +20,3,13,9,10,6,8,7,5,12,11,4,2,1 +79,7,10,4,8,3,5,1,9,11,12,13,6,2 +60,10,2,8,3,11,9,5,13,4,12,1,7,6 +15,4,5,12,13,2,1,8,11,9,3,10,7,6 +0,8,11,4,5,10,1,13,9,3,6,2,12,7 +57,5,12,10,8,11,2,3,1,6,7,4,9,13 +43,3,7,13,10,2,5,8,6,9,12,4,11,1 +73,4,12,9,6,7,1,11,13,5,8,2,10,3 +5,2,8,4,9,3,11,7,1,10,13,5,6,12 +77,6,4,2,8,1,5,7,11,10,12,3,9,13 +37,7,13,4,6,12,2,10,1,11,3,9,8,5 +69,8,12,11,10,9,13,3,4,6,1,2,5,7 +93,5,6,4,7,1,11,12,10,9,2,8,13,3 +50,9,8,12,5,10,4,7,2,13,1,11,3,6 +81,5,13,10,2,7,3,9,6,11,4,12,1,8 +32,9,2,3,7,13,4,11,1,12,8,6,5,10 +41,7,11,9,4,10,5,6,3,8,12,2,13,1 +31,7,5,11,1,6,3,12,10,2,13,8,4,9 +78,1,10,13,9,2,5,6,12,11,3,7,8,4 +46,9,3,10,4,11,5,13,6,1,8,7,2,12 +75,5,10,11,6,7,3,2,12,8,1,4,9,13 +28,9,10,12,6,7,4,13,8,11,3,5,2,1 +11,7,4,12,8,9,2,13,11,6,10,1,3,5 +9,6,4,11,2,10,3,7,9,1,8,13,12,5 +3,6,7,5,8,2,1,9,4,10,11,3,12,13 +45,1,9,4,6,13,12,3,10,8,2,5,11,7 +5,1,7,12,5,13,2,10,8,9,4,11,3,6 +32,4,11,3,5,2,1,9,6,12,13,10,7,8 +49,3,8,2,12,10,4,13,7,9,11,1,5,6 +50,13,8,10,11,7,3,12,1,2,9,5,6,4 +24,3,11,9,10,6,13,8,7,1,12,5,2,4 +67,8,12,2,7,6,3,11,13,4,5,9,10,1 +63,7,3,13,2,1,6,11,9,4,5,8,10,12 +16,4,11,10,8,9,7,13,5,6,3,2,12,1 +27,5,11,1,9,13,12,3,7,8,6,2,10,4 +31,3,8,10,4,1,9,12,7,5,11,6,2,13 +94,7,2,9,1,4,6,5,11,12,3,10,8,13 +96,13,2,12,5,6,10,1,9,11,3,7,8,4 +0,9,11,6,3,5,7,1,10,13,8,2,4,12 +48,10,2,7,12,4,5,9,13,11,6,1,8,3 +5,13,12,7,1,2,4,9,3,11,10,8,6,5 +67,5,10,8,7,6,11,3,2,13,1,4,9,12 +4,8,9,2,3,12,13,1,10,11,5,4,6,7 +79,5,9,10,11,12,1,13,8,4,2,6,7,3 +36,11,4,3,13,1,5,8,9,12,6,2,7,10 +21,12,9,6,2,8,13,1,11,7,3,4,10,5 +27,9,3,7,2,4,11,1,12,6,8,13,10,5 +6,7,9,13,2,10,4,8,11,12,6,3,1,5 +13,4,1,2,13,9,7,6,8,5,10,3,11,12 +26,5,9,12,6,1,7,3,13,8,10,4,11,2 +37,4,2,10,8,7,12,3,1,5,9,11,13,6 +36,3,4,9,5,11,7,10,12,8,1,6,13,2 +13,3,8,11,5,1,10,13,12,7,6,2,9,4 +77,11,9,7,10,6,12,3,5,4,13,2,1,8 +100,8,6,10,5,3,2,7,13,9,1,4,12,11 +92,5,9,6,7,4,13,1,8,11,2,12,10,3 +18,7,6,12,9,4,11,13,1,2,8,5,3,10 +57,10,3,1,4,2,7,5,11,12,6,8,9,13 +21,13,5,1,4,6,7,12,9,11,8,10,2,3 +26,12,7,2,1,3,6,8,5,11,4,10,13,9 +42,6,11,10,9,2,5,8,4,12,13,3,1,7 +43,4,5,2,3,11,8,13,1,7,12,9,10,6 +19,12,13,5,7,2,9,6,8,10,4,3,1,11 +82,1,8,7,2,9,3,4,11,10,6,5,13,12 +89,7,11,2,5,1,6,12,13,9,8,10,4,3 +27,7,9,8,4,1,2,6,11,5,3,12,10,13 +29,12,7,3,4,6,1,5,11,13,10,8,2,9 +32,4,2,11,13,3,5,1,8,6,7,12,10,9 +37,2,4,8,3,6,11,1,7,10,12,9,13,5 +88,10,1,7,4,13,6,11,8,3,5,12,2,9 +17,7,13,8,11,4,1,3,2,10,12,5,9,6 +9,7,3,6,5,1,9,13,4,10,2,8,12,11 +50,8,13,4,2,10,5,11,7,3,1,9,6,12 +40,3,2,9,1,13,12,8,5,6,10,11,4,7 +98,8,9,7,10,11,5,3,4,13,1,2,12,6 +90,2,7,8,3,1,11,10,9,5,4,12,6,13 +54,5,8,12,2,1,13,3,4,11,7,6,9,10 +29,3,2,9,4,11,10,5,12,6,1,7,13,8 +45,2,1,9,12,4,13,6,8,11,3,7,10,5 +75,13,11,9,12,6,7,2,3,1,5,4,8,10 +34,7,1,4,5,12,13,3,2,6,8,9,10,11 +90,5,3,7,12,10,2,6,13,4,8,11,9,1 +44,4,8,3,9,12,2,11,6,1,13,10,7,5 +0,6,7,8,12,2,11,5,3,9,13,1,4,10 +23,2,9,3,12,11,13,5,4,10,1,7,8,6 +14,3,13,10,8,11,6,7,1,9,4,5,2,12 +32,5,4,12,1,7,2,11,6,13,9,10,3,8 +69,7,4,8,12,3,9,6,2,5,13,1,10,11 +46,6,13,7,8,10,11,2,4,1,5,12,9,3 +49,6,12,8,2,10,3,7,11,9,5,1,4,13 +69,4,13,12,1,5,6,3,11,9,7,8,2,10 +65,4,5,8,11,1,6,9,13,3,10,7,12,2 +4,12,5,10,7,9,4,2,13,3,8,1,6,11 +15,8,6,9,3,7,10,11,13,5,12,4,2,1 +49,9,5,4,7,2,11,13,6,3,10,1,8,12 +61,2,7,12,3,13,6,4,9,5,1,11,10,8 +69,6,8,2,11,13,7,1,12,9,4,3,5,10 +10,4,9,10,8,6,13,11,7,2,5,3,12,1 +61,11,1,10,9,7,8,2,4,3,5,6,12,13 +36,10,7,5,6,1,13,12,9,8,4,11,3,2 +40,3,6,5,4,11,13,1,10,8,7,12,2,9 +60,13,11,6,12,8,4,5,9,1,3,10,7,2 +93,2,6,3,12,11,5,10,9,4,1,13,7,8 +61,2,11,6,7,5,10,13,9,4,8,3,1,12 +22,8,5,13,10,6,7,2,9,1,3,12,11,4 +99,5,12,7,9,1,10,6,2,3,11,13,8,4 +48,11,8,13,4,10,3,7,9,12,6,1,2,5 +18,12,10,5,7,11,4,6,13,2,1,8,9,3 +68,12,3,11,2,9,5,13,6,7,10,4,1,8 +61,10,9,13,5,2,12,6,4,7,11,3,8,1 +1,3,11,1,5,10,2,12,7,6,13,9,8,4 +93,11,1,4,9,13,6,12,8,3,7,5,10,2 +17,9,13,10,7,2,8,5,3,4,6,12,1,11 +79,6,4,7,9,5,2,12,1,10,11,8,3,13 +60,9,5,1,12,7,3,11,6,10,4,13,2,8 +6,5,6,4,8,1,3,12,2,10,13,9,7,11 +40,9,11,7,1,3,4,8,2,13,5,12,10,6 +89,13,7,9,3,8,10,1,5,4,11,6,2,12 +98,9,6,2,1,3,10,13,11,4,5,7,12,8 +5,7,1,9,8,6,5,12,2,13,4,10,11,3 +30,6,9,4,3,11,5,13,2,10,7,12,1,8 +35,6,7,1,2,11,5,13,12,10,9,3,8,4 +78,10,3,1,2,8,7,4,12,6,5,13,11,9 +35,13,12,9,6,8,2,7,11,5,1,3,10,4 +79,12,7,2,11,13,6,10,3,9,4,8,5,1 +80,9,2,11,6,13,5,4,1,7,3,8,10,12 +51,2,1,3,6,9,7,11,10,4,12,5,13,8 +72,7,3,2,8,5,12,13,1,4,11,10,9,6 +85,12,11,1,4,10,13,8,6,7,3,5,2,9 +39,5,4,2,3,7,11,1,8,9,6,13,10,12 +30,6,10,7,8,13,1,4,5,2,9,12,11,3 +91,2,8,13,11,5,7,4,1,9,10,3,6,12 +39,4,6,3,13,11,8,1,2,10,12,7,9,5 +2,2,10,12,11,3,5,4,13,1,9,8,6,7 +82,1,12,11,2,13,10,3,8,9,6,5,7,4 +57,10,1,9,4,11,8,7,13,3,2,6,5,12 +39,1,9,3,6,13,2,7,12,11,4,8,10,5 +94,12,3,7,5,6,11,9,8,13,1,4,2,10 +15,11,2,8,7,3,12,1,9,6,13,4,10,5 +27,2,4,10,6,12,13,9,5,1,8,3,11,7 +58,13,11,7,2,6,10,4,9,1,8,12,3,5 +35,9,10,6,2,5,11,7,4,13,1,8,3,12 +9,13,1,11,3,10,2,4,9,8,7,6,5,12 +29,5,9,6,3,10,4,11,7,2,12,13,1,8 +51,9,13,1,11,7,12,10,2,3,5,8,6,4 +83,1,10,6,3,11,13,7,4,9,5,12,2,8 +82,1,3,2,4,13,11,8,9,10,6,5,7,12 +49,5,2,11,9,7,8,1,13,12,10,4,3,6 +21,5,1,11,4,6,10,8,2,13,7,12,3,9 +59,1,5,6,10,11,13,2,8,3,12,4,9,7 +83,12,4,9,1,6,7,2,10,11,8,3,5,13 +87,3,6,11,7,2,12,4,5,13,8,1,9,10 +3,9,8,3,1,10,13,11,12,5,6,7,4,2 +76,13,1,9,4,3,11,2,7,6,8,10,12,5 +30,1,2,4,7,12,10,9,8,6,11,3,5,13 +12,3,5,13,9,10,4,2,1,7,11,8,12,6 +26,5,12,7,6,8,3,9,2,1,13,11,10,4 +32,1,7,8,2,3,13,10,4,11,6,9,5,12 +4,2,13,5,1,11,12,7,4,6,9,10,8,3 +46,10,9,3,4,2,1,12,6,11,13,5,7,8 +44,2,10,3,11,1,5,4,6,9,7,13,12,8 +47,4,9,5,8,12,11,13,1,10,3,2,6,7 +89,5,10,11,3,7,13,4,6,1,8,12,2,9 +47,9,2,7,5,3,13,4,12,11,10,6,1,8 +47,3,11,9,10,13,1,4,8,6,7,2,12,5 +71,2,7,9,6,10,1,13,3,4,11,8,5,12 +96,12,9,13,1,8,7,3,5,6,10,4,11,2 +40,10,3,5,4,6,12,2,8,1,9,11,7,13 +6,5,7,12,3,4,13,8,6,9,11,1,2,10 +52,6,11,12,2,8,9,1,10,4,7,5,13,3 +72,10,8,4,2,12,1,13,11,3,6,5,7,9 +60,3,5,10,8,1,7,6,9,12,13,2,11,4 +43,11,13,2,5,4,7,12,1,3,9,6,10,8 +79,6,13,2,9,11,10,12,4,1,7,5,3,8 +29,13,12,2,8,6,9,1,10,4,11,7,5,3 +36,11,3,13,10,4,7,2,6,1,5,8,9,12 +39,2,8,12,11,13,9,5,7,1,6,10,4,3 +13,3,11,1,6,9,7,13,4,2,10,8,12,5 +18,1,5,6,7,9,4,11,2,13,3,12,10,8 +6,3,5,9,4,6,13,11,12,8,2,1,10,7 +48,5,1,6,4,13,9,11,3,8,12,2,7,10 +70,2,11,6,3,1,4,8,10,5,12,9,13,7 +37,5,9,4,7,8,11,2,1,12,6,3,10,13 +90,6,11,10,1,4,12,5,8,13,7,9,2,3 +30,12,3,5,13,2,10,4,11,8,1,7,6,9 +20,7,2,6,4,10,3,12,1,11,9,5,13,8 +23,7,11,3,10,13,8,6,12,1,5,4,2,9 +83,1,13,12,9,11,2,5,4,3,6,7,8,10 +91,9,12,8,7,13,5,4,11,1,10,3,6,2 +87,13,3,10,12,6,5,7,2,4,11,1,8,9 +43,5,8,2,1,6,11,12,7,9,3,13,10,4 +82,6,9,3,13,5,2,4,1,8,12,7,10,11 +69,10,3,7,6,5,2,8,4,13,1,11,12,9 +87,4,7,5,1,10,12,9,13,11,8,6,2,3 +100,3,11,13,5,7,2,8,1,4,10,9,12,6 +73,5,12,7,3,6,13,10,4,11,1,2,9,8 +20,9,11,8,12,5,7,3,6,4,2,13,1,10 +20,11,6,12,13,8,3,7,5,2,1,9,10,4 +92,11,1,10,4,13,9,7,5,12,3,2,8,6 +51,9,4,11,6,13,1,2,5,8,10,12,7,3 +84,10,9,12,8,2,6,11,7,1,4,13,3,5 +0,2,1,4,6,13,8,10,9,3,5,12,11,7 +82,4,11,7,2,9,6,5,1,3,12,10,8,13 +2,3,12,4,7,11,13,8,1,6,2,5,9,10 +67,6,4,2,3,12,9,8,5,7,1,10,13,11 +27,11,2,13,12,6,3,5,9,1,10,4,7,8 +94,10,3,12,5,8,6,13,2,9,11,4,1,7 +27,1,7,12,6,4,11,8,10,9,5,2,13,3 +8,6,4,12,3,11,5,7,8,10,9,2,13,1 +53,5,13,1,7,4,8,6,9,3,11,12,2,10 +59,10,5,11,13,1,7,8,9,12,3,4,6,2 +62,1,2,8,12,6,9,13,11,7,4,10,3,5 +96,3,12,13,11,2,8,7,5,4,10,1,9,6 +88,9,13,3,4,8,7,12,11,2,10,1,5,6 +58,4,12,6,13,7,5,8,2,10,9,3,11,1 +75,3,1,10,5,6,4,12,8,7,9,11,13,2 +41,11,10,12,4,8,9,13,1,3,5,7,2,6 +52,4,3,1,2,13,5,11,6,9,10,8,7,12 +50,8,13,12,9,4,2,6,7,10,3,1,11,5 +71,2,5,8,6,12,3,10,11,1,7,9,13,4 +30,11,9,5,12,6,8,1,7,2,3,10,13,4 +30,2,10,6,12,13,1,11,8,5,4,9,3,7 +83,2,12,9,7,10,3,13,5,11,8,4,1,6 +65,7,12,13,11,8,2,9,5,4,3,6,10,1 +82,8,9,12,4,2,1,7,10,3,11,5,6,13 +18,11,13,10,7,5,6,9,1,2,12,8,3,4 +13,1,8,10,3,6,12,7,13,2,4,9,5,11 +18,6,13,7,8,12,4,9,10,3,2,11,5,1 +29,5,11,4,8,13,12,1,6,2,10,3,7,9 +58,8,11,10,13,5,7,2,1,4,12,9,3,6 +60,4,9,11,10,6,13,5,1,3,12,8,7,2 +74,2,1,10,5,9,12,3,13,8,11,4,7,6 +90,11,3,9,10,7,4,13,2,6,8,1,5,12 +61,1,8,3,4,5,2,9,6,12,11,7,13,10 +18,10,7,4,12,1,9,3,8,11,5,6,2,13 +67,11,8,1,4,5,2,13,3,7,6,9,12,10 +11,3,8,5,13,12,1,9,10,7,11,2,4,6 +9,9,3,12,8,5,2,10,4,1,13,6,11,7 +57,10,6,12,3,11,8,7,13,2,4,9,1,5 +10,5,4,3,6,12,9,2,11,1,10,8,13,7 +12,8,13,12,11,9,2,1,5,10,3,7,4,6 +99,9,2,3,7,12,13,10,6,5,8,1,11,4 +26,4,10,3,12,8,11,5,13,2,7,6,1,9 +16,5,12,2,7,3,10,11,4,8,1,13,6,9 +96,3,10,9,1,7,11,12,13,5,2,6,4,8 +68,6,13,1,10,9,7,8,5,3,4,12,11,2 +21,2,7,11,1,13,10,12,8,4,9,5,6,3 +18,12,6,2,8,10,3,1,9,13,5,4,11,7 +17,12,13,3,7,10,5,11,2,6,1,4,9,8 +29,6,7,5,8,3,1,2,4,9,13,10,11,12 +63,7,2,3,8,10,11,13,4,12,5,1,6,9 +62,4,10,11,12,7,5,2,3,8,9,6,1,13 +41,2,13,1,9,5,10,7,3,8,6,11,4,12 +9,8,12,6,13,3,5,9,10,11,2,4,7,1 +26,12,10,9,3,8,7,5,11,6,13,1,2,4 +3,8,1,12,4,10,13,9,11,7,6,5,3,2 +73,8,12,5,9,11,6,13,3,1,7,2,4,10 +95,9,8,13,10,7,4,5,11,3,6,12,1,2 +17,4,11,5,12,7,1,9,8,2,10,3,13,6 +47,5,11,13,8,3,2,6,9,12,4,10,1,7 +6,6,10,7,3,8,11,5,1,4,12,9,2,13 +45,3,4,11,9,7,8,6,12,1,13,10,5,2 +87,9,11,4,7,2,6,5,10,8,12,1,3,13 +76,7,12,13,8,10,11,9,2,5,6,4,3,1 +39,2,10,4,5,3,8,11,7,13,9,1,12,6 +48,6,3,1,12,7,9,13,2,4,10,8,11,5 +39,9,7,10,5,1,11,2,13,12,4,6,3,8 +72,6,4,10,11,3,13,8,2,1,5,7,9,12 +64,8,13,6,5,4,10,12,11,1,3,9,7,2 +42,1,6,4,7,11,12,9,5,13,3,8,10,2 +34,6,1,9,12,3,13,4,8,11,7,10,2,5 +50,9,8,5,2,13,12,7,3,6,1,11,4,10 +89,1,7,13,9,11,12,10,5,2,8,4,3,6 +89,3,12,6,13,10,8,7,11,4,5,1,2,9 +42,4,7,9,12,13,1,8,2,3,6,5,11,10 +96,5,8,9,4,7,6,11,10,1,12,13,2,3 +67,4,6,10,5,11,3,13,8,2,12,7,9,1 +31,6,8,13,11,10,4,2,9,1,7,3,12,5 +88,1,12,7,3,9,13,5,4,11,6,8,2,10 +40,12,9,8,4,6,10,1,2,13,3,5,11,7 +51,10,1,8,2,5,9,3,6,7,13,4,12,11 +49,1,11,6,4,5,7,3,9,10,8,2,12,13 +6,5,13,3,2,7,9,6,1,8,12,4,11,10 +31,5,11,10,7,6,9,8,12,4,1,2,13,3 +78,10,4,2,13,5,6,1,7,3,8,11,9,12 +30,2,4,5,9,12,6,13,1,7,3,11,8,10 +72,8,7,3,11,4,10,6,5,13,2,12,1,9 +20,2,7,8,12,5,1,6,3,10,11,9,4,13 +55,11,8,4,7,2,12,10,5,6,13,3,9,1 +43,12,2,9,5,4,10,1,13,3,6,7,8,11 +7,2,11,12,9,4,7,5,3,1,13,6,8,10 +23,1,10,8,9,12,3,7,11,4,2,13,5,6 +26,12,5,10,7,3,13,4,2,1,8,9,6,11 +85,5,10,13,1,3,11,7,2,12,4,6,9,8 +32,12,4,7,10,13,2,8,5,1,6,9,11,3 +69,6,13,4,12,11,1,7,3,2,9,10,8,5 +80,12,6,13,7,1,10,5,8,2,3,9,4,11 +32,4,5,1,9,3,12,10,7,6,13,11,2,8 +12,1,5,8,3,7,9,13,12,6,4,10,2,11 +3,12,13,8,7,5,3,9,11,10,6,1,4,2 +33,4,1,9,3,7,11,2,5,6,13,10,8,12 +39,7,12,8,9,4,13,2,1,11,5,3,6,10 +29,9,13,11,10,2,7,5,1,4,8,12,3,6 +55,6,9,2,10,8,7,1,12,11,3,13,4,5 +85,11,10,2,1,13,6,9,8,3,12,7,5,4 +68,8,10,5,9,12,2,4,7,11,6,13,3,1 +72,4,11,13,7,8,1,2,5,6,3,12,9,10 +76,10,5,6,12,7,9,13,3,8,4,2,1,11 +14,2,7,12,10,8,3,6,5,1,9,11,13,4 +98,6,8,13,9,10,4,7,11,12,2,3,1,5 +0,4,12,13,6,11,10,5,9,1,2,3,8,7 +54,13,2,11,6,1,10,7,9,4,12,5,8,3 +52,9,4,13,6,10,11,1,3,2,7,5,8,12 +88,1,3,2,6,7,8,11,4,9,12,5,13,10 +80,8,13,1,3,2,10,5,6,12,7,9,4,11 +34,6,5,3,11,13,2,8,10,4,7,9,12,1 +77,3,8,4,5,7,11,12,13,9,1,6,2,10 +60,2,11,6,5,4,7,3,8,12,9,10,1,13 +31,1,9,10,7,13,3,5,8,12,6,2,4,11 +97,3,6,13,7,5,11,9,2,10,1,12,8,4 +58,10,4,9,8,6,11,2,13,1,7,5,3,12 +21,10,5,8,4,6,2,3,1,13,12,11,9,7 +12,8,10,3,6,7,13,5,12,1,9,11,2,4 +13,12,1,5,6,13,10,2,9,7,11,8,4,3 +51,3,7,10,9,11,2,6,13,5,1,12,4,8 +9,1,3,7,6,4,8,2,12,10,5,11,9,13 +53,2,12,1,11,3,7,6,4,13,9,5,10,8 +73,11,10,8,6,5,4,2,7,13,1,3,12,9 +5,4,11,3,8,13,9,5,1,6,7,12,2,10 +65,6,2,1,4,3,11,10,13,7,12,5,9,8 +90,4,7,8,1,10,3,11,2,9,13,12,5,6 +77,8,2,10,11,6,9,7,13,4,1,3,5,12 +85,9,10,7,6,11,3,5,1,13,4,12,2,8 +10,12,5,8,10,4,11,9,6,2,7,1,13,3 +36,1,2,10,9,3,11,6,5,8,7,12,13,4 +92,6,10,2,7,12,5,4,13,8,3,11,1,9 +27,6,7,9,11,2,3,5,13,4,1,10,12,8 +21,9,5,4,1,6,11,3,10,7,2,13,12,8 +91,10,5,7,11,4,9,13,6,1,8,3,12,2 +53,4,13,1,8,12,6,2,7,10,3,5,9,11 +37,3,1,7,12,6,2,4,11,13,8,9,10,5 +23,11,6,8,10,7,3,1,13,2,12,4,5,9 +59,1,12,4,6,13,8,11,10,7,5,2,3,9 +1,10,6,4,1,3,11,12,13,9,8,5,7,2 +35,6,3,8,5,9,10,2,1,11,12,4,7,13 +29,12,10,5,13,4,2,8,3,11,6,1,9,7 +68,13,11,12,6,9,10,4,8,3,2,5,1,7 +100,5,3,6,8,2,4,7,11,13,10,1,12,9 +47,13,3,6,8,10,2,7,1,9,5,11,4,12 +89,11,10,1,4,3,7,8,9,13,6,12,5,2 +89,3,10,9,11,12,5,6,1,4,2,8,7,13 +82,10,6,11,2,8,5,4,1,7,13,3,12,9 +48,12,1,10,4,8,13,9,3,2,5,11,6,7 +20,12,3,7,11,6,5,9,8,2,10,1,13,4 +20,3,10,7,4,9,11,5,6,13,1,2,12,8 +81,13,10,6,11,7,4,9,8,12,1,3,5,2 +25,5,4,6,2,8,7,11,12,13,1,10,9,3 +58,6,11,12,10,3,8,1,7,2,9,5,4,13 +5,1,6,8,7,9,13,11,2,3,5,10,4,12 +79,2,5,8,7,12,11,1,10,13,6,3,4,9 +44,2,12,6,13,7,5,1,11,3,4,10,9,8 +96,4,6,9,8,7,2,12,10,5,13,11,3,1 +10,6,5,12,1,9,10,2,11,8,7,13,3,4 +21,5,12,11,4,2,3,9,7,1,13,8,10,6 +45,5,7,11,6,2,9,13,10,12,1,3,4,8 +64,1,13,5,3,10,4,11,12,9,2,7,6,8 +93,13,11,5,4,10,9,7,2,3,8,1,6,12 +93,8,5,3,13,12,7,2,10,1,9,6,4,11 +34,2,10,4,11,1,12,3,5,9,13,8,7,6 +55,11,4,1,8,13,7,6,5,12,2,10,3,9 +19,6,7,11,13,8,9,4,10,3,12,2,5,1 +66,3,8,9,10,11,2,4,13,5,12,7,1,6 +79,13,12,3,7,10,8,6,9,11,5,4,2,1 +63,12,11,9,1,6,8,3,7,13,2,4,10,5 +29,7,5,2,12,13,4,1,6,9,3,10,8,11 +61,3,4,8,12,9,2,7,13,1,11,10,6,5 +60,10,7,3,11,5,1,6,13,4,2,8,12,9 +75,5,1,2,8,9,11,4,10,13,7,3,12,6 +85,4,5,6,2,13,7,8,3,9,10,1,12,11 +58,3,7,4,9,2,10,1,5,12,13,6,8,11 +11,10,8,13,6,4,9,7,1,12,5,2,3,11 +7,9,8,3,11,7,13,12,5,1,2,10,6,4 +5,4,3,13,2,11,9,8,7,1,6,5,10,12 +15,10,1,4,9,12,8,11,5,3,13,7,6,2 +66,13,12,3,5,10,11,9,1,8,7,2,4,6 +76,11,7,3,6,10,2,4,9,8,12,13,5,1 +7,5,1,10,2,8,3,6,9,13,7,12,4,11 +15,13,3,2,6,7,12,4,5,1,11,9,10,8 +24,12,5,4,2,3,7,11,9,10,8,6,1,13 +29,5,2,7,10,3,12,9,11,13,6,4,8,1 +94,13,9,6,12,5,3,2,11,4,8,10,7,1 +6,5,4,13,8,7,3,1,9,12,2,10,11,6 +42,2,6,1,4,12,7,5,9,3,13,10,8,11 +37,7,6,1,4,13,5,12,8,3,2,11,9,10 +19,4,5,13,8,9,3,11,7,12,1,6,2,10 +75,2,11,10,13,3,4,1,9,8,6,5,12,7 +90,8,13,7,5,2,4,10,1,6,3,12,9,11 +78,12,5,8,6,2,10,4,9,7,11,1,13,3 +1,3,9,5,7,2,13,10,12,8,6,11,4,1 +50,11,12,8,1,2,3,10,9,7,5,13,4,6 +19,13,1,10,12,8,11,3,6,2,4,7,9,5 +94,3,11,8,12,4,10,9,5,2,7,1,6,13 +9,13,5,8,4,1,10,6,3,9,11,2,12,7 +73,11,1,3,8,9,2,12,7,13,5,6,10,4 +72,1,2,4,10,3,5,13,12,6,9,11,7,8 +78,11,9,10,1,3,6,2,13,12,4,7,8,5 +90,8,12,1,6,3,2,9,7,13,10,4,11,5 +52,12,8,9,13,2,5,7,10,3,4,1,6,11 +53,5,3,11,9,10,13,1,12,8,2,7,6,4 +27,10,11,5,8,1,13,12,9,6,2,7,3,4 +79,12,9,11,10,8,7,13,6,2,3,4,5,1 +46,12,11,3,4,2,13,5,9,8,7,10,6,1 +73,3,6,11,10,5,9,7,8,1,13,2,4,12 +13,13,12,10,8,2,6,9,3,1,11,5,7,4 +37,10,8,3,6,11,4,12,9,1,7,5,2,13 +39,6,8,10,11,7,5,13,12,9,2,3,1,4 +24,1,6,9,2,13,7,5,4,10,11,3,12,8 +77,12,11,2,1,10,8,4,13,7,5,3,6,9 +17,10,9,3,5,2,8,12,13,6,7,4,11,1 +99,3,9,6,5,4,11,7,1,13,8,10,12,2 +71,9,8,10,11,1,13,5,12,6,4,2,3,7 +28,13,2,7,5,11,6,3,12,8,4,9,1,10 +100,7,11,12,13,3,4,5,9,1,10,2,6,8 +89,5,12,13,4,9,1,6,2,10,8,3,7,11 +85,4,12,8,11,6,10,3,7,1,13,9,2,5 +93,6,4,7,2,11,9,5,1,3,10,12,13,8 +100,8,1,9,13,11,4,10,5,12,3,7,2,6 +75,1,2,13,10,8,6,4,9,7,3,5,12,11 +15,9,13,4,10,1,8,12,6,5,11,2,7,3 +11,10,4,5,1,7,11,12,3,13,9,2,6,8 +20,11,7,12,4,1,2,9,3,10,8,13,5,6 +67,10,3,2,8,6,11,4,7,12,5,1,13,9 +37,3,6,2,5,1,9,4,13,8,7,10,12,11 +60,9,3,6,1,13,5,8,10,11,2,7,12,4 +92,9,2,5,1,12,11,4,10,7,3,13,6,8 +84,2,9,8,12,13,4,7,5,1,6,3,10,11 +33,8,10,1,13,4,9,3,7,12,2,5,11,6 +50,9,6,4,8,1,13,10,5,2,7,12,3,11 +36,9,12,13,3,5,10,6,11,2,8,7,4,1 +12,8,3,12,7,10,4,5,6,2,1,13,9,11 +40,10,1,2,9,11,8,3,7,4,13,6,12,5 +73,10,4,1,9,5,11,13,6,8,3,7,2,12 +20,5,8,12,10,7,4,9,11,13,1,3,6,2 +77,5,7,13,4,3,9,11,8,12,1,10,6,2 +49,2,13,11,9,8,7,3,4,10,12,5,6,1 +51,11,3,13,2,1,10,5,9,8,4,6,12,7 +19,8,4,2,6,13,1,3,9,7,11,12,10,5 +84,6,10,3,7,12,8,11,1,9,4,5,13,2 +17,13,3,7,10,5,2,6,11,12,9,1,8,4 +83,2,5,7,10,3,1,12,4,6,13,9,8,11 +78,1,8,9,11,3,6,12,13,4,10,5,7,2 +38,13,12,8,7,1,2,6,10,9,5,4,11,3 +13,9,3,6,12,10,13,8,2,7,4,5,1,11 +79,7,13,6,9,8,4,2,1,10,11,3,5,12 +0,11,9,12,1,2,4,8,6,13,5,3,10,7 +54,6,2,4,11,12,7,10,13,5,1,9,3,8 +91,5,2,3,12,7,9,10,6,8,11,1,13,4 +5,5,11,7,12,13,10,6,2,3,1,8,4,9 +73,9,10,13,3,11,5,12,6,4,7,8,1,2 +42,3,1,9,4,6,8,7,13,12,5,11,10,2 +78,5,2,1,13,12,10,11,3,8,4,7,6,9 +61,2,12,1,5,3,4,9,11,13,7,6,10,8 +52,12,9,3,7,4,10,2,11,5,1,6,8,13 +30,5,10,7,9,2,8,11,1,6,12,3,13,4 +87,10,12,6,9,11,5,4,13,3,2,7,1,8 +65,6,5,7,2,9,12,13,4,10,8,1,3,11 +28,6,3,9,12,13,8,11,2,1,4,7,5,10 +94,3,9,13,5,1,7,12,11,2,4,8,10,6 +96,9,10,5,8,1,7,2,3,4,12,6,11,13 +61,12,11,13,10,5,7,3,4,2,6,9,1,8 +24,13,7,8,10,5,4,11,6,3,12,2,9,1 +81,1,12,7,8,6,9,13,5,10,2,3,4,11 +89,10,7,8,13,2,3,5,6,12,9,11,4,1 +24,10,5,6,1,7,12,8,3,11,4,2,13,9 +76,9,2,5,3,6,8,13,10,1,4,7,11,12 +66,7,11,4,6,5,9,2,10,13,1,3,12,8 +85,3,10,8,4,13,12,11,1,5,9,2,7,6 +63,11,4,10,5,6,13,3,1,12,8,2,7,9 +95,10,13,11,3,12,6,9,4,8,2,7,1,5 +67,4,11,2,3,7,10,6,1,9,12,5,13,8 +2,2,5,10,9,1,13,8,7,12,4,6,11,3 +90,12,8,10,11,2,9,7,4,6,13,1,5,3 +81,8,3,12,5,4,10,9,7,11,1,13,2,6 +26,8,13,5,4,2,6,3,7,10,11,12,1,9 +40,13,3,4,10,9,11,8,5,1,6,2,12,7 +37,11,10,5,4,2,9,13,6,1,12,3,7,8 +9,11,1,9,13,3,7,12,2,5,10,4,8,6 +46,11,13,1,10,3,8,12,2,5,6,9,4,7 +19,10,8,7,5,6,1,12,3,13,9,2,4,11 +18,8,2,6,5,7,4,10,12,11,1,3,9,13 +39,11,9,2,6,10,5,3,1,7,4,8,13,12 +98,4,3,8,10,11,1,7,13,6,5,2,12,9 +27,1,2,13,12,4,6,9,3,10,11,7,5,8 +47,7,2,4,1,11,6,12,13,8,5,3,9,10 +82,5,4,9,12,1,13,8,6,10,7,2,11,3 +37,8,12,7,13,3,5,11,6,2,9,10,1,4 +98,3,13,10,11,12,8,7,2,6,9,1,5,4 +45,9,12,6,2,10,5,1,8,3,11,4,13,7 +33,4,1,6,12,13,11,10,2,8,7,5,3,9 +75,7,8,3,1,11,10,4,9,13,2,6,12,5 +47,11,3,5,12,6,8,13,2,10,9,4,1,7 +59,4,8,3,10,2,6,12,1,7,11,9,5,13 +55,11,1,13,7,12,5,4,9,2,6,3,10,8 +39,9,2,8,4,3,11,1,12,10,5,6,7,13 +27,3,8,13,7,6,12,5,1,10,11,9,2,4 +71,1,11,7,5,13,2,9,3,10,12,8,6,4 +78,5,7,13,8,11,6,10,9,12,3,4,1,2 +46,9,1,3,13,10,7,6,12,8,4,11,5,2 +98,2,7,10,4,12,9,1,11,8,6,3,5,13 +50,11,1,12,10,4,3,13,7,5,9,6,8,2 +58,10,2,12,6,11,7,13,3,4,1,5,9,8 +35,8,9,2,1,4,10,3,12,5,7,11,6,13 +43,8,5,1,10,6,11,12,9,7,2,4,3,13 +9,9,1,12,7,5,3,8,6,4,2,11,13,10 +37,2,11,10,6,12,1,9,4,5,8,3,13,7 +53,6,4,3,2,9,13,1,10,12,11,8,5,7 +97,12,10,11,1,2,13,9,6,4,3,5,8,7 +84,12,13,8,4,11,9,1,6,3,10,2,7,5 +94,4,11,10,3,9,13,2,7,8,6,5,1,12 +39,8,4,10,5,9,1,2,3,11,7,6,13,12 +43,10,8,9,7,6,11,5,12,2,4,13,3,1 +12,1,11,4,9,3,2,13,8,12,10,6,7,5 +57,10,5,8,3,1,2,7,11,9,6,4,13,12 +34,3,10,11,6,7,4,5,13,2,9,12,8,1 +18,12,5,9,10,11,3,2,1,4,8,13,7,6 +4,6,2,11,7,9,8,5,13,4,3,12,1,10 +44,11,5,2,13,7,9,8,6,12,10,1,4,3 +68,8,2,4,3,12,10,5,1,6,7,13,9,11 +14,6,5,1,12,13,7,9,11,2,8,4,3,10 +92,1,9,2,7,10,12,6,5,8,13,11,3,4 +79,6,11,5,12,1,3,7,10,4,2,9,13,8 +2,12,7,4,13,6,8,1,11,2,3,5,10,9 +42,6,13,4,10,7,8,2,11,12,1,5,3,9 +58,11,7,2,12,10,13,3,1,6,4,8,9,5 +86,7,11,13,6,9,12,3,4,10,8,2,1,5 +83,6,9,5,1,2,3,4,10,13,8,11,7,12 +69,9,2,8,10,3,4,13,1,12,7,11,5,6 +76,5,11,1,8,12,3,9,13,2,10,6,7,4 +90,2,1,11,9,8,12,4,6,7,10,5,3,13 +98,6,7,1,9,12,2,13,4,3,8,10,11,5 +83,3,5,4,9,10,1,6,11,7,13,2,8,12 +52,7,5,4,9,11,1,3,2,13,8,12,10,6 +56,10,1,4,6,9,2,8,12,3,13,11,5,7 +79,10,7,4,1,9,5,13,8,6,11,12,2,3 +18,5,11,1,13,7,9,6,4,3,2,8,12,10 +0,3,11,4,2,6,8,9,10,1,5,13,12,7 +73,5,4,10,3,12,13,11,1,7,8,6,2,9 +29,11,6,13,7,12,5,2,1,10,3,8,4,9 +74,9,10,7,11,13,2,8,6,5,3,12,4,1 +0,8,5,2,3,4,13,10,7,12,11,9,1,6 +94,1,12,2,13,10,3,11,5,4,8,9,7,6 +92,9,10,5,7,8,1,11,12,6,13,4,2,3 +69,3,9,2,4,10,11,13,12,5,1,6,7,8 +33,12,1,7,8,3,4,10,9,5,13,2,11,6 +2,9,5,2,1,6,12,3,4,13,7,11,8,10 +47,13,10,4,8,7,11,3,9,12,1,6,5,2 +41,5,3,13,11,1,10,12,7,4,6,8,9,2 +15,6,2,7,8,10,11,3,4,12,5,13,9,1 +54,4,2,8,10,6,11,3,9,13,1,12,5,7 +29,3,12,9,6,1,10,7,4,8,5,2,11,13 +99,5,9,8,10,12,11,1,13,3,4,2,7,6 +95,4,2,8,1,11,12,10,5,13,7,9,3,6 +16,3,11,12,1,13,7,9,2,4,8,5,10,6 +74,13,1,10,4,6,9,11,3,5,2,12,8,7 +21,10,6,12,13,3,9,5,7,2,4,1,8,11 +73,2,10,1,5,4,9,8,6,13,11,7,12,3 +79,8,12,10,3,1,9,2,6,7,5,11,4,13 +21,9,10,6,2,3,1,8,12,13,11,5,4,7 +50,8,7,10,6,2,12,11,1,13,4,9,5,3 +82,13,12,4,11,6,10,7,1,2,8,3,5,9 +4,3,10,13,8,2,6,1,12,7,4,9,5,11 +36,3,4,12,8,5,6,13,2,11,7,9,1,10 +16,7,13,2,5,9,1,12,4,6,3,8,10,11 +75,2,1,7,8,12,10,13,5,4,11,9,6,3 +99,1,5,8,13,10,9,2,7,11,4,3,12,6 +61,6,11,5,2,9,7,12,8,3,4,10,1,13 +34,3,10,4,2,11,13,1,12,5,6,7,9,8 +13,9,11,5,6,12,7,8,2,4,3,1,10,13 +67,8,4,6,1,5,10,3,9,7,13,11,2,12 +37,7,4,11,9,3,13,10,6,5,2,1,8,12 +4,3,13,10,4,8,12,2,11,6,5,1,9,7 +92,1,9,6,3,13,5,11,12,10,4,7,8,2 +52,2,3,11,1,4,7,6,10,8,5,12,9,13 +31,2,1,8,11,6,9,10,4,7,12,3,5,13 +89,10,4,7,9,3,12,2,8,11,13,5,6,1 +29,1,13,6,10,12,8,5,2,9,7,4,11,3 +22,12,11,4,5,6,7,13,2,9,3,8,10,1 +42,5,11,2,6,9,8,1,12,4,3,10,13,7 +41,4,12,2,11,1,5,10,9,6,3,13,8,7 +22,8,1,10,4,9,3,11,12,13,6,7,2,5 +38,4,9,12,7,11,8,3,2,6,5,13,10,1 +62,6,3,4,10,9,7,8,2,12,1,13,5,11 +46,10,4,5,12,3,9,8,1,6,2,7,11,13 +19,3,7,5,8,10,9,4,2,13,11,12,6,1 +53,8,11,4,9,7,13,10,12,1,6,3,2,5 +68,11,12,4,3,6,1,13,8,2,5,10,9,7 +55,6,11,5,2,8,10,4,1,9,12,13,7,3 +59,1,3,8,5,7,13,11,10,4,6,2,12,9 +30,12,10,9,4,6,7,5,11,3,13,1,8,2 +17,12,8,13,6,10,9,11,4,1,5,7,3,2 +20,2,6,1,3,10,4,7,9,11,13,8,12,5 +66,1,10,6,12,2,4,13,3,9,5,7,11,8 +64,12,1,4,5,6,2,10,9,8,3,11,7,13 +91,10,6,3,11,2,13,5,12,1,9,4,8,7 +19,10,1,8,12,4,6,3,11,5,2,13,7,9 +16,7,11,5,2,13,6,12,10,1,9,4,8,3 +55,6,8,13,1,10,4,3,9,7,12,11,5,2 +84,4,10,12,11,2,1,8,6,5,7,9,3,13 +98,6,3,1,10,7,13,2,11,9,4,8,12,5 +28,7,9,2,5,6,1,11,13,10,4,3,8,12 +40,13,7,3,8,6,12,2,11,9,5,10,4,1 +4,7,6,4,10,12,8,1,3,9,2,5,11,13 +77,4,2,7,11,13,3,6,1,8,5,9,12,10 +59,3,8,2,13,1,7,6,11,12,10,5,4,9 +90,1,12,11,3,5,2,9,4,6,13,7,8,10 +9,2,8,7,13,10,6,12,5,11,3,1,4,9 +71,1,13,7,6,2,3,5,11,9,10,8,12,4 +5,13,9,4,12,5,7,8,2,6,3,1,11,10 +30,10,2,1,3,7,6,11,4,5,9,12,8,13 +32,5,9,3,11,13,8,1,7,4,10,6,2,12 +86,7,12,11,5,13,2,1,4,9,8,6,10,3 +14,12,5,7,6,1,13,11,4,9,10,8,2,3 +75,5,3,12,4,11,10,2,8,6,9,7,13,1 +55,4,13,6,1,9,7,5,10,12,3,8,11,2 +77,5,2,12,11,7,10,13,1,3,4,8,6,9 +100,1,11,10,2,13,12,6,7,8,9,3,5,4 +70,6,12,7,2,4,3,5,9,1,13,10,11,8 +67,12,2,7,8,3,13,1,10,9,6,5,11,4 +59,4,6,5,7,1,11,12,10,13,8,9,2,3 +71,10,5,6,4,3,1,9,8,7,13,11,2,12 +79,2,1,12,13,8,10,11,7,4,9,6,3,5 +66,13,1,8,2,7,5,12,4,6,9,10,3,11 +55,7,3,5,13,1,10,6,4,2,9,12,11,8 +33,3,7,9,10,4,5,6,12,11,2,1,8,13 +73,6,5,9,12,1,13,8,10,3,7,4,11,2 +57,8,11,12,4,7,5,1,10,3,9,13,2,6 +70,3,4,9,2,13,1,6,7,11,8,10,12,5 +96,6,11,3,5,10,2,9,8,7,13,4,1,12 +23,6,9,1,2,7,8,10,12,5,11,3,13,4 +27,4,12,7,10,13,9,11,3,1,8,5,6,2 +49,2,8,1,13,5,3,4,12,10,6,7,9,11 +89,3,8,6,12,10,7,11,4,13,1,5,2,9 +87,10,9,2,6,5,11,7,3,12,4,8,1,13 +88,9,4,3,7,8,11,10,12,6,1,13,2,5 +29,2,7,6,10,12,5,8,3,13,1,11,9,4 +33,1,7,6,13,2,4,8,9,12,10,11,3,5 +31,5,7,3,6,1,9,12,4,8,2,10,13,11 +13,8,7,9,3,4,11,12,13,6,10,2,5,1 +29,13,6,5,9,12,2,7,8,1,3,4,11,10 +45,2,10,7,4,3,6,8,5,11,13,9,12,1 +28,4,8,5,6,1,11,7,10,9,13,12,2,3 +31,10,4,3,5,8,6,11,2,7,12,9,13,1 +33,3,2,10,13,1,6,8,11,4,9,12,7,5 +60,7,5,13,2,3,11,10,1,4,12,6,8,9 +14,8,6,2,9,3,1,4,13,10,5,11,12,7 +48,5,10,13,6,8,3,1,2,12,4,11,7,9 +90,13,8,4,2,11,1,6,10,3,9,5,7,12 +26,11,9,3,10,6,8,7,4,2,13,1,12,5 +69,8,9,13,10,7,6,12,4,1,11,3,2,5 +94,6,3,8,5,1,11,4,13,9,2,12,10,7 +3,2,3,8,10,7,6,5,11,9,4,13,1,12 +62,11,6,3,10,13,2,7,4,5,8,9,12,1 +93,6,3,12,2,7,4,1,13,10,8,11,5,9 +4,13,7,8,1,9,4,11,6,10,2,3,5,12 +63,1,9,3,13,2,8,6,10,4,12,7,5,11 +99,7,6,1,8,11,12,10,4,5,9,2,13,3 +96,10,12,8,2,6,4,5,9,13,11,7,1,3 +3,9,1,6,5,4,8,11,2,7,3,12,13,10 +4,9,10,6,8,5,2,7,11,1,4,12,3,13 +1,3,12,4,9,5,11,7,10,13,8,6,1,2 +92,4,6,12,3,9,8,10,13,11,5,2,7,1 +43,10,6,11,12,7,9,1,13,8,5,2,4,3 +14,12,4,11,1,2,10,5,13,6,8,3,7,9 +31,6,1,11,9,10,12,2,5,8,13,7,4,3 +96,10,2,3,6,13,5,1,8,7,4,9,11,12 +23,8,9,7,13,10,2,6,3,4,5,1,11,12 +15,4,10,8,9,3,13,6,5,7,12,2,1,11 +54,3,4,8,6,11,10,13,1,12,7,5,2,9 +41,12,2,13,9,5,8,10,11,1,6,7,4,3 +89,2,3,6,1,4,13,5,9,7,10,12,8,11 +99,4,13,2,10,6,12,5,7,3,1,8,11,9 +15,5,12,2,11,7,13,1,4,8,3,9,10,6 +5,9,6,8,5,2,7,11,3,10,1,13,4,12 +58,12,13,4,11,6,8,2,1,5,10,3,7,9 +7,1,2,6,8,12,3,5,9,10,11,13,4,7 +26,9,2,8,4,6,13,12,5,3,7,10,1,11 +23,9,7,13,2,3,12,1,5,8,10,4,6,11 +96,3,13,6,7,9,1,8,4,5,2,12,11,10 +91,3,13,2,12,9,5,11,4,8,6,1,7,10 +55,2,10,9,13,4,8,3,12,11,6,5,7,1 +71,1,4,12,11,3,7,6,13,2,5,10,8,9 +23,3,7,9,6,8,1,5,4,13,12,10,11,2 +18,4,5,6,8,1,7,10,12,2,11,9,3,13 +12,10,8,3,1,4,11,13,9,5,12,2,6,7 +81,3,12,5,10,11,9,8,4,13,6,7,2,1 +53,4,8,10,5,1,3,13,9,6,2,11,12,7 +91,9,5,8,13,11,1,3,4,10,6,2,12,7 +8,7,8,11,5,12,4,1,2,3,9,13,6,10 +4,2,6,1,9,10,13,3,4,7,8,5,12,11 +6,2,1,7,6,10,8,9,12,5,11,3,13,4 +69,1,12,11,8,5,6,4,13,3,2,7,10,9 +72,3,8,9,12,6,5,1,4,7,2,11,10,13 +4,10,3,4,8,1,12,5,7,9,13,2,11,6 +26,11,10,8,12,9,13,2,3,1,6,4,7,5 +88,5,2,9,12,7,13,11,8,1,10,6,3,4 +79,4,5,7,6,12,10,1,8,11,2,9,3,13 +43,1,9,6,4,13,10,3,12,2,11,5,8,7 +98,7,3,10,4,9,8,2,13,6,12,5,1,11 +59,7,4,13,1,9,12,11,10,3,6,5,2,8 +41,12,5,13,1,4,7,11,3,8,10,9,6,2 +89,3,4,8,1,5,6,12,10,2,9,11,7,13 +10,3,4,1,11,5,8,13,2,10,9,12,6,7 +48,6,12,8,11,10,7,1,3,9,2,5,13,4 +6,10,12,3,6,11,7,9,1,13,2,8,4,5 +97,8,13,3,4,5,11,12,7,6,2,1,9,10 +75,12,3,2,10,13,6,1,11,4,8,5,7,9 +5,1,2,7,6,8,10,11,13,12,3,5,4,9 +97,3,11,10,5,13,1,6,12,7,9,2,8,4 +84,3,9,11,7,6,8,4,2,13,5,1,10,12 +25,11,13,10,12,1,4,8,2,3,5,9,7,6 +80,9,3,8,7,13,2,1,12,6,5,10,4,11 +89,8,4,2,9,7,3,13,10,11,1,5,12,6 +45,10,1,9,4,3,8,13,5,6,12,7,11,2 +76,1,12,9,4,13,11,6,7,3,5,2,8,10 +16,6,13,2,12,8,4,1,7,10,5,9,11,3 +99,8,1,2,12,5,11,9,7,3,4,6,13,10 +5,12,13,10,1,11,8,2,6,5,9,3,4,7 +84,6,3,7,12,1,10,9,11,5,8,2,13,4 +99,6,11,13,9,4,7,12,2,5,1,10,8,3 +81,1,12,9,8,11,6,3,7,10,5,13,2,4 +56,9,1,2,8,11,6,7,10,13,5,4,3,12 +100,9,2,13,4,12,8,1,6,11,10,7,5,3 +56,3,5,2,7,12,13,4,1,9,8,10,6,11 +85,8,7,5,12,1,9,3,11,13,4,6,10,2 +6,2,13,10,5,7,1,11,9,12,4,8,6,3 +15,7,13,9,4,6,12,1,8,3,10,5,11,2 +49,8,2,10,4,9,13,3,6,7,11,12,1,5 +91,3,12,1,11,10,2,13,5,4,8,7,6,9 +79,6,11,9,13,1,2,7,12,3,5,8,10,4 +9,6,5,13,10,2,8,7,3,9,11,12,4,1 +78,12,1,4,3,2,13,8,5,7,11,6,9,10 +65,11,6,2,5,10,12,13,7,1,3,8,9,4 +82,8,9,1,6,11,3,10,5,2,12,4,7,13 +60,12,2,3,5,11,7,1,8,13,9,4,10,6 +76,5,10,1,6,8,3,7,12,9,11,13,2,4 +35,10,3,11,12,7,4,5,6,8,2,9,1,13 +12,9,2,3,10,13,8,11,4,7,12,1,6,5 +98,1,5,9,6,13,4,11,12,8,2,7,3,10 +85,6,5,2,8,12,4,9,13,10,3,1,7,11 +40,7,1,9,5,10,11,6,4,3,12,8,13,2 +29,11,1,6,2,8,10,3,9,5,7,12,4,13 +85,8,3,10,12,5,9,11,7,2,1,6,13,4 +48,4,9,10,3,13,1,6,7,12,8,2,11,5 +69,3,2,13,5,12,7,11,1,4,9,8,10,6 +96,2,5,10,6,7,3,9,4,13,8,11,1,12 +65,4,6,5,12,3,10,13,8,2,11,9,1,7 +11,6,11,3,13,8,2,1,10,12,9,4,5,7 +68,10,3,12,1,11,2,4,13,6,9,8,5,7 +97,2,9,8,4,10,11,7,3,13,1,5,6,12 +67,13,5,9,6,1,4,7,2,8,12,11,10,3 +96,9,12,6,10,13,11,7,8,4,2,5,3,1 +70,10,5,11,4,3,12,6,13,9,8,7,2,1 +56,10,12,6,3,4,8,2,7,13,5,11,1,9 +84,10,12,11,4,1,3,8,9,2,6,7,5,13 +30,3,9,11,13,12,1,8,10,4,2,6,7,5 +89,9,4,5,8,6,13,1,2,10,12,11,7,3 +70,12,6,3,9,5,10,4,8,2,7,13,11,1 +67,4,9,7,3,1,11,6,8,5,10,2,12,13 +43,13,5,2,9,12,8,1,11,6,7,3,10,4 +82,5,12,7,9,4,2,10,3,8,6,11,13,1 +80,9,11,6,13,12,10,4,8,1,3,7,2,5 +98,12,13,6,9,4,8,1,11,7,10,5,3,2 +11,10,11,2,13,1,7,12,5,4,3,6,8,9 +3,5,3,9,7,1,12,6,2,13,8,11,10,4 +96,13,7,5,6,3,2,11,9,10,12,8,1,4 +93,7,12,11,8,3,5,10,1,2,9,6,13,4 +21,2,13,5,3,9,7,1,8,4,10,11,12,6 +10,12,10,5,13,3,1,2,9,8,7,4,6,11 +45,2,10,8,7,3,5,4,9,6,1,12,13,11 +36,11,7,9,2,5,8,4,3,13,6,1,10,12 +4,13,3,12,6,10,11,8,7,1,2,4,5,9 +69,4,7,10,2,8,12,6,11,13,5,9,1,3 +46,13,5,2,1,7,12,6,9,10,11,4,8,3 +5,6,13,4,2,11,10,9,12,5,8,1,7,3 +64,11,3,6,9,8,10,1,5,13,4,7,2,12 +14,4,7,3,9,12,5,10,13,8,2,6,11,1 +97,1,3,10,8,2,12,6,13,5,7,4,11,9 +45,6,8,7,12,9,11,13,10,5,4,2,3,1 +89,10,13,12,6,1,9,4,8,3,11,7,2,5 +27,12,10,9,7,5,11,13,6,2,8,3,4,1 +17,2,1,7,10,11,6,13,3,12,4,5,8,9 +68,8,5,3,4,2,9,6,12,1,13,7,10,11 +81,12,5,6,2,7,10,9,13,8,3,1,4,11 +60,2,4,3,8,6,7,13,1,5,12,11,10,9 +93,12,4,11,9,3,2,13,8,10,5,6,1,7 +82,3,13,1,10,9,6,11,12,8,2,5,4,7 +13,13,5,6,1,4,2,10,3,8,7,11,12,9 +82,13,11,5,4,2,6,8,3,1,10,9,7,12 +100,7,4,1,10,11,6,3,5,13,2,9,8,12 +50,13,4,11,7,3,5,12,8,6,9,1,10,2 +94,1,6,13,3,2,4,7,5,8,11,12,9,10 +48,6,10,13,12,2,9,3,1,11,7,8,5,4 +24,1,5,10,11,9,8,2,7,13,3,6,12,4 +61,6,9,3,2,7,1,12,8,13,4,11,5,10 +19,7,12,2,11,4,5,6,9,1,3,8,10,13 +64,5,8,3,12,6,7,9,13,1,11,2,10,4 +51,5,7,2,3,13,8,6,1,10,11,4,9,12 +95,9,11,3,8,7,12,10,13,6,1,5,4,2 +14,11,12,13,6,2,8,9,4,1,3,7,5,10 +1,2,7,6,3,10,1,5,4,11,13,8,12,9 +42,7,10,5,9,3,8,6,2,1,13,12,4,11 +6,6,5,10,9,2,4,12,8,3,7,1,13,11 +99,8,1,2,7,6,4,3,5,12,9,11,13,10 +43,3,8,9,5,10,13,7,6,1,4,11,2,12 +18,9,1,5,12,3,10,4,13,11,6,8,2,7 +3,1,3,7,12,4,9,5,13,6,2,11,8,10 +38,7,2,9,11,6,12,5,1,13,10,8,3,4 +72,13,7,10,4,1,8,9,11,3,6,12,5,2 +68,3,1,5,7,2,4,12,8,6,11,10,13,9 +56,10,2,9,6,13,12,5,1,8,4,3,7,11 +79,2,12,10,9,6,3,8,5,7,1,4,13,11 +9,12,7,6,5,11,13,8,3,4,10,1,9,2 +7,10,2,8,9,13,5,7,1,6,12,4,11,3 +91,6,7,9,10,5,2,3,12,8,4,11,1,13 +52,13,8,1,12,7,3,5,6,11,2,4,9,10 +2,2,6,7,11,12,10,3,4,8,5,9,13,1 +28,9,7,5,2,13,8,11,10,12,6,1,3,4 +12,10,11,1,9,6,5,13,4,7,12,3,8,2 +21,6,5,13,4,1,3,11,12,2,9,8,10,7 +41,12,1,10,2,3,11,5,8,9,6,7,13,4 +35,12,7,3,5,4,13,9,10,6,2,11,1,8 +35,2,4,9,11,13,1,12,3,10,6,5,8,7 +1,11,4,12,6,13,9,5,1,3,7,2,8,10 +20,3,10,7,6,1,2,11,5,13,4,12,9,8 +100,12,13,2,6,9,8,3,1,11,7,10,5,4 +65,10,9,3,4,13,6,12,7,8,11,1,2,5 +81,4,1,6,10,8,7,11,2,13,3,9,12,5 +9,11,2,13,5,4,6,3,10,7,9,1,12,8 +8,8,5,1,13,7,2,4,3,12,9,6,11,10 +84,4,7,11,9,8,5,13,3,10,6,12,2,1 +62,10,13,12,1,6,4,8,9,7,2,5,3,11 +33,4,12,11,1,2,3,8,7,10,13,9,5,6 +20,6,1,8,3,13,10,5,11,9,4,2,12,7 +26,1,10,4,9,7,13,11,2,6,8,12,3,5 +50,2,13,10,3,11,4,1,5,6,12,7,8,9 +44,9,11,5,10,12,7,8,3,6,13,1,4,2 +51,7,9,13,8,3,11,12,1,10,6,2,4,5 +76,7,1,12,4,6,11,10,2,3,13,9,5,8 +59,13,8,10,11,12,1,6,3,2,9,4,5,7 +93,7,4,13,2,11,8,6,12,5,10,1,9,3 +2,4,13,9,10,7,2,1,3,8,11,5,6,12 +11,5,8,12,6,4,1,10,2,3,11,13,7,9 +6,4,9,13,5,11,10,6,3,8,1,2,12,7 +8,13,10,3,6,12,2,9,1,4,11,7,5,8 +90,3,13,5,7,4,9,8,12,10,2,1,11,6 +28,4,10,6,1,5,8,11,7,9,3,13,2,12 +69,5,13,10,8,12,2,4,7,3,11,1,6,9 +51,7,5,10,11,13,9,2,12,3,1,8,4,6 +23,10,1,9,6,7,3,13,5,12,4,2,8,11 +9,6,9,12,1,13,8,11,5,4,2,7,10,3 +65,13,5,6,3,4,9,1,12,2,7,8,11,10 +62,7,3,6,9,1,4,11,13,5,10,8,12,2 +27,4,9,2,3,1,6,5,13,8,11,12,10,7 +44,11,13,5,1,2,6,4,12,9,3,8,10,7 +30,3,7,9,4,12,8,11,5,6,10,2,1,13 +44,1,11,4,13,12,7,3,5,10,8,6,2,9 +78,12,7,11,9,4,2,5,8,6,10,3,13,1 +25,3,5,10,6,12,9,7,4,2,11,13,8,1 +87,12,2,13,5,9,10,7,4,3,11,6,1,8 +75,5,7,2,1,11,8,10,9,13,12,3,4,6 +87,11,13,6,4,8,3,9,12,1,5,2,10,7 +14,9,5,7,6,3,11,1,10,4,13,2,12,8 +90,13,4,3,5,8,11,6,2,10,1,7,9,12 +80,6,9,4,12,1,3,10,2,5,13,7,8,11 +74,9,11,10,2,3,12,4,8,6,1,13,5,7 +66,8,11,4,12,10,3,9,5,2,7,1,13,6 +76,7,13,10,6,2,8,3,5,11,1,9,12,4 +12,12,9,4,2,3,8,6,5,7,13,1,11,10 +74,7,4,11,5,10,1,2,13,8,6,3,12,9 +80,9,10,11,3,7,4,6,8,2,5,12,1,13 +17,7,13,1,9,10,5,6,12,4,8,2,11,3 +6,13,9,2,3,4,8,7,6,12,1,11,5,10 +4,13,8,12,1,7,10,6,4,9,2,5,11,3 +82,10,6,3,4,12,9,11,8,5,7,1,2,13 +86,10,11,13,1,9,3,5,2,8,4,12,7,6 +2,13,7,11,5,6,2,10,4,3,12,9,1,8 +33,4,1,2,13,12,6,7,3,5,9,8,10,11 +33,11,7,4,13,9,8,5,12,10,3,6,1,2 +78,10,7,9,4,11,13,6,5,3,1,2,12,8 +46,1,3,13,10,5,4,8,12,7,2,11,6,9 +74,11,13,9,3,1,2,5,12,4,6,10,8,7 +2,11,7,13,2,4,5,6,9,8,12,10,1,3 +22,2,9,6,3,5,11,4,10,13,8,1,12,7 +31,6,7,3,5,2,8,10,13,1,9,11,12,4 +41,1,2,11,7,3,10,12,5,8,9,4,13,6 +81,11,1,4,10,5,9,2,7,12,8,13,3,6 +48,12,4,10,5,13,9,1,6,2,8,11,7,3 +74,4,11,10,7,2,1,13,3,9,12,5,6,8 +94,2,5,9,12,6,10,3,4,1,7,13,11,8 +74,10,5,9,8,3,11,12,6,7,4,2,1,13 +78,1,8,12,3,10,6,4,11,2,5,13,7,9 +48,8,6,9,13,7,2,12,11,5,10,4,3,1 +57,13,9,7,1,6,11,5,3,8,10,12,4,2 +14,7,12,3,13,2,1,9,6,5,8,10,4,11 +66,12,6,8,11,7,9,1,2,10,3,4,5,13 +49,7,2,11,4,3,1,13,8,5,6,10,9,12 +28,6,11,4,12,5,10,3,13,8,9,2,1,7 +21,11,4,3,6,8,12,7,2,1,9,5,10,13 +59,10,12,1,9,5,13,11,7,6,3,2,8,4 +36,1,2,9,4,3,7,11,8,10,13,12,6,5 +57,2,13,10,8,1,9,6,4,3,5,11,7,12 +21,3,6,12,2,13,8,10,9,4,11,1,7,5 +91,6,8,10,3,9,4,12,1,13,7,2,5,11 +75,6,8,5,3,9,2,4,11,13,12,10,1,7 +34,12,6,8,9,7,5,3,1,2,4,13,11,10 +42,10,12,3,13,11,1,9,5,2,7,8,6,4 +82,1,5,9,3,11,10,13,4,6,2,12,7,8 +91,9,11,4,2,3,5,8,12,13,6,1,10,7 +49,12,2,6,4,3,7,13,9,8,10,11,5,1 +44,8,12,4,9,5,7,6,10,13,3,1,2,11 +69,5,2,12,4,11,9,10,7,1,3,13,6,8 +60,1,13,9,2,7,8,3,12,10,6,5,11,4 +13,12,1,11,8,7,3,9,5,2,10,13,4,6 +6,6,1,9,8,4,11,3,10,12,2,5,13,7 +18,7,1,5,8,2,12,6,4,10,9,13,3,11 +26,4,2,7,11,10,9,8,5,12,3,13,6,1 +14,3,10,6,12,9,7,11,5,4,8,1,13,2 +49,9,6,3,2,10,11,13,1,5,8,12,4,7 +27,10,12,2,1,4,9,7,11,6,5,8,13,3 +86,13,4,2,11,9,6,1,8,3,5,12,7,10 +14,11,5,9,13,1,2,8,10,7,3,6,4,12 +39,13,3,2,6,10,9,5,4,12,11,8,1,7 +45,12,5,10,3,8,6,9,13,7,4,2,11,1 +8,11,12,3,8,9,2,1,7,13,5,6,10,4 +1,7,9,8,5,2,13,10,11,1,12,3,4,6 +82,11,7,8,12,10,6,4,9,3,13,2,5,1 +14,12,9,10,8,6,3,11,1,2,13,7,4,5 +70,1,3,4,2,8,9,7,13,5,6,10,11,12 +97,7,5,13,8,3,9,10,4,2,1,6,12,11 +79,3,1,13,12,6,8,4,10,5,2,9,7,11 +4,3,7,8,4,13,5,10,11,1,9,2,6,12 +81,13,11,12,9,3,10,6,5,7,1,8,4,2 +69,3,12,8,5,10,7,11,4,9,2,1,6,13 +18,9,1,8,6,11,5,7,3,2,10,4,13,12 +95,5,11,4,1,2,8,9,12,7,3,6,10,13 +82,10,7,2,5,8,12,3,11,1,4,6,9,13 +80,13,2,6,7,3,8,1,4,5,10,11,12,9 +91,6,8,11,4,5,1,12,13,7,3,2,9,10 +20,9,12,3,10,13,6,11,5,2,1,4,7,8 +84,11,7,8,12,4,10,2,9,6,5,1,13,3 +16,2,3,8,4,12,11,9,10,13,5,6,7,1 +12,8,9,13,12,11,3,5,4,10,2,7,6,1 +42,13,1,9,3,6,7,5,2,10,12,4,8,11 +97,9,10,5,6,2,11,4,1,7,8,12,13,3 +88,5,12,10,13,7,11,2,1,3,9,6,4,8 +16,12,6,10,3,5,8,2,4,1,13,11,7,9 +66,12,8,6,13,9,4,2,5,11,3,7,10,1 +25,2,4,3,5,9,11,12,13,10,1,7,6,8 +95,4,13,12,1,8,7,3,9,6,11,2,10,5 +75,8,9,4,10,3,2,5,7,12,1,13,6,11 +8,11,10,5,8,4,6,1,12,9,3,2,7,13 +27,7,2,11,9,5,6,4,3,1,13,12,10,8 +72,12,4,2,11,10,8,6,1,13,3,5,7,9 +29,2,6,5,11,10,1,3,12,8,9,13,4,7 +31,9,6,10,4,2,11,1,7,13,3,8,5,12 +46,7,6,8,5,2,3,11,9,13,1,10,12,4 +53,1,12,5,13,3,4,11,7,8,10,6,9,2 +16,7,4,6,9,11,10,2,12,1,3,5,13,8 +96,2,8,1,10,5,6,9,12,4,3,7,11,13 +74,2,3,9,6,4,10,8,7,5,13,11,1,12 +35,9,3,13,11,2,6,7,12,10,8,5,4,1 +31,5,13,10,8,2,1,3,11,12,9,4,6,7 +48,2,12,1,10,3,5,9,4,13,6,8,11,7 +100,9,1,6,7,8,12,4,2,10,5,11,13,3 +25,13,7,6,2,10,11,9,1,4,8,12,3,5 +81,6,7,12,3,8,13,11,1,4,9,10,5,2 +88,7,9,10,1,5,6,12,11,8,13,2,3,4 +81,4,11,5,8,2,3,13,1,12,7,10,6,9 +14,7,1,2,5,9,4,6,3,13,8,11,12,10 +89,9,5,6,10,7,12,4,11,13,8,2,3,1 +91,4,2,5,7,9,10,6,12,3,11,8,13,1 +19,8,5,7,4,2,3,1,10,13,9,6,12,11 +53,8,11,4,12,5,7,3,6,2,1,9,13,10 +64,12,3,2,7,5,4,11,1,8,13,6,9,10 +7,10,8,6,3,4,5,2,1,13,12,11,9,7 +69,3,6,7,9,11,13,2,12,10,8,4,5,1 +43,1,13,5,6,4,11,7,3,9,8,2,10,12 +56,5,8,2,13,10,3,11,12,7,6,4,9,1 +100,6,12,3,10,7,13,11,2,8,1,9,4,5 +38,8,10,2,6,9,13,12,1,4,3,5,11,7 +62,2,13,1,10,4,5,12,3,11,7,6,9,8 +1,13,11,3,6,7,2,1,4,10,5,8,12,9 +20,2,5,3,8,7,10,1,6,11,13,4,9,12 +94,13,12,7,5,6,3,9,1,10,11,4,8,2 +2,7,6,4,12,5,8,10,2,9,11,1,13,3 \ No newline at end of file From 752a03fab0e8076e8e33e94aeef7ebc707f70ef8 Mon Sep 17 00:00:00 2001 From: samsaksfithian Date: Fri, 9 Dec 2016 22:08:17 -0500 Subject: [PATCH 17/17] More input files, commented attempts to improve rank picking --- generateInputProfile.py | 19 +- input-10c-1000r | 1012 ++++++++++++++++++++ input-11c-2000r | 2013 ++++++++++++++++++++++++++++++++++++++ input-13c-2000r | 2015 +++++++++++++++++++++++++++++++++++++++ input-9c-750r | 761 +++++++++++++++ 5 files changed, 5818 insertions(+), 2 deletions(-) create mode 100644 input-10c-1000r create mode 100644 input-11c-2000r create mode 100644 input-13c-2000r create mode 100644 input-9c-750r diff --git a/generateInputProfile.py b/generateInputProfile.py index 097ac19..d061ec4 100644 --- a/generateInputProfile.py +++ b/generateInputProfile.py @@ -39,9 +39,24 @@ def main(argv): #===================================================================================== def pickRankings(candMap, numUniqueRankings): - numPosRankings = math.factorial(len(candMap.keys())) - ranksWithNums = dict() + # ranksWithNums = dict() + # i = 0 + # while len(ranksWithNums.keys()) < numUniqueRankings and i < 6: + # ranking = [] + # candsCopy = list(candMap.keys()) + # while len(candsCopy) > 0: + # rankNum = random.randint(0, len(candsCopy)-1) + # ranking.append(candsCopy[rankNum]) + # del candsCopy[rankNum] + # print("ranking: ", ranking) + # print("ranksWithNums: ", ranksWithNums) + # if tuple(ranking) not in ranksWithNums.keys(): + # ranksWithNums[tuple(ranking)] = i + # i += 1 + + + numPosRankings = math.factorial(len(candMap.keys())) # pick the random indices for the rankings to be chosen while len(ranksWithNums.keys()) < numUniqueRankings: rankNum = random.randint(0, numPosRankings) diff --git a/input-10c-1000r b/input-10c-1000r new file mode 100644 index 0000000..199f87c --- /dev/null +++ b/input-10c-1000r @@ -0,0 +1,1012 @@ +10 +1,a +2,b +3,c +4,d +5,e +6,f +7,g +8,h +9,i +10,j +150263,150263,1000 +84,8,9,5,7,6,4,2,3,10,1 +224,3,6,5,8,2,7,4,10,1,9 +147,8,6,5,7,1,2,4,3,9,10 +1,5,7,4,8,1,6,3,2,10,9 +174,6,3,10,2,4,9,7,8,5,1 +15,8,9,10,2,7,1,6,3,4,5 +195,10,3,5,7,4,8,1,6,9,2 +17,5,8,10,7,4,9,2,1,6,3 +136,5,10,2,6,8,1,7,9,4,3 +146,5,9,1,3,4,8,2,10,6,7 +46,10,5,2,1,4,9,7,3,8,6 +108,5,10,6,3,7,8,2,4,1,9 +267,1,10,4,6,2,7,3,9,5,8 +35,6,8,1,9,5,3,4,10,7,2 +144,1,10,8,6,9,7,2,5,4,3 +96,4,5,1,3,2,9,7,8,6,10 +110,8,1,5,6,9,4,7,10,3,2 +90,4,9,7,10,5,8,3,1,2,6 +92,3,9,4,8,5,6,10,2,7,1 +267,2,3,7,10,6,4,5,9,8,1 +15,3,5,1,4,8,10,9,6,2,7 +233,3,4,5,1,10,9,8,7,2,6 +91,8,1,10,3,5,4,6,2,9,7 +10,4,2,6,7,10,8,5,9,3,1 +260,10,4,7,8,5,6,1,3,2,9 +193,4,3,2,8,7,9,10,5,6,1 +292,8,4,1,3,9,7,6,10,5,2 +12,4,1,6,5,8,3,2,10,7,9 +118,5,4,6,2,7,1,9,8,10,3 +52,1,8,4,9,6,10,2,7,3,5 +46,9,1,4,3,8,5,10,7,6,2 +138,7,10,5,6,3,8,2,9,1,4 +57,3,5,8,1,9,10,7,2,6,4 +5,7,2,3,5,1,10,9,6,4,8 +214,10,7,1,2,6,8,9,4,5,3 +95,2,10,5,4,8,6,3,7,9,1 +29,4,8,3,10,5,1,6,2,9,7 +10,8,1,7,10,9,3,5,2,4,6 +46,10,4,2,8,3,1,9,6,7,5 +250,7,5,3,6,8,1,10,9,4,2 +7,7,4,6,1,2,3,9,10,5,8 +77,10,3,6,9,1,5,2,4,8,7 +69,6,10,9,4,8,3,2,7,1,5 +215,10,4,6,7,1,8,3,9,5,2 +38,10,1,7,2,3,9,4,8,5,6 +238,7,8,5,9,4,2,1,10,6,3 +253,4,9,2,1,7,6,8,5,3,10 +4,9,2,1,7,8,4,3,5,10,6 +238,9,7,6,4,2,1,5,3,8,10 +144,5,1,7,8,2,9,10,6,4,3 +168,3,6,8,2,9,5,10,1,4,7 +47,8,3,5,4,9,7,6,2,1,10 +43,1,8,2,9,5,3,7,10,6,4 +109,1,6,3,9,4,7,2,5,8,10 +186,6,2,8,10,1,4,3,5,9,7 +77,9,7,8,1,4,6,3,10,5,2 +283,10,8,9,7,4,5,3,2,1,6 +161,10,5,2,4,3,6,7,8,1,9 +137,6,5,2,4,8,7,3,10,9,1 +199,2,7,8,5,3,4,1,10,6,9 +158,5,6,3,8,7,10,4,2,9,1 +276,1,2,3,4,6,5,7,8,10,9 +130,9,4,5,1,3,10,8,6,2,7 +61,5,4,1,7,8,3,9,2,10,6 +184,5,2,4,8,10,1,6,3,7,9 +258,9,5,2,6,10,1,4,7,3,8 +68,8,3,9,6,5,4,2,10,1,7 +172,3,6,5,1,7,10,4,9,8,2 +32,5,9,3,7,4,10,8,2,1,6 +96,2,1,5,9,7,4,10,6,8,3 +146,4,9,5,1,10,3,6,2,7,8 +149,7,3,5,1,8,2,9,10,6,4 +136,9,2,6,1,3,8,4,7,10,5 +63,6,4,1,2,5,3,10,9,7,8 +155,2,8,5,3,1,7,4,6,9,10 +170,1,3,9,10,7,8,2,5,6,4 +83,8,7,5,9,1,4,10,3,2,6 +195,6,7,10,2,5,9,3,1,8,4 +198,3,9,6,4,10,8,1,7,2,5 +232,3,5,2,10,4,1,9,7,8,6 +281,3,8,9,7,1,10,5,4,6,2 +126,7,2,10,9,1,5,6,8,3,4 +35,9,1,10,8,6,2,3,7,4,5 +135,4,2,7,9,5,8,10,1,6,3 +167,8,5,9,4,6,2,10,3,1,7 +173,9,6,10,2,8,5,3,1,4,7 +279,7,6,4,10,1,5,3,2,8,9 +128,8,1,4,9,6,3,2,5,10,7 +22,6,8,4,2,9,10,3,7,1,5 +59,8,5,1,4,10,6,3,2,7,9 +270,10,3,8,9,4,5,6,2,7,1 +265,6,10,1,7,8,2,5,9,3,4 +79,1,3,10,5,2,8,9,7,6,4 +297,1,5,6,4,9,10,3,2,7,8 +8,8,3,6,2,7,5,9,4,1,10 +291,1,8,9,2,6,4,10,7,5,3 +100,6,3,9,4,10,2,7,1,5,8 +259,1,5,8,4,2,6,10,7,9,3 +217,8,9,3,7,6,10,4,5,2,1 +80,9,3,4,6,8,1,10,2,5,7 +154,10,8,6,1,7,9,5,2,4,3 +175,9,2,5,7,4,1,6,3,10,8 +199,5,10,1,4,6,7,3,8,9,2 +156,10,9,4,2,6,1,3,8,5,7 +231,9,7,10,8,3,2,6,4,5,1 +227,9,4,10,5,7,2,8,6,3,1 +205,7,9,3,10,4,2,5,8,6,1 +114,1,8,2,5,9,7,6,3,4,10 +288,6,1,4,10,5,3,8,7,9,2 +168,10,6,8,1,5,7,3,4,2,9 +42,3,9,5,7,4,2,1,8,10,6 +82,2,4,1,8,3,10,5,9,7,6 +189,5,3,8,7,9,6,2,4,1,10 +267,5,9,8,3,2,4,10,6,7,1 +208,1,4,9,5,8,7,2,3,6,10 +80,9,2,6,3,10,8,5,1,7,4 +143,7,8,9,1,3,6,4,10,5,2 +7,7,10,4,5,1,9,6,3,8,2 +94,6,4,10,8,3,7,5,1,9,2 +145,8,7,10,2,3,6,9,1,4,5 +53,7,5,1,2,9,3,10,6,4,8 +280,7,5,4,10,2,6,9,8,3,1 +256,9,1,7,2,10,5,3,6,8,4 +30,8,3,6,7,5,1,10,9,2,4 +16,7,2,4,10,1,3,9,6,8,5 +7,6,8,9,1,10,2,4,5,7,3 +54,2,9,7,8,3,1,5,10,4,6 +33,4,9,3,5,1,6,10,2,8,7 +232,9,8,1,7,2,10,6,4,3,5 +48,3,1,8,4,5,9,6,2,10,7 +150,7,1,5,8,6,9,3,4,10,2 +210,7,3,8,5,9,6,1,4,10,2 +109,5,10,1,4,7,2,3,9,8,6 +219,1,4,7,9,5,8,3,6,2,10 +46,8,4,6,5,2,7,1,3,9,10 +3,4,6,1,5,7,10,2,3,9,8 +281,8,3,10,5,6,7,9,1,4,2 +269,9,8,5,7,4,6,10,2,1,3 +119,7,3,1,5,10,6,4,2,8,9 +38,6,2,10,5,7,9,8,1,4,3 +41,10,5,9,6,2,1,8,4,3,7 +213,3,4,8,1,5,7,2,10,9,6 +260,2,6,9,7,3,4,10,5,8,1 +141,3,10,4,1,9,8,5,6,2,7 +34,5,8,6,2,3,4,1,7,10,9 +184,10,9,7,4,3,2,5,8,1,6 +289,9,10,8,6,3,5,2,7,4,1 +113,5,10,1,7,8,3,9,2,4,6 +14,3,7,10,8,9,6,4,1,5,2 +189,4,8,6,10,5,3,9,1,2,7 +7,5,8,3,6,10,1,2,7,4,9 +199,7,9,4,3,5,1,6,10,8,2 +123,9,7,6,10,2,8,1,5,3,4 +123,5,4,9,6,7,10,1,8,3,2 +184,5,1,7,3,8,6,4,9,2,10 +159,8,3,2,4,7,5,6,9,1,10 +27,3,5,6,10,7,8,9,2,4,1 +159,4,5,2,7,1,3,10,9,8,6 +59,1,2,10,7,4,3,5,8,6,9 +245,3,6,7,1,8,2,10,9,4,5 +294,1,7,3,4,9,8,6,2,10,5 +298,7,3,1,8,9,4,5,10,2,6 +112,6,1,3,9,2,4,5,8,10,7 +87,2,7,1,8,5,3,10,6,4,9 +171,1,8,2,9,7,6,5,3,10,4 +184,7,3,6,9,1,10,8,5,2,4 +103,7,10,1,3,6,2,8,9,5,4 +5,9,3,4,6,10,2,7,1,5,8 +114,10,1,5,6,2,8,3,9,7,4 +111,4,6,9,5,1,7,8,3,10,2 +126,1,10,3,9,4,7,2,5,8,6 +200,1,8,5,7,3,2,4,6,10,9 +155,2,5,3,8,7,6,4,10,9,1 +21,8,6,9,2,10,1,5,4,7,3 +191,4,6,8,2,7,5,1,10,3,9 +13,6,7,8,5,2,4,1,10,9,3 +113,7,3,5,1,9,10,6,4,8,2 +284,1,5,7,2,9,6,8,10,3,4 +215,4,5,7,2,9,6,1,8,10,3 +1,8,2,7,9,3,10,5,4,6,1 +1,8,6,9,5,2,10,1,7,3,4 +40,9,5,8,10,6,1,3,2,7,4 +69,3,8,2,7,4,5,6,10,9,1 +111,10,9,8,6,1,4,2,5,3,7 +195,5,7,3,2,6,4,8,1,9,10 +229,2,3,1,4,10,6,5,7,8,9 +62,10,1,7,5,4,3,6,8,9,2 +170,5,6,4,7,9,1,10,2,3,8 +223,2,4,10,9,7,8,1,5,6,3 +8,9,1,5,10,6,3,4,2,7,8 +168,7,1,5,3,6,10,8,4,9,2 +66,9,10,8,6,4,3,1,7,2,5 +213,2,7,5,6,4,1,9,3,10,8 +181,6,9,8,2,10,4,3,1,5,7 +204,5,3,8,6,10,1,2,9,4,7 +102,9,5,8,4,3,1,2,7,6,10 +147,1,9,5,8,7,2,3,6,10,4 +135,6,8,1,5,3,4,2,10,9,7 +117,7,4,5,6,9,1,8,2,3,10 +89,5,6,4,10,7,3,8,2,9,1 +84,3,9,2,7,5,4,10,8,1,6 +122,3,9,6,5,2,10,4,8,1,7 +248,4,10,1,9,2,6,3,8,5,7 +38,6,8,2,3,10,5,7,1,9,4 +40,6,7,9,8,10,1,4,3,2,5 +157,5,4,3,2,6,10,8,7,9,1 +122,7,5,3,10,9,1,2,4,6,8 +56,2,8,6,9,7,10,3,5,4,1 +87,5,9,6,3,2,8,1,10,4,7 +295,6,5,2,8,10,3,7,9,4,1 +130,8,10,3,6,2,1,7,9,5,4 +263,10,3,6,9,5,2,4,8,1,7 +117,3,9,5,7,6,10,8,2,4,1 +15,6,9,4,8,7,5,2,10,1,3 +12,9,1,6,10,4,3,2,8,7,5 +163,9,8,4,2,5,10,1,7,6,3 +19,3,5,10,2,7,4,9,8,1,6 +264,3,2,10,5,7,9,1,6,4,8 +95,1,10,7,9,8,2,6,4,3,5 +216,8,7,2,3,4,1,9,5,6,10 +21,7,9,2,4,3,10,8,6,1,5 +254,5,6,10,2,4,3,9,8,7,1 +243,3,1,10,7,6,8,2,4,5,9 +282,6,1,5,8,9,10,2,3,7,4 +264,8,2,5,9,3,4,10,6,7,1 +204,2,9,8,1,10,3,5,7,4,6 +207,9,5,1,3,4,8,7,10,6,2 +282,1,2,3,5,4,7,9,8,10,6 +59,6,8,4,7,5,1,10,3,9,2 +97,7,10,2,5,3,6,4,8,1,9 +229,3,9,1,5,10,7,8,4,2,6 +290,9,10,5,4,8,6,1,7,3,2 +126,6,8,4,9,1,5,3,2,7,10 +84,1,5,10,3,7,9,6,8,4,2 +59,6,10,2,9,5,8,1,3,4,7 +283,10,6,1,5,2,7,3,9,4,8 +48,9,10,6,7,3,8,2,5,1,4 +126,5,4,9,1,3,10,8,2,6,7 +147,3,8,6,10,7,2,5,1,9,4 +90,10,6,3,1,7,4,2,5,8,9 +53,7,9,10,4,1,3,5,8,6,2 +232,7,8,6,2,10,5,1,9,4,3 +170,2,5,4,9,10,3,6,1,8,7 +83,2,1,9,6,7,10,5,8,3,4 +117,2,10,3,8,9,6,5,1,4,7 +9,1,2,10,8,7,4,9,5,6,3 +64,7,9,3,2,1,6,8,5,4,10 +257,8,2,1,10,5,4,6,3,9,7 +85,8,4,9,5,1,10,2,3,7,6 +116,2,9,4,6,8,5,10,1,3,7 +20,3,1,6,4,7,5,9,2,8,10 +246,5,7,3,6,2,4,10,9,1,8 +30,8,10,4,3,9,2,5,6,7,1 +36,1,6,7,3,10,2,8,9,4,5 +236,10,5,8,1,9,6,7,3,2,4 +127,10,7,9,1,5,4,8,3,6,2 +207,2,8,6,9,10,5,4,7,1,3 +2,10,7,6,9,1,4,2,3,8,5 +31,9,10,2,4,3,6,5,8,7,1 +209,10,7,3,2,5,9,4,6,1,8 +243,5,10,8,6,2,7,4,3,1,9 +287,8,7,9,6,10,1,3,4,5,2 +65,6,2,3,9,4,5,1,7,10,8 +112,4,5,1,2,9,7,10,6,8,3 +239,6,7,10,2,9,3,4,5,8,1 +234,2,10,9,4,3,6,8,7,5,1 +131,7,2,1,8,3,9,10,6,4,5 +223,10,2,9,1,7,6,5,3,8,4 +296,10,1,9,5,8,2,4,6,3,7 +48,9,6,4,8,5,2,1,7,3,10 +175,9,7,2,10,3,4,1,8,6,5 +74,9,1,10,3,6,4,5,2,8,7 +17,3,8,7,2,4,10,6,9,1,5 +298,9,7,4,1,8,5,3,10,6,2 +94,1,9,8,6,7,10,4,2,5,3 +27,3,8,1,9,2,5,6,4,10,7 +235,10,4,1,3,6,9,7,8,2,5 +177,1,4,3,8,2,7,9,10,6,5 +158,3,2,9,7,10,4,6,5,1,8 +122,3,6,2,8,9,10,4,1,5,7 +268,3,6,1,2,7,8,10,9,5,4 +132,9,6,10,8,1,2,4,5,7,3 +23,2,4,10,7,3,6,1,8,5,9 +75,3,8,9,2,7,4,5,6,10,1 +126,2,10,4,8,1,5,3,7,6,9 +15,3,2,9,6,10,7,1,8,5,4 +180,10,5,6,8,7,1,4,9,3,2 +83,1,2,3,10,6,9,8,7,4,5 +139,5,1,8,3,6,7,2,4,10,9 +199,1,7,2,5,6,8,4,9,10,3 +205,8,1,6,2,5,4,3,9,7,10 +125,4,3,7,2,6,9,1,10,8,5 +193,3,7,2,5,10,4,8,6,1,9 +98,2,1,9,3,10,7,6,5,8,4 +51,1,5,9,3,4,10,6,7,2,8 +260,2,4,5,6,3,9,10,1,8,7 +77,7,6,10,5,2,8,3,1,9,4 +209,8,2,5,9,4,7,1,3,6,10 +7,5,2,1,9,3,6,10,4,7,8 +3,3,1,6,4,8,2,10,9,7,5 +150,3,8,4,5,6,10,7,9,2,1 +242,4,2,3,5,9,1,6,8,10,7 +263,7,4,2,10,8,9,6,5,1,3 +195,8,4,9,1,5,7,6,3,2,10 +218,1,5,6,4,7,9,2,3,8,10 +271,2,9,6,3,4,10,5,1,7,8 +294,8,5,1,10,4,3,7,2,9,6 +171,3,8,4,9,5,1,10,7,2,6 +86,9,2,10,6,5,4,3,1,7,8 +298,3,4,7,5,1,6,2,9,8,10 +18,5,9,4,10,3,7,8,6,2,1 +276,8,10,3,6,4,9,5,1,2,7 +171,7,4,3,1,8,6,5,2,10,9 +153,3,6,4,7,8,9,1,2,5,10 +81,1,10,3,2,8,6,4,5,7,9 +70,3,7,5,6,10,9,4,1,8,2 +210,1,10,3,6,9,2,7,4,5,8 +33,8,4,10,3,1,2,9,6,7,5 +120,8,1,9,6,3,2,10,5,4,7 +276,1,5,6,7,2,3,9,8,4,10 +137,9,3,7,1,5,4,10,2,8,6 +202,1,9,3,5,10,8,4,2,7,6 +0,9,3,10,5,4,8,1,2,6,7 +139,1,3,2,10,5,7,8,9,4,6 +230,4,5,10,7,2,1,6,9,8,3 +79,7,8,1,2,4,5,3,10,9,6 +280,4,9,1,7,3,10,2,5,8,6 +208,2,5,8,9,1,4,3,6,10,7 +59,6,10,1,4,7,2,9,3,5,8 +7,1,7,8,6,2,4,3,5,10,9 +80,1,4,7,10,2,3,5,6,8,9 +77,8,3,6,9,7,4,5,10,1,2 +257,8,4,1,5,9,3,7,2,6,10 +161,4,1,5,7,3,10,8,2,9,6 +210,3,8,4,9,5,6,10,7,1,2 +142,8,9,1,6,2,5,3,4,10,7 +40,5,7,1,10,2,8,3,6,4,9 +157,3,5,6,2,1,10,7,4,9,8 +282,2,7,8,3,1,10,6,5,4,9 +141,8,1,5,7,6,10,9,4,3,2 +246,3,7,9,4,1,10,6,8,2,5 +198,3,5,6,8,2,10,7,1,4,9 +42,5,8,10,9,6,7,2,3,1,4 +78,4,8,10,9,7,2,6,5,1,3 +230,2,8,5,3,10,1,4,6,9,7 +249,3,5,2,10,9,7,4,8,1,6 +228,8,2,7,9,6,5,10,4,1,3 +190,2,8,9,10,4,6,3,5,7,1 +93,1,7,9,5,3,6,4,10,2,8 +19,5,7,2,3,10,9,4,8,6,1 +224,6,9,7,4,8,1,2,10,3,5 +18,6,7,3,1,2,10,4,9,8,5 +260,10,5,6,4,1,2,9,8,3,7 +6,8,7,6,2,9,3,5,4,10,1 +210,6,2,7,4,8,1,3,5,10,9 +25,10,3,1,6,7,9,8,2,5,4 +288,10,7,1,9,4,8,5,2,3,6 +15,6,10,4,7,3,1,9,5,2,8 +122,8,3,7,5,10,2,1,9,6,4 +199,8,1,5,7,9,3,6,4,2,10 +125,8,3,7,5,10,2,4,6,1,9 +300,9,6,2,8,5,4,1,7,10,3 +290,10,5,8,1,4,7,2,9,6,3 +293,10,4,3,7,8,6,9,5,1,2 +103,9,8,5,4,3,6,7,2,10,1 +84,6,1,5,10,2,4,7,8,9,3 +23,9,10,1,6,8,4,3,5,2,7 +300,7,8,1,5,2,10,9,4,6,3 +206,8,6,4,5,3,10,9,7,2,1 +231,3,8,5,2,6,4,1,7,9,10 +176,8,5,3,2,1,7,6,10,4,9 +34,5,1,10,3,2,8,4,7,9,6 +221,5,8,4,1,3,10,2,9,6,7 +54,7,9,2,8,5,4,10,3,6,1 +145,4,6,10,8,7,1,9,5,3,2 +284,10,3,5,4,7,8,6,2,9,1 +268,9,10,7,5,4,2,6,8,1,3 +149,7,9,8,10,2,4,1,3,5,6 +34,5,1,3,7,4,9,10,8,6,2 +136,3,6,10,4,5,9,8,2,1,7 +283,3,9,10,7,5,4,1,6,8,2 +283,3,8,6,5,10,2,4,9,7,1 +38,8,3,7,10,6,5,2,1,4,9 +274,2,8,10,9,3,4,7,5,6,1 +113,10,1,2,4,9,7,6,8,3,5 +98,10,4,6,3,2,5,9,7,1,8 +193,9,7,8,2,10,4,3,6,1,5 +121,8,4,3,9,10,5,6,2,7,1 +210,3,4,2,10,5,1,6,7,9,8 +84,2,1,7,3,10,9,8,4,5,6 +98,2,9,5,8,7,1,6,3,4,10 +31,9,10,5,3,1,4,6,8,2,7 +115,10,6,2,4,3,7,9,8,5,1 +207,3,5,6,4,9,10,1,8,2,7 +106,2,4,3,6,10,8,9,1,7,5 +67,4,1,5,9,10,7,2,6,3,8 +247,7,4,3,6,8,9,10,2,5,1 +32,8,2,9,3,7,5,10,6,4,1 +234,7,9,4,8,10,2,3,5,1,6 +84,2,6,8,10,1,7,3,4,9,5 +219,10,1,4,5,3,6,7,9,2,8 +165,10,2,3,4,1,8,9,5,6,7 +33,5,2,6,3,8,9,7,10,1,4 +19,5,7,3,1,9,10,2,6,4,8 +281,4,3,1,5,2,8,7,10,9,6 +225,6,7,1,9,8,4,2,10,5,3 +159,2,7,3,1,10,5,8,4,6,9 +68,8,3,6,2,1,5,7,10,4,9 +221,2,7,8,6,3,1,5,4,9,10 +156,2,5,8,9,3,6,4,7,1,10 +72,8,3,5,4,2,1,9,7,10,6 +197,5,1,3,10,4,6,9,2,8,7 +283,2,4,9,6,7,5,10,1,8,3 +274,2,4,5,6,8,9,7,1,10,3 +194,2,8,1,10,3,9,4,6,7,5 +300,2,3,6,1,7,8,9,5,10,4 +28,8,10,2,1,5,4,6,9,3,7 +115,2,6,10,5,7,3,1,8,9,4 +208,2,4,3,10,8,7,6,9,1,5 +274,3,4,6,10,5,9,2,8,7,1 +44,10,6,7,8,4,9,2,1,3,5 +279,3,1,6,4,10,5,2,7,9,8 +0,8,1,6,5,2,7,3,9,10,4 +168,3,1,10,5,4,9,7,2,8,6 +98,2,4,3,10,8,9,5,1,7,6 +137,6,8,3,2,4,7,1,9,10,5 +240,6,1,2,8,4,5,10,3,7,9 +49,9,1,5,3,7,10,4,8,2,6 +181,7,3,6,1,4,5,9,8,10,2 +70,3,6,2,5,7,4,8,9,1,10 +288,8,2,5,3,10,7,6,9,1,4 +173,5,9,3,8,6,1,4,10,2,7 +292,1,3,7,5,8,4,2,9,10,6 +173,7,10,1,8,2,6,5,3,9,4 +284,1,8,6,2,3,5,4,9,10,7 +141,8,5,1,6,10,3,4,2,9,7 +104,6,4,10,1,7,5,2,8,3,9 +257,7,8,10,3,1,9,6,5,4,2 +288,6,7,5,10,2,8,4,1,3,9 +299,2,8,10,4,6,1,9,5,7,3 +277,7,2,9,8,3,5,10,6,4,1 +109,2,6,7,3,10,1,5,8,4,9 +297,8,1,3,4,10,5,2,7,9,6 +122,3,4,5,9,1,2,6,10,7,8 +207,8,10,6,1,5,9,3,7,4,2 +30,6,1,5,2,4,10,8,9,3,7 +261,8,3,10,9,1,7,2,6,4,5 +21,3,5,1,9,8,2,7,4,10,6 +24,7,2,10,3,1,8,9,6,5,4 +93,10,7,1,6,5,8,9,2,3,4 +217,6,8,1,3,2,7,4,10,5,9 +178,10,2,4,1,8,7,6,5,3,9 +188,2,7,5,10,9,4,6,8,1,3 +4,10,5,3,8,9,4,7,1,6,2 +33,6,5,1,3,9,2,4,10,8,7 +8,2,9,10,5,4,7,8,6,3,1 +80,1,2,3,7,9,10,8,6,4,5 +115,3,2,9,5,1,8,7,10,4,6 +221,6,4,3,2,7,10,9,1,5,8 +84,9,3,10,1,8,7,5,6,4,2 +1,1,6,10,3,5,2,7,9,4,8 +176,8,10,4,1,7,3,9,2,6,5 +300,6,2,4,9,5,7,8,1,3,10 +35,7,6,9,10,1,3,4,5,2,8 +187,9,8,1,10,7,4,3,5,2,6 +174,5,3,1,7,9,8,4,10,2,6 +134,4,1,3,2,5,10,7,9,8,6 +58,8,2,1,4,5,9,10,6,3,7 +162,10,4,5,6,8,3,9,2,7,1 +18,4,2,5,9,6,7,8,1,3,10 +87,8,6,10,5,2,3,4,9,1,7 +61,9,4,2,7,1,6,8,3,5,10 +77,6,8,5,7,3,4,9,2,1,10 +82,7,4,1,5,8,2,10,6,9,3 +201,3,10,4,7,8,5,1,2,6,9 +244,2,8,10,4,6,7,9,1,3,5 +299,6,7,5,4,8,2,3,1,10,9 +296,6,9,4,5,8,7,3,10,1,2 +217,8,6,10,2,4,3,9,1,5,7 +7,5,10,9,6,4,2,7,3,8,1 +159,8,1,3,4,10,9,2,7,5,6 +185,10,9,8,1,2,7,5,3,6,4 +208,10,9,4,3,6,2,7,5,8,1 +255,5,4,10,1,7,3,6,8,9,2 +83,4,5,2,1,10,7,9,3,8,6 +234,9,7,2,5,10,6,1,8,3,4 +134,8,1,2,6,4,9,10,7,3,5 +31,1,9,6,3,4,5,2,7,10,8 +69,5,2,10,8,1,9,4,6,3,7 +200,5,3,10,9,1,4,2,6,8,7 +13,2,9,10,8,4,3,7,1,5,6 +268,8,10,6,9,1,3,5,4,7,2 +125,1,9,3,2,10,5,4,7,6,8 +230,1,4,9,10,6,8,3,2,5,7 +286,8,2,7,1,5,10,6,9,3,4 +94,10,2,6,4,5,8,3,9,7,1 +210,5,3,10,4,7,2,6,8,9,1 +114,3,2,4,6,9,5,10,7,8,1 +299,8,2,3,5,10,6,4,1,7,9 +285,10,6,7,8,9,1,3,2,5,4 +232,1,3,5,6,7,10,9,2,4,8 +160,7,4,10,8,9,2,6,1,5,3 +85,5,6,7,4,2,8,9,1,3,10 +182,9,2,5,8,4,7,6,3,10,1 +222,8,4,5,1,2,6,7,9,3,10 +227,8,4,1,2,5,10,9,3,7,6 +234,5,4,8,1,6,3,2,10,9,7 +219,2,5,6,4,7,9,3,10,1,8 +105,3,6,8,5,2,9,4,7,10,1 +80,3,4,1,7,6,10,5,2,8,9 +57,3,4,5,10,6,2,8,1,7,9 +222,6,2,7,9,8,5,1,4,3,10 +230,2,6,1,8,5,9,3,7,10,4 +174,9,6,10,8,4,7,1,5,3,2 +96,6,7,5,1,9,8,10,4,2,3 +144,5,7,9,2,6,3,8,10,1,4 +244,10,9,5,2,4,1,3,7,6,8 +189,4,9,8,2,1,3,10,5,7,6 +76,7,2,3,6,5,10,9,4,1,8 +85,7,1,2,6,10,5,8,3,9,4 +68,8,7,5,10,2,9,4,3,6,1 +264,1,3,9,10,2,5,8,6,4,7 +228,9,8,7,5,1,3,10,2,4,6 +188,6,1,9,4,3,8,7,2,10,5 +147,9,3,5,10,4,2,8,7,1,6 +49,8,3,5,2,6,9,10,4,7,1 +93,5,2,3,4,10,8,7,6,1,9 +98,8,4,9,2,1,5,7,6,3,10 +118,3,4,1,6,5,2,7,8,10,9 +255,9,7,3,4,8,5,2,10,1,6 +278,8,10,4,9,5,3,7,1,6,2 +253,1,8,2,10,7,6,9,4,5,3 +141,1,2,6,7,4,5,9,8,3,10 +146,3,2,6,7,1,5,8,4,10,9 +294,7,8,2,9,1,10,3,4,5,6 +176,2,3,4,7,6,1,10,5,8,9 +103,6,2,4,7,10,5,1,8,9,3 +209,7,3,1,5,10,4,9,6,2,8 +295,6,8,5,7,4,3,9,2,10,1 +126,3,4,6,7,10,8,2,9,1,5 +140,9,5,3,10,7,1,4,8,6,2 +161,8,6,5,3,7,10,2,1,4,9 +217,8,3,2,4,1,6,10,9,7,5 +195,10,5,8,9,4,6,1,2,7,3 +150,8,10,4,7,3,2,1,6,5,9 +156,7,4,3,10,9,2,1,8,5,6 +149,10,7,6,5,1,2,3,9,8,4 +217,4,10,6,7,5,8,2,1,3,9 +24,10,1,7,4,3,2,5,6,9,8 +88,4,5,3,9,7,10,1,2,6,8 +265,4,3,2,10,1,6,9,5,7,8 +112,1,9,7,10,8,2,6,4,3,5 +252,4,9,3,10,1,7,5,8,2,6 +279,7,4,10,9,1,2,8,5,6,3 +162,6,1,8,5,9,2,4,3,7,10 +19,10,6,3,5,9,4,2,7,8,1 +106,5,2,4,10,3,1,9,6,8,7 +23,2,9,3,1,5,6,8,4,10,7 +216,8,1,3,5,4,2,7,6,10,9 +200,5,2,4,7,6,1,9,10,3,8 +107,2,4,7,1,6,5,8,9,10,3 +79,8,10,9,2,4,5,7,3,1,6 +2,8,2,6,7,9,10,5,3,4,1 +237,3,10,6,4,5,1,7,2,9,8 +297,6,10,3,1,7,2,8,9,4,5 +16,3,6,1,2,9,8,5,10,7,4 +134,5,7,8,3,1,9,2,4,6,10 +222,1,3,2,9,5,8,7,6,4,10 +127,5,2,8,9,1,10,3,4,7,6 +261,1,6,5,10,9,3,2,7,8,4 +28,2,7,4,9,8,1,10,5,3,6 +163,10,7,6,5,1,4,3,8,2,9 +61,10,4,2,1,9,8,3,5,7,6 +93,9,2,8,6,5,3,7,1,4,10 +109,1,9,10,6,3,8,4,2,5,7 +123,5,6,4,2,10,7,3,1,9,8 +92,1,2,6,7,5,3,4,8,9,10 +197,10,6,4,1,2,9,3,5,8,7 +126,2,8,5,4,6,9,3,10,7,1 +209,10,1,9,3,8,5,7,6,2,4 +281,4,8,9,7,10,6,3,2,1,5 +193,5,6,3,7,2,8,1,4,9,10 +146,9,10,1,3,6,5,8,2,7,4 +73,5,4,3,6,10,7,8,1,9,2 +50,4,1,9,10,5,2,7,6,8,3 +87,7,9,6,4,8,3,10,1,2,5 +220,2,5,3,10,8,7,4,6,9,1 +45,2,10,3,7,1,5,4,6,8,9 +84,6,8,1,10,5,4,7,3,9,2 +218,8,5,9,10,7,3,4,1,6,2 +183,4,3,2,1,7,10,8,6,5,9 +85,3,8,1,6,2,5,7,9,4,10 +290,8,3,4,9,6,5,2,10,1,7 +64,9,2,10,8,1,7,3,5,6,4 +231,5,2,9,3,1,6,8,4,7,10 +225,9,5,10,4,1,7,6,2,8,3 +102,3,6,1,10,9,7,8,5,2,4 +17,8,3,2,7,1,5,9,10,4,6 +271,3,1,5,7,8,10,2,6,9,4 +198,4,7,2,1,5,10,9,6,3,8 +296,10,7,4,9,6,8,5,2,3,1 +32,10,9,4,1,2,3,8,5,6,7 +257,8,2,10,3,1,4,5,9,7,6 +268,5,2,4,10,3,9,7,6,1,8 +41,9,1,2,6,3,7,5,4,10,8 +208,9,4,2,7,5,8,1,3,10,6 +49,8,2,3,6,4,1,10,5,7,9 +3,4,7,5,10,2,6,9,3,1,8 +106,2,5,9,7,4,8,10,3,6,1 +89,6,10,3,1,7,9,4,2,5,8 +190,9,8,7,5,2,10,4,6,1,3 +119,2,7,10,4,1,6,9,3,5,8 +4,6,9,1,8,3,4,10,5,2,7 +242,6,3,10,1,2,9,5,7,8,4 +248,6,5,9,10,1,4,3,8,2,7 +290,3,5,4,9,6,2,1,10,8,7 +172,9,1,6,10,4,3,8,7,2,5 +200,6,1,9,8,4,3,5,7,2,10 +67,7,8,9,5,3,10,6,1,2,4 +80,5,4,6,2,1,10,3,8,9,7 +136,7,9,2,1,6,4,10,5,8,3 +244,2,8,3,5,6,1,7,9,4,10 +79,3,4,7,1,2,5,8,9,10,6 +88,6,9,3,4,7,10,1,8,2,5 +149,10,2,8,4,7,3,9,5,6,1 +199,6,1,2,4,10,5,9,3,7,8 +188,1,8,3,9,7,5,2,6,10,4 +141,4,5,3,9,10,1,8,6,7,2 +222,5,7,8,4,2,1,6,3,9,10 +189,7,2,10,3,6,8,9,4,1,5 +220,4,3,10,7,1,8,6,5,2,9 +208,2,4,9,1,8,10,5,3,7,6 +255,5,3,9,7,10,4,1,2,6,8 +3,6,2,3,8,5,1,7,9,10,4 +34,2,6,3,1,8,9,5,10,4,7 +259,7,3,6,10,4,8,9,1,5,2 +87,9,2,8,3,5,10,4,7,6,1 +5,6,3,7,1,9,8,10,4,5,2 +219,1,4,7,5,10,9,6,8,2,3 +279,1,10,4,6,5,7,2,8,9,3 +131,3,8,5,7,10,6,1,9,4,2 +9,7,9,5,8,2,3,10,6,1,4 +126,7,5,9,3,8,6,4,10,2,1 +259,1,8,3,2,5,6,7,10,9,4 +300,9,10,8,4,3,6,2,1,7,5 +110,10,4,9,2,8,1,3,7,5,6 +209,9,1,8,3,2,4,7,6,10,5 +290,3,4,10,7,8,1,6,9,2,5 +240,2,5,1,7,10,6,8,3,9,4 +283,1,8,9,6,10,5,4,3,7,2 +118,6,7,4,3,5,10,9,1,8,2 +204,2,4,5,1,7,8,10,9,3,6 +259,2,10,4,8,7,5,9,6,3,1 +119,3,6,2,5,10,9,7,8,1,4 +148,3,1,9,7,4,6,8,10,5,2 +207,3,1,4,6,5,9,7,10,2,8 +281,10,2,5,8,4,1,7,3,6,9 +272,10,5,8,2,3,6,4,1,7,9 +4,1,8,6,3,10,5,4,7,9,2 +177,2,7,4,1,5,9,3,8,10,6 +94,5,1,6,8,3,9,10,7,4,2 +297,1,7,10,4,8,6,5,9,3,2 +182,4,9,5,3,7,1,10,2,8,6 +169,6,1,8,10,9,2,4,7,3,5 +268,6,9,1,8,4,5,2,10,3,7 +42,8,9,1,3,5,4,6,2,7,10 +290,8,9,4,10,1,5,7,6,2,3 +12,4,8,6,5,2,1,9,7,10,3 +151,6,2,10,4,3,8,5,9,7,1 +164,6,4,2,7,5,3,10,8,1,9 +121,6,9,8,1,4,3,10,7,5,2 +229,8,7,9,5,1,10,2,3,4,6 +102,8,2,9,4,6,3,1,7,10,5 +86,10,6,5,7,8,9,1,4,2,3 +48,6,7,9,1,4,3,8,5,2,10 +82,3,9,7,10,1,8,6,5,2,4 +40,4,5,8,7,10,3,6,2,9,1 +8,1,3,8,7,9,5,4,6,10,2 +101,8,2,1,7,9,4,10,3,5,6 +156,1,10,6,4,7,9,5,3,8,2 +59,5,8,1,6,4,9,2,7,3,10 +158,2,4,1,9,10,8,3,7,6,5 +189,10,6,2,5,1,4,9,8,7,3 +197,9,3,2,10,6,7,5,8,4,1 +91,7,4,3,8,5,6,10,9,1,2 +210,2,4,3,5,10,1,6,7,8,9 +113,1,7,4,6,9,3,10,2,8,5 +81,8,5,10,7,2,1,6,3,9,4 +30,8,1,4,3,5,7,6,10,2,9 +214,7,9,8,6,4,5,1,10,2,3 +236,6,1,5,2,7,10,8,4,9,3 +204,7,1,9,8,2,5,4,6,3,10 +265,5,4,8,7,3,9,1,2,10,6 +266,4,10,1,7,6,5,9,2,3,8 +132,9,6,4,5,10,1,8,2,7,3 +200,3,7,6,10,5,8,1,2,9,4 +85,7,10,8,1,6,9,4,2,5,3 +150,8,1,5,2,4,7,3,10,9,6 +80,9,5,4,3,10,8,2,6,1,7 +223,10,2,7,3,4,6,1,5,8,9 +21,5,8,6,3,9,4,1,7,10,2 +64,9,4,8,10,6,1,7,5,3,2 +49,5,7,2,1,3,9,4,8,6,10 +108,3,9,4,1,6,10,7,5,8,2 +178,1,10,2,3,7,4,9,6,5,8 +286,1,4,10,8,9,6,2,5,3,7 +230,4,5,3,7,1,6,2,9,10,8 +78,7,3,8,2,5,1,9,10,6,4 +146,8,5,2,1,6,10,4,7,3,9 +166,7,6,4,3,1,9,8,10,5,2 +195,2,7,4,10,1,8,3,6,5,9 +247,4,3,2,5,8,6,10,9,7,1 +183,1,2,8,10,7,6,9,4,3,5 +215,2,7,4,10,1,8,3,9,6,5 +3,2,7,9,5,8,3,4,6,1,10 +245,1,5,3,10,4,2,7,9,6,8 +3,8,10,4,6,2,7,1,5,9,3 +43,2,8,3,5,7,10,1,6,4,9 +281,5,10,6,8,2,7,3,9,1,4 +52,3,6,5,10,2,7,4,8,9,1 +80,4,6,3,8,2,1,7,10,5,9 +133,2,6,9,1,3,4,5,10,8,7 +299,1,2,6,3,10,7,9,4,8,5 +289,2,9,5,6,8,7,1,10,3,4 +156,5,10,2,8,7,1,6,4,3,9 +247,2,8,1,10,7,9,5,4,6,3 +197,2,10,6,5,4,1,8,9,7,3 +257,5,9,2,3,10,7,8,1,4,6 +128,1,7,3,5,4,10,8,2,9,6 +116,6,3,5,1,2,7,10,4,9,8 +143,3,7,8,2,9,4,1,10,5,6 +242,7,9,4,2,1,8,10,5,6,3 +294,6,4,3,9,1,8,5,10,2,7 +272,5,7,9,2,10,3,8,6,1,4 +24,1,10,7,4,6,8,3,2,5,9 +270,5,7,1,3,8,2,10,6,4,9 +141,1,8,7,5,9,2,6,4,3,10 +254,2,9,5,1,8,10,3,4,7,6 +34,1,6,2,5,9,8,4,7,3,10 +15,6,5,2,8,4,10,9,3,7,1 +211,5,10,7,3,6,2,9,4,1,8 +291,5,2,9,3,7,1,6,10,4,8 +117,10,9,4,5,2,8,6,1,7,3 +192,1,4,3,9,6,7,5,2,8,10 +209,8,6,7,5,9,4,10,2,1,3 +19,3,2,8,6,10,5,4,7,1,9 +66,1,4,5,10,9,7,8,2,3,6 +280,10,6,8,7,2,5,1,4,9,3 +203,3,8,4,6,9,5,10,7,1,2 +298,2,1,10,5,9,8,3,4,7,6 +78,10,4,1,2,5,7,6,3,9,8 +281,2,10,6,5,4,8,9,7,1,3 +102,6,2,9,5,10,3,1,4,7,8 +0,4,2,1,10,8,6,7,9,3,5 +42,1,9,2,5,8,3,6,4,7,10 +124,9,10,6,1,4,7,2,8,3,5 +150,4,6,3,2,7,10,8,1,5,9 +45,2,6,3,7,10,4,1,5,9,8 +148,8,10,2,6,3,4,9,5,1,7 +73,6,4,7,8,5,3,10,9,1,2 +214,1,3,7,10,5,2,6,4,8,9 +258,9,7,6,3,4,1,10,8,5,2 +44,5,7,4,10,2,6,1,3,8,9 +28,5,3,4,7,10,6,2,1,8,9 +42,4,2,10,9,6,1,3,7,8,5 +213,2,5,7,8,9,4,6,1,3,10 +192,6,8,1,7,10,2,3,9,5,4 +132,7,8,9,3,1,6,10,5,4,2 +201,6,8,4,10,5,7,1,2,9,3 +39,8,3,5,2,10,9,6,4,7,1 +248,7,8,9,4,1,10,6,5,3,2 +222,2,10,9,4,5,7,1,8,3,6 +174,4,2,5,7,9,1,3,8,6,10 +203,5,7,10,4,9,2,1,3,6,8 +99,5,9,3,2,10,7,6,4,8,1 +221,8,2,4,9,7,10,1,5,6,3 +40,10,4,3,8,9,7,5,1,2,6 +130,5,8,10,6,7,4,1,2,9,3 +213,3,6,8,1,2,7,5,10,4,9 +162,4,2,1,8,6,3,9,5,7,10 +239,3,6,2,7,5,4,10,8,9,1 +143,10,9,6,8,4,1,3,2,5,7 +42,10,9,5,3,6,8,4,1,7,2 +16,3,2,5,10,1,8,4,7,9,6 +190,10,8,3,5,9,2,1,7,4,6 +105,10,6,8,3,5,2,4,1,7,9 +133,1,8,5,6,7,10,2,3,4,9 +39,8,4,10,5,3,2,1,7,9,6 +256,9,2,1,7,6,4,8,5,3,10 +204,1,3,2,4,6,9,8,7,10,5 +160,3,9,1,7,6,4,8,10,5,2 +161,3,4,5,1,7,2,6,9,8,10 +199,6,1,10,3,8,7,5,4,9,2 +30,8,4,1,3,5,2,9,10,6,7 +161,9,2,4,3,10,7,5,8,1,6 +295,2,9,8,4,10,5,7,3,6,1 +21,1,10,2,9,6,3,8,7,5,4 +113,9,10,6,2,4,5,1,3,8,7 +75,1,9,6,10,2,5,8,4,7,3 +280,3,7,10,2,4,5,8,1,6,9 +266,7,6,3,2,4,5,8,10,1,9 +187,6,5,10,8,3,2,1,9,7,4 +40,5,3,8,9,7,6,10,1,2,4 +161,5,7,10,4,9,6,3,8,1,2 +197,9,3,4,2,6,8,1,5,7,10 +137,2,1,7,8,6,4,10,3,9,5 +287,3,8,5,9,4,10,1,7,2,6 +118,3,10,9,6,8,1,5,2,7,4 +202,7,8,3,2,9,10,4,1,5,6 +255,4,6,8,1,7,3,5,9,10,2 +296,4,8,6,5,7,10,1,3,2,9 +291,3,7,1,9,8,2,5,10,6,4 +121,7,9,2,3,4,1,5,10,6,8 +73,5,6,8,3,10,1,9,4,7,2 +235,6,9,3,5,2,7,4,8,10,1 +263,4,6,2,9,8,10,1,5,7,3 +88,10,5,3,7,1,9,2,8,4,6 +259,4,3,1,9,6,2,7,5,8,10 +212,3,2,8,10,9,6,7,5,4,1 +125,4,6,2,5,10,9,1,3,8,7 +253,7,5,9,1,6,2,3,8,4,10 +213,8,3,4,1,7,6,10,2,9,5 +29,4,2,6,1,8,5,3,9,10,7 +63,1,3,7,10,6,2,8,5,9,4 +24,6,10,4,8,7,2,1,3,5,9 +34,5,2,9,3,8,7,1,4,10,6 +148,7,1,6,3,10,9,4,2,8,5 +266,9,10,4,6,1,7,2,5,8,3 +21,9,1,7,2,3,6,4,8,5,10 +120,3,9,7,10,5,8,2,6,4,1 +117,9,1,2,6,8,7,5,3,4,10 +70,7,2,3,8,5,6,10,4,9,1 +148,1,6,4,7,3,10,2,5,8,9 +242,9,1,4,7,2,3,6,8,10,5 +263,6,10,7,8,9,4,3,1,2,5 +68,2,8,4,7,6,3,9,5,1,10 +80,4,10,7,3,2,1,9,6,8,5 +166,5,7,6,3,2,9,8,10,4,1 +224,4,8,6,5,1,10,7,3,2,9 +42,4,10,1,8,2,5,7,3,6,9 +239,6,1,7,9,10,2,5,3,8,4 +30,2,8,4,10,5,3,1,6,9,7 +165,3,5,1,10,8,6,2,9,4,7 +172,8,7,5,6,3,9,1,4,10,2 +292,5,6,7,2,4,8,9,10,1,3 +33,10,7,3,5,1,9,8,2,4,6 +147,1,7,8,2,4,9,10,3,6,5 +272,10,3,8,9,2,4,1,5,7,6 +183,8,5,2,6,9,4,10,7,1,3 +161,1,3,6,9,2,5,10,4,7,8 +210,3,1,7,8,6,10,2,5,9,4 +206,8,6,4,7,10,2,5,1,3,9 +60,2,6,3,8,10,7,9,1,4,5 +113,5,8,10,3,1,9,2,6,4,7 +179,1,9,10,7,8,5,4,2,6,3 +111,4,6,3,2,9,7,10,5,8,1 +114,5,6,1,10,8,2,9,7,3,4 +281,10,6,2,9,4,7,5,8,1,3 +276,4,1,6,5,10,7,9,8,3,2 +76,4,5,2,9,10,8,6,7,3,1 +43,6,4,3,9,7,1,5,2,8,10 +96,5,8,9,4,3,7,10,6,2,1 +285,6,4,8,2,7,5,3,9,1,10 +17,10,9,3,6,8,7,4,2,1,5 +284,8,6,9,10,5,1,3,2,7,4 +132,7,6,10,3,9,4,1,8,2,5 +90,1,3,9,7,2,4,8,5,6,10 +185,3,8,6,7,2,10,9,5,1,4 +83,5,8,1,4,9,10,6,7,2,3 +62,8,4,5,10,1,2,3,6,9,7 +184,1,3,10,8,9,4,2,6,7,5 +191,5,6,8,1,7,3,9,10,4,2 +150,6,4,1,9,3,10,7,5,2,8 +100,9,5,2,10,1,8,4,6,7,3 +203,4,1,9,7,10,5,6,3,8,2 +105,5,10,2,9,8,4,7,1,3,6 +125,7,4,5,6,9,2,3,1,8,10 +35,8,9,7,3,6,10,1,4,2,5 +237,6,8,2,1,5,3,7,10,9,4 +224,9,4,5,8,3,10,7,2,6,1 +274,8,4,9,10,2,3,5,6,7,1 +120,3,9,5,10,6,4,1,7,8,2 +142,1,3,4,8,10,6,9,7,5,2 +217,9,6,2,7,3,4,10,1,8,5 +99,8,5,2,3,1,4,10,7,6,9 +84,5,3,2,1,10,4,8,6,9,7 +104,4,5,6,3,8,1,2,7,9,10 +242,7,10,2,4,3,8,5,6,9,1 +288,1,3,6,5,4,10,9,2,8,7 +190,4,7,3,9,6,5,10,2,1,8 +130,3,10,9,7,1,5,6,2,8,4 +32,1,9,7,8,2,4,5,3,6,10 +115,8,4,5,6,2,3,9,10,1,7 +40,10,4,3,6,2,9,1,8,5,7 +279,9,8,4,5,3,6,1,10,7,2 +61,5,6,2,4,8,7,10,1,9,3 +224,2,3,1,9,8,6,5,7,4,10 +46,1,6,9,10,7,5,2,4,3,8 +211,4,9,3,7,6,2,8,5,10,1 +90,7,4,9,8,5,2,1,3,10,6 +74,2,1,6,7,9,8,4,10,3,5 +220,10,4,9,7,3,8,1,6,5,2 +165,3,7,6,1,9,2,10,8,5,4 +20,6,2,3,9,4,1,5,7,10,8 +17,8,1,6,7,10,9,2,4,3,5 +137,2,1,5,7,10,6,4,3,9,8 +117,2,6,7,10,1,4,3,9,8,5 +22,2,10,1,6,5,8,9,7,3,4 +14,2,6,5,10,7,8,9,3,4,1 +26,7,9,5,10,1,3,4,8,2,6 +271,7,2,9,1,10,6,3,5,8,4 +139,9,4,6,2,5,7,10,3,1,8 +13,3,1,2,8,6,4,10,7,9,5 +260,4,9,5,6,2,8,3,1,10,7 +239,5,1,2,7,4,10,3,6,9,8 +64,1,5,10,7,6,8,3,9,2,4 +91,10,8,1,3,4,2,5,9,7,6 +202,6,2,10,1,4,3,7,5,9,8 +197,6,1,8,7,9,4,5,10,2,3 +4,2,8,4,3,10,7,1,5,9,6 +292,2,3,1,4,5,9,8,6,7,10 +157,4,9,2,1,5,6,10,8,7,3 +218,1,8,5,7,2,3,6,9,4,10 +229,1,8,2,6,5,4,10,9,7,3 +264,7,9,8,1,5,6,4,10,2,3 +64,4,7,1,5,9,8,3,10,6,2 +125,5,9,8,6,4,2,3,1,7,10 +176,7,1,2,3,8,5,9,10,6,4 +112,5,10,3,7,9,8,6,1,2,4 +109,9,6,8,4,3,10,5,1,7,2 +135,1,6,3,9,7,2,10,5,8,4 +110,9,4,7,1,3,2,6,10,5,8 +21,5,8,6,1,3,9,10,2,7,4 +294,3,1,2,5,8,7,9,4,6,10 +194,3,1,10,9,7,6,5,8,4,2 +60,8,10,7,4,2,1,3,5,9,6 +221,1,6,9,8,2,10,7,4,5,3 +7,8,10,1,5,3,4,6,9,7,2 +11,3,8,7,1,6,2,4,9,10,5 +174,4,6,10,9,8,1,2,7,5,3 +111,10,9,4,2,1,5,8,7,3,6 +244,3,1,7,5,2,8,4,6,9,10 +70,10,9,1,7,2,3,4,5,8,6 +21,4,1,10,9,2,8,3,7,5,6 +123,6,7,8,9,3,5,1,4,10,2 +65,2,4,1,10,8,7,6,5,9,3 +79,5,4,6,3,1,10,7,8,2,9 +253,5,3,9,1,4,2,6,8,7,10 +284,7,1,4,9,5,6,3,10,8,2 +127,9,3,4,1,6,8,2,10,7,5 +295,6,8,9,10,4,5,7,2,3,1 +293,7,6,1,5,10,8,9,2,3,4 +215,8,6,1,5,4,7,10,3,9,2 +86,8,9,1,7,3,4,5,6,2,10 +1,8,6,1,2,7,5,9,10,4,3 +277,2,10,7,4,8,5,6,1,3,9 +300,8,1,5,10,4,7,2,9,6,3 +295,10,7,2,3,9,6,5,4,1,8 +284,4,10,3,5,8,7,2,6,1,9 +172,10,8,7,5,6,9,3,4,2,1 +191,8,5,2,10,9,6,1,4,3,7 +97,9,1,7,10,2,8,3,5,6,4 +196,7,1,5,10,9,8,4,2,6,3 +24,8,6,7,3,5,4,9,2,1,10 +42,4,3,5,10,7,2,6,8,9,1 +152,5,8,9,4,7,6,1,3,10,2 +58,10,8,4,7,1,3,9,2,5,6 +173,7,3,10,1,8,2,6,5,4,9 +236,1,2,9,6,5,7,8,10,3,4 +79,6,10,5,9,7,4,1,3,8,2 +295,5,10,2,1,8,6,3,9,4,7 +162,10,2,9,5,8,3,7,4,6,1 +90,5,1,10,4,8,9,7,6,2,3 +277,1,3,7,5,4,9,2,6,10,8 +260,10,9,3,4,5,7,6,8,1,2 +68,5,4,1,7,3,10,2,6,9,8 +71,10,1,7,6,3,2,5,4,9,8 +250,10,8,3,7,9,2,6,5,4,1 +109,6,3,4,8,10,7,5,1,2,9 +287,10,9,4,6,5,1,8,3,7,2 +70,7,4,5,9,3,2,6,1,10,8 +91,3,2,4,5,6,9,8,10,7,1 +300,6,10,7,9,8,2,4,3,5,1 +106,8,3,1,2,9,10,7,4,6,5 +127,8,1,5,2,9,10,3,7,4,6 +47,3,1,10,4,2,7,6,5,8,9 +8,5,3,1,6,7,9,2,8,4,10 +121,5,6,8,9,2,7,4,3,10,1 +222,2,3,8,6,9,5,4,10,1,7 +153,7,9,1,2,3,8,10,6,4,5 +294,4,3,7,1,2,10,5,9,8,6 +300,10,8,7,5,9,2,6,1,3,4 +227,10,8,6,9,2,3,1,7,5,4 +132,9,7,5,4,3,6,1,2,10,8 +20,8,6,2,9,1,4,7,10,5,3 +274,1,7,4,8,6,10,2,5,9,3 +232,5,4,1,10,8,2,9,3,6,7 +272,6,7,1,3,9,5,8,4,10,2 +93,9,7,10,4,2,5,3,8,1,6 +83,1,3,4,9,5,7,8,10,6,2 \ No newline at end of file diff --git a/input-11c-2000r b/input-11c-2000r new file mode 100644 index 0000000..a3c5f9a --- /dev/null +++ b/input-11c-2000r @@ -0,0 +1,2013 @@ +11 +1,a +2,b +3,c +4,d +5,e +6,f +7,g +8,h +9,i +10,j +11,k +200981,200981,2000 +166,2,9,10,6,4,5,8,7,11,3,1 +65,2,11,9,3,6,4,10,5,8,1,7 +54,7,9,8,4,1,10,5,3,11,6,2 +100,11,7,8,6,5,9,10,4,2,3,1 +138,2,1,10,8,9,7,4,5,6,11,3 +194,4,9,2,8,10,11,5,1,3,6,7 +23,9,2,1,5,6,8,4,7,11,3,10 +88,9,10,1,3,5,11,8,2,7,4,6 +83,6,2,8,4,10,11,5,9,3,7,1 +173,8,4,9,3,11,5,7,10,6,1,2 +75,3,8,10,1,6,9,5,7,11,4,2 +173,3,4,9,1,6,2,11,5,8,10,7 +187,7,9,10,2,11,3,1,6,4,5,8 +182,3,1,10,2,5,6,9,7,8,4,11 +34,7,2,4,6,5,3,11,10,1,8,9 +67,10,1,9,3,5,6,8,11,2,7,4 +66,9,4,8,10,2,6,5,11,3,7,1 +148,8,7,1,10,4,11,2,5,3,6,9 +30,6,8,7,11,9,2,3,10,4,5,1 +182,5,7,11,3,10,1,9,2,4,6,8 +31,6,7,4,9,5,10,11,1,3,2,8 +25,7,11,8,5,10,1,2,3,6,9,4 +17,8,9,3,2,5,1,10,7,6,4,11 +191,10,6,4,7,11,5,2,3,1,9,8 +147,9,3,11,5,8,1,2,6,10,7,4 +199,11,8,5,7,9,3,4,6,1,2,10 +196,11,6,4,5,8,3,2,1,10,9,7 +104,2,10,8,7,5,3,11,6,4,9,1 +173,1,3,11,2,10,7,6,8,9,4,5 +156,6,7,1,3,11,5,8,2,10,9,4 +52,5,10,6,7,11,9,3,4,8,2,1 +103,4,1,8,2,10,7,6,11,5,9,3 +160,8,4,11,5,2,3,10,6,1,7,9 +65,9,3,7,8,11,2,10,5,1,6,4 +106,8,1,3,9,5,7,10,2,4,11,6 +65,1,3,2,7,9,4,11,10,6,5,8 +44,9,1,5,10,6,4,7,11,8,2,3 +0,10,4,7,9,11,6,8,2,1,5,3 +161,2,4,5,11,1,7,9,3,10,6,8 +67,10,4,7,1,3,5,11,8,6,9,2 +27,2,7,5,10,3,1,9,11,8,4,6 +13,4,9,2,5,8,3,7,6,11,1,10 +48,10,9,4,5,6,3,11,1,7,8,2 +195,1,7,2,10,6,9,11,3,8,4,5 +189,6,9,1,11,8,10,5,4,3,2,7 +24,3,10,11,7,4,8,9,2,1,5,6 +178,10,3,5,8,7,1,4,9,11,2,6 +7,1,10,4,7,6,9,8,2,5,3,11 +191,1,9,6,11,7,10,8,5,2,4,3 +149,4,5,6,9,8,2,7,1,11,3,10 +62,10,4,11,2,7,8,1,6,5,9,3 +158,3,11,2,8,7,6,9,1,4,5,10 +63,7,11,1,10,4,6,2,5,9,3,8 +82,9,6,8,7,2,11,5,1,4,10,3 +192,11,9,6,3,10,8,5,1,7,2,4 +24,9,1,4,2,8,11,10,5,7,6,3 +120,2,3,5,11,10,8,7,9,1,4,6 +68,6,9,5,3,2,11,10,1,7,8,4 +72,11,8,7,9,6,10,5,1,4,2,3 +191,1,8,10,4,6,3,9,2,7,5,11 +79,2,11,3,10,8,4,9,1,7,6,5 +87,8,4,3,7,11,1,9,5,6,2,10 +75,2,11,6,5,7,10,3,1,4,9,8 +9,10,11,9,4,6,5,3,2,8,1,7 +62,11,8,10,4,9,1,2,5,3,6,7 +8,1,8,3,7,11,9,2,10,5,4,6 +153,2,8,4,9,6,10,5,1,7,11,3 +62,4,2,11,10,3,6,9,7,8,1,5 +40,6,8,7,5,3,9,2,4,11,10,1 +84,8,2,3,11,7,6,10,1,9,4,5 +54,10,1,9,4,3,5,8,11,6,7,2 +142,9,6,10,3,1,2,7,5,4,8,11 +142,8,9,11,1,5,3,4,6,7,2,10 +78,5,11,8,6,9,3,7,1,2,10,4 +147,5,8,9,10,2,6,4,1,7,11,3 +198,3,11,7,10,8,5,4,9,6,2,1 +104,8,7,10,9,4,5,2,3,1,11,6 +19,5,11,1,9,6,3,2,10,4,8,7 +110,3,6,9,11,10,2,8,7,4,1,5 +31,6,3,8,1,4,9,2,7,5,11,10 +151,6,8,3,2,9,11,7,5,4,10,1 +84,2,8,7,3,11,4,5,1,6,10,9 +5,7,6,5,1,2,4,8,9,11,10,3 +149,9,1,7,3,2,8,4,10,5,11,6 +18,7,10,5,8,9,3,1,2,4,11,6 +103,5,3,6,7,10,1,2,8,9,4,11 +58,2,11,5,8,1,6,9,3,4,10,7 +98,11,9,3,2,6,7,5,8,4,10,1 +89,2,5,6,4,8,10,3,9,11,7,1 +75,3,7,1,9,5,11,6,2,10,8,4 +152,10,9,2,3,11,1,8,4,6,7,5 +77,1,4,11,6,5,2,10,8,7,3,9 +50,10,4,5,7,3,1,9,8,11,2,6 +185,11,5,8,3,7,4,2,10,1,6,9 +10,1,6,9,10,11,8,7,2,5,3,4 +134,8,10,2,9,4,11,3,6,1,7,5 +91,8,4,3,11,1,5,2,6,9,10,7 +154,1,9,2,11,4,7,6,8,3,10,5 +29,3,4,2,9,10,7,8,11,6,1,5 +24,11,1,4,7,6,10,5,9,3,2,8 +66,6,7,11,10,1,3,2,4,8,5,9 +70,2,10,1,6,7,9,11,5,3,4,8 +156,8,3,9,10,6,5,7,11,1,2,4 +82,11,8,10,1,6,4,3,5,2,7,9 +3,1,10,7,2,11,3,9,6,8,5,4 +162,4,2,3,6,5,11,9,1,8,10,7 +8,11,7,8,1,5,10,2,4,3,6,9 +45,8,6,3,4,5,1,10,9,7,11,2 +159,10,7,5,4,9,6,8,2,11,1,3 +185,1,11,3,8,7,2,5,10,4,9,6 +50,3,8,4,9,7,5,6,10,1,11,2 +10,6,1,5,3,8,7,10,4,2,11,9 +87,4,10,8,7,2,6,5,3,11,1,9 +44,5,3,1,8,4,2,10,9,6,11,7 +145,8,1,3,11,9,10,4,7,6,2,5 +120,10,7,2,8,11,1,3,9,6,5,4 +62,2,6,8,3,4,10,1,7,9,5,11 +24,11,8,9,1,4,3,10,2,7,5,6 +199,1,6,11,7,9,8,4,5,2,10,3 +24,11,3,1,4,7,2,9,10,6,8,5 +78,4,8,10,7,5,6,2,9,11,1,3 +194,3,8,10,6,1,2,11,7,4,9,5 +99,4,5,7,1,11,3,6,2,10,8,9 +81,6,4,9,10,11,5,1,8,2,3,7 +193,11,3,8,6,4,10,5,9,2,1,7 +91,11,2,6,8,5,3,4,9,7,10,1 +91,8,9,11,4,7,1,10,2,3,6,5 +166,8,2,9,11,3,4,10,5,7,6,1 +59,2,11,4,7,10,8,1,5,3,6,9 +37,6,7,1,11,8,5,2,9,4,10,3 +190,5,6,8,7,9,4,2,3,10,1,11 +41,10,9,7,4,11,3,2,8,5,1,6 +66,1,11,10,2,8,6,3,9,5,7,4 +28,4,2,1,11,9,10,7,6,5,3,8 +22,2,5,7,6,3,9,10,1,4,11,8 +184,8,11,6,7,10,1,4,2,5,9,3 +158,9,4,8,6,7,5,3,1,2,11,10 +33,2,8,11,10,3,4,1,5,9,6,7 +14,2,3,9,8,4,11,1,5,10,7,6 +82,2,8,7,6,4,5,10,3,1,9,11 +137,11,6,5,9,8,4,1,3,2,10,7 +123,11,8,6,5,3,2,9,1,4,7,10 +178,6,4,11,2,7,8,3,1,5,10,9 +199,8,10,1,6,7,9,4,11,2,3,5 +129,10,8,3,5,11,2,6,7,1,4,9 +63,2,8,3,1,9,4,11,6,5,7,10 +143,10,1,5,3,4,9,8,6,7,11,2 +191,1,2,6,10,7,9,3,11,4,8,5 +200,2,11,3,4,8,1,7,6,9,10,5 +192,10,3,8,5,7,4,1,11,9,2,6 +79,7,10,11,3,4,8,6,2,1,5,9 +64,7,3,10,2,11,5,4,9,8,6,1 +177,2,7,8,5,3,6,11,1,4,10,9 +14,4,10,11,6,7,8,5,2,9,1,3 +11,8,7,3,11,5,9,1,10,4,2,6 +95,11,8,6,1,3,10,2,7,4,9,5 +122,3,6,5,2,1,8,4,11,10,9,7 +171,7,11,9,8,5,4,10,3,6,1,2 +22,10,1,11,7,6,3,2,8,9,5,4 +175,3,5,9,1,6,2,7,4,11,8,10 +0,1,10,9,8,4,2,11,6,5,7,3 +102,6,5,2,1,4,9,7,10,11,3,8 +108,11,1,3,2,8,10,5,9,4,6,7 +38,6,3,10,1,4,9,2,11,8,5,7 +7,3,11,10,4,2,6,7,8,9,5,1 +105,5,3,7,11,10,6,4,1,2,8,9 +158,11,9,8,2,1,5,10,6,3,4,7 +70,5,10,7,2,1,9,6,8,3,4,11 +19,7,6,3,1,9,8,4,10,5,2,11 +167,10,1,11,6,8,5,2,9,7,4,3 +139,2,5,7,9,8,10,4,11,1,3,6 +55,3,8,1,11,2,5,4,9,6,10,7 +182,11,10,5,7,6,8,3,9,4,1,2 +58,8,2,11,7,1,3,10,5,4,9,6 +95,4,8,7,10,11,2,9,1,5,6,3 +47,4,11,9,8,5,6,10,2,7,1,3 +146,7,6,2,4,5,9,3,10,11,8,1 +167,5,8,3,7,10,9,2,11,4,1,6 +27,5,8,1,11,10,6,7,3,9,2,4 +127,3,2,7,4,1,5,9,10,11,6,8 +183,4,2,8,5,7,6,3,10,11,1,9 +46,2,10,9,4,1,5,6,3,8,7,11 +200,9,4,3,5,7,10,8,1,2,6,11 +3,2,10,3,6,8,11,7,4,5,9,1 +182,4,3,5,8,6,10,7,9,1,2,11 +196,5,3,1,7,6,9,11,4,2,8,10 +192,3,10,1,4,11,8,2,7,9,5,6 +109,6,9,7,11,3,4,2,5,8,1,10 +161,6,2,7,3,4,5,1,9,11,8,10 +96,7,8,6,4,10,9,1,2,5,11,3 +126,3,10,6,4,2,11,9,7,1,5,8 +96,6,8,7,11,9,5,3,10,4,2,1 +172,9,4,6,2,11,10,3,5,8,7,1 +42,4,8,7,10,11,3,2,1,9,6,5 +3,6,7,9,11,5,3,1,8,10,2,4 +119,2,11,3,7,9,10,8,4,6,1,5 +88,2,1,6,11,3,4,8,10,5,9,7 +136,4,7,6,8,1,2,10,9,5,3,11 +139,9,2,3,11,6,1,8,7,5,10,4 +129,9,3,6,4,7,2,10,5,8,1,11 +100,1,10,11,2,5,9,7,3,8,4,6 +19,10,4,2,6,8,11,3,1,5,7,9 +139,11,8,1,5,7,10,9,6,3,4,2 +159,2,4,5,3,11,1,6,9,8,7,10 +10,7,3,11,1,6,2,8,4,5,10,9 +121,3,2,6,4,5,9,10,11,8,1,7 +78,6,11,3,2,1,10,5,7,4,9,8 +185,6,11,3,9,1,2,4,8,5,7,10 +115,10,1,8,9,11,7,5,4,2,6,3 +139,11,4,5,6,8,1,9,10,7,2,3 +189,4,5,10,9,2,3,8,1,6,7,11 +143,6,8,3,11,5,1,10,9,2,4,7 +199,7,11,3,8,2,4,1,9,10,6,5 +190,8,2,7,5,10,11,4,6,9,3,1 +25,11,9,3,1,4,8,2,6,10,5,7 +50,10,4,3,1,11,9,2,5,7,8,6 +31,8,2,5,10,9,11,4,1,7,6,3 +115,7,5,9,6,1,10,3,4,2,8,11 +137,9,8,3,1,6,5,2,11,10,4,7 +105,1,2,6,11,9,5,10,8,3,7,4 +113,10,3,1,6,8,7,2,9,5,11,4 +47,7,3,11,5,8,10,2,4,6,1,9 +8,1,2,10,8,3,5,11,4,7,6,9 +0,10,2,8,9,5,6,7,4,1,3,11 +113,5,11,1,7,2,8,4,9,10,6,3 +185,9,8,11,7,2,10,1,4,6,3,5 +122,4,11,10,8,2,3,6,9,1,7,5 +95,8,5,10,9,7,1,3,6,11,2,4 +174,4,3,1,8,10,11,6,7,9,2,5 +145,10,2,6,9,3,11,1,8,4,7,5 +107,11,10,3,9,8,2,5,4,6,7,1 +17,11,10,3,6,7,4,9,8,2,1,5 +72,9,2,3,1,11,8,5,7,6,4,10 +146,2,11,5,7,4,3,1,9,8,10,6 +66,11,6,8,10,1,5,4,2,7,3,9 +8,1,8,10,11,2,4,5,7,3,6,9 +105,5,7,4,6,11,9,2,1,10,8,3 +118,3,7,6,11,4,1,2,9,5,10,8 +165,3,7,4,10,11,9,2,1,6,5,8 +183,11,7,6,8,5,4,9,10,2,1,3 +16,5,8,9,10,3,1,6,2,11,7,4 +192,10,4,9,3,6,1,5,8,7,2,11 +134,1,7,6,11,2,10,8,4,3,9,5 +113,2,4,11,5,8,6,10,3,7,9,1 +127,4,7,11,5,9,1,8,10,2,3,6 +87,4,7,8,11,1,5,6,9,3,10,2 +10,1,5,4,8,9,3,2,6,11,10,7 +84,1,8,11,10,9,6,7,4,5,3,2 +185,4,9,11,8,7,6,10,5,2,3,1 +13,1,7,9,6,2,3,10,11,8,4,5 +58,8,4,3,5,11,9,10,1,2,7,6 +164,9,5,2,3,11,8,4,1,6,7,10 +24,7,1,3,4,6,8,10,2,9,11,5 +17,7,1,2,9,4,11,10,8,5,6,3 +62,7,5,4,8,6,11,1,3,2,9,10 +155,2,10,6,1,3,7,5,8,4,11,9 +4,6,11,10,4,2,1,9,5,3,7,8 +147,5,9,1,6,7,2,3,10,11,8,4 +7,4,2,11,5,6,10,7,3,9,1,8 +50,8,7,4,9,2,10,11,6,5,1,3 +183,6,8,2,10,5,9,3,7,11,1,4 +164,1,3,4,5,7,9,11,2,6,10,8 +122,11,6,7,9,10,5,3,2,8,1,4 +83,3,2,7,8,5,1,9,10,4,6,11 +187,8,5,6,4,11,3,7,9,1,10,2 +54,9,7,3,11,6,4,2,5,1,10,8 +62,6,3,2,8,5,10,11,1,4,7,9 +92,5,8,2,10,6,4,3,7,9,11,1 +73,8,4,6,5,11,2,10,9,1,7,3 +94,5,2,9,10,3,11,7,8,4,1,6 +6,6,9,11,5,4,7,1,8,3,2,10 +42,8,2,11,3,9,7,1,5,4,10,6 +52,2,10,9,11,7,3,6,4,8,1,5 +51,8,9,2,7,1,10,11,3,5,4,6 +59,9,5,11,6,4,3,1,8,7,2,10 +151,5,8,6,2,7,4,10,1,11,9,3 +5,4,1,3,9,5,11,6,2,7,8,10 +11,3,10,8,5,2,6,4,7,11,1,9 +180,8,10,1,5,11,4,7,3,9,6,2 +34,3,1,6,11,2,9,4,5,10,8,7 +141,7,11,9,6,1,5,10,2,3,4,8 +7,11,5,4,6,9,10,8,2,1,7,3 +195,8,3,9,7,11,6,1,5,4,2,10 +89,8,2,10,6,4,1,9,7,3,11,5 +134,7,3,5,1,9,8,4,2,10,11,6 +19,6,8,2,3,9,7,11,5,1,4,10 +89,10,2,8,4,6,5,1,7,3,9,11 +20,6,10,8,3,11,7,2,5,4,9,1 +40,4,1,11,10,8,6,2,3,5,9,7 +159,1,7,11,9,2,4,6,3,8,5,10 +55,8,5,6,2,9,7,10,11,4,3,1 +74,3,2,7,10,9,4,5,8,6,11,1 +39,1,11,6,3,4,2,9,7,8,5,10 +174,8,4,10,2,7,11,9,5,6,1,3 +123,9,7,1,11,10,8,4,3,6,5,2 +70,11,5,3,8,6,1,10,9,2,7,4 +90,3,2,11,1,9,5,8,6,4,7,10 +193,5,11,8,1,9,6,10,2,3,4,7 +164,10,5,1,9,7,2,8,3,6,11,4 +180,9,11,5,2,6,10,8,3,1,4,7 +22,8,9,10,2,3,6,11,7,5,4,1 +148,8,4,6,7,9,3,10,1,11,5,2 +38,8,1,7,11,6,3,9,10,2,4,5 +136,3,9,6,4,2,8,10,1,11,5,7 +138,1,4,11,5,8,3,9,6,2,7,10 +138,1,4,2,8,3,6,9,5,10,11,7 +58,3,11,10,2,8,5,6,7,1,4,9 +62,10,2,7,9,4,11,6,5,3,1,8 +87,2,9,5,11,8,3,1,10,7,6,4 +116,11,4,8,6,9,7,3,5,10,1,2 +55,1,11,8,9,6,3,2,7,10,4,5 +99,11,6,2,9,5,3,10,7,8,4,1 +84,7,3,4,1,8,10,5,11,2,9,6 +12,8,3,9,1,4,11,7,6,2,10,5 +97,4,3,2,1,6,10,9,7,5,8,11 +99,3,1,9,2,11,10,6,8,7,5,4 +48,4,11,8,7,6,3,10,2,5,1,9 +127,2,4,10,8,7,9,6,11,3,1,5 +93,2,6,8,11,9,7,5,1,4,3,10 +54,5,11,9,3,6,10,8,1,7,2,4 +113,6,2,1,11,4,8,3,7,9,5,10 +99,4,5,9,11,7,2,8,3,10,1,6 +31,9,7,10,5,4,6,8,3,2,1,11 +9,1,7,11,6,4,10,8,9,5,2,3 +197,10,1,2,3,8,4,9,7,6,11,5 +171,6,5,1,8,11,9,3,2,4,7,10 +132,10,9,6,4,1,5,3,7,8,2,11 +101,9,2,3,10,7,8,11,1,5,4,6 +90,1,10,5,6,3,2,8,11,9,7,4 +36,9,10,5,3,1,7,8,6,2,4,11 +137,3,7,4,11,9,8,10,5,1,2,6 +60,2,8,5,4,7,11,1,3,10,9,6 +190,7,8,9,5,1,2,10,11,4,6,3 +68,11,5,4,6,2,1,9,7,8,3,10 +82,2,10,3,4,6,5,11,7,9,1,8 +185,7,8,4,1,5,9,3,11,2,10,6 +36,9,8,6,4,5,3,7,11,2,1,10 +119,5,9,10,11,6,2,3,8,4,7,1 +58,6,3,1,11,7,10,4,5,2,9,8 +146,4,2,1,10,5,9,3,11,8,7,6 +182,5,1,7,10,6,9,8,2,3,11,4 +47,11,4,6,3,10,9,1,5,2,8,7 +80,3,6,10,2,8,5,9,11,4,1,7 +121,2,7,1,3,5,9,4,6,11,10,8 +142,2,6,9,10,4,5,1,8,7,3,11 +89,9,10,11,8,4,2,7,3,5,1,6 +159,1,6,9,11,2,8,3,10,4,5,7 +75,9,10,11,2,7,4,1,8,5,6,3 +124,7,1,2,10,11,6,8,9,5,4,3 +148,7,6,5,9,8,2,3,10,1,4,11 +53,11,1,5,2,4,8,3,10,6,7,9 +64,6,2,8,1,10,11,3,7,9,4,5 +22,10,5,4,8,6,11,2,1,7,9,3 +81,8,1,5,2,3,7,11,4,10,6,9 +153,10,1,11,9,4,2,8,5,3,7,6 +82,3,1,11,4,5,10,2,6,7,8,9 +105,8,4,1,3,7,6,10,2,11,9,5 +61,1,7,10,2,4,9,5,11,8,3,6 +19,3,9,10,5,6,1,11,2,4,7,8 +172,2,9,6,1,8,3,5,7,11,4,10 +42,8,3,6,7,11,4,9,5,1,2,10 +79,10,7,2,6,5,1,3,11,4,8,9 +45,9,3,1,11,8,2,4,6,10,7,5 +8,9,2,4,11,7,5,10,6,1,8,3 +86,6,4,1,2,9,3,7,11,10,5,8 +34,1,7,2,3,11,10,6,8,4,9,5 +4,11,9,7,8,4,3,10,6,5,1,2 +46,1,5,7,8,6,9,2,10,11,4,3 +150,9,5,10,7,2,4,8,1,3,6,11 +54,1,11,5,3,8,4,2,10,7,6,9 +41,8,3,9,11,6,2,10,7,1,5,4 +65,4,7,9,5,6,10,2,1,11,8,3 +143,10,11,8,4,6,5,3,9,7,1,2 +53,10,5,11,9,7,6,3,4,8,1,2 +49,9,8,6,3,11,7,10,1,2,4,5 +26,10,6,11,5,1,7,8,9,2,3,4 +90,8,3,2,1,7,6,5,10,9,4,11 +21,2,4,1,6,3,9,11,5,10,7,8 +104,6,10,5,8,11,9,7,1,4,2,3 +103,5,9,6,7,10,4,8,3,2,1,11 +114,2,8,9,6,7,1,3,10,11,4,5 +146,4,8,3,2,10,1,9,6,7,11,5 +190,4,7,8,5,3,11,1,6,10,9,2 +169,2,7,9,5,6,1,3,11,10,8,4 +199,2,6,1,10,5,11,3,4,8,9,7 +123,3,4,6,10,2,5,8,1,11,7,9 +111,4,3,7,11,2,5,1,6,10,9,8 +182,5,3,4,10,11,8,6,7,2,1,9 +195,1,2,11,7,5,10,9,4,3,8,6 +29,2,7,8,5,11,10,4,6,1,9,3 +197,2,10,9,8,11,7,5,1,6,3,4 +154,3,10,9,6,11,5,4,7,2,8,1 +117,1,2,11,7,9,10,3,5,6,8,4 +97,5,10,9,4,7,6,3,1,2,8,11 +146,1,2,8,10,6,5,4,11,7,3,9 +67,10,8,11,3,4,2,6,1,9,7,5 +11,7,4,6,1,5,8,3,9,10,2,11 +86,5,6,11,9,8,3,1,10,2,4,7 +117,2,9,6,7,8,5,10,3,1,11,4 +7,9,3,4,10,7,1,6,11,2,5,8 +139,5,7,10,8,3,4,6,9,11,2,1 +147,3,7,5,8,6,1,2,11,10,9,4 +64,3,6,10,9,4,8,11,2,7,5,1 +40,11,2,4,5,1,7,10,9,6,3,8 +105,5,3,11,9,10,4,7,6,1,8,2 +143,4,6,10,3,7,9,2,1,5,11,8 +43,8,5,3,11,9,6,1,2,7,4,10 +177,5,3,10,8,2,1,11,9,7,6,4 +180,5,4,6,3,8,11,2,9,7,1,10 +15,2,5,6,3,9,1,11,4,7,8,10 +34,8,7,5,1,9,2,3,11,6,4,10 +94,11,3,5,2,9,1,4,10,8,6,7 +153,6,5,9,4,3,2,7,11,10,8,1 +100,9,3,2,4,6,8,5,7,11,1,10 +181,10,8,1,9,3,4,11,7,2,6,5 +116,8,4,1,2,6,3,7,5,10,9,11 +37,9,6,3,10,5,8,11,4,2,1,7 +33,4,1,5,8,9,6,11,7,3,10,2 +125,9,7,10,3,6,4,8,2,5,1,11 +156,9,2,8,11,4,6,1,5,10,7,3 +174,6,4,7,5,8,11,1,9,10,3,2 +127,10,3,7,1,5,2,9,4,11,6,8 +99,1,9,8,7,6,10,5,11,4,2,3 +199,4,5,11,7,1,8,6,9,10,2,3 +46,1,3,4,11,2,10,8,5,7,6,9 +57,9,2,7,11,3,6,10,4,8,5,1 +83,8,1,5,4,7,10,6,11,3,2,9 +53,11,7,4,8,5,3,2,9,1,10,6 +96,11,5,8,1,4,3,9,10,7,2,6 +76,3,1,6,11,5,10,8,2,9,4,7 +146,11,4,1,6,5,2,9,3,10,7,8 +113,5,1,11,3,9,7,4,10,8,6,2 +116,10,7,5,2,6,4,11,8,3,1,9 +23,10,8,3,11,2,9,1,5,4,7,6 +184,3,5,6,1,2,7,4,9,11,10,8 +5,2,3,9,11,8,7,6,1,5,4,10 +56,2,9,8,11,4,1,6,5,3,7,10 +85,10,7,3,2,4,9,5,11,6,8,1 +109,3,4,11,1,8,6,9,5,10,2,7 +158,2,6,3,4,9,10,7,8,5,11,1 +179,11,1,5,2,4,9,10,3,6,7,8 +35,5,3,4,1,8,7,9,2,6,11,10 +123,4,8,10,6,1,2,9,5,11,3,7 +45,6,5,8,9,7,3,11,10,1,4,2 +31,4,9,7,10,5,8,2,6,1,11,3 +158,4,11,10,8,9,1,3,6,7,5,2 +63,6,10,5,9,8,11,1,4,7,2,3 +27,7,2,4,10,9,3,11,8,5,1,6 +60,6,1,9,4,7,2,3,8,5,11,10 +15,2,8,11,9,5,3,6,7,1,10,4 +187,3,11,5,9,1,7,4,2,6,8,10 +66,8,5,6,4,10,11,2,3,9,7,1 +142,9,6,1,4,3,5,8,11,7,2,10 +101,9,10,1,5,3,7,11,2,6,4,8 +125,9,3,6,8,10,7,5,1,11,2,4 +98,7,10,8,2,5,3,1,11,9,4,6 +142,6,8,2,4,7,11,1,5,3,10,9 +192,4,9,8,7,1,3,10,2,5,6,11 +142,10,6,4,7,3,1,9,8,2,11,5 +174,3,9,7,2,8,4,10,5,6,11,1 +179,6,4,3,5,8,9,1,7,2,11,10 +35,2,3,6,9,1,4,10,7,8,5,11 +98,4,11,7,6,9,3,1,2,8,10,5 +154,11,7,6,5,1,10,3,9,4,2,8 +184,2,7,8,10,3,1,9,11,5,4,6 +67,4,1,6,3,8,10,9,2,11,5,7 +154,11,6,3,8,9,10,7,5,4,1,2 +65,3,2,11,5,7,4,1,8,6,10,9 +116,10,2,9,7,3,6,8,4,5,1,11 +130,4,9,3,10,11,7,8,6,1,5,2 +72,5,11,3,9,10,1,7,6,2,4,8 +180,3,8,11,1,2,5,9,10,6,7,4 +186,11,1,10,4,6,8,3,7,5,2,9 +191,8,11,7,1,10,9,5,2,4,3,6 +96,4,6,7,11,5,1,2,9,8,10,3 +125,1,10,9,7,4,5,8,11,6,2,3 +14,9,1,6,10,11,4,2,5,8,7,3 +88,5,9,8,7,1,10,2,11,4,3,6 +151,3,1,10,2,6,8,11,4,5,9,7 +166,11,4,10,2,9,3,8,5,1,6,7 +77,10,8,4,2,9,1,5,11,7,6,3 +104,6,2,5,10,9,11,8,3,7,1,4 +134,2,9,1,4,10,5,7,8,3,6,11 +185,11,2,6,4,1,5,10,3,9,8,7 +154,10,3,6,8,1,7,4,5,2,9,11 +149,8,3,10,9,1,11,6,7,5,4,2 +47,7,4,6,1,5,9,11,8,10,3,2 +100,5,11,4,8,3,9,1,7,2,6,10 +131,7,10,8,6,4,9,3,5,1,11,2 +36,3,2,10,9,5,8,7,11,6,1,4 +64,11,8,4,1,10,7,5,9,2,3,6 +175,9,4,8,5,3,11,2,6,10,7,1 +88,6,4,11,7,1,5,3,9,8,2,10 +107,11,4,2,7,3,10,5,6,1,8,9 +66,8,11,7,2,9,10,6,4,3,5,1 +38,10,1,3,11,5,2,6,4,7,8,9 +106,8,4,6,10,5,3,9,7,2,11,1 +25,6,5,3,11,7,8,4,10,1,9,2 +74,5,1,6,9,10,3,7,4,8,2,11 +24,7,9,5,4,6,1,2,3,10,11,8 +41,10,9,8,7,5,3,4,11,2,1,6 +92,4,10,7,8,2,11,1,3,5,6,9 +36,11,3,6,5,8,2,7,9,1,4,10 +72,11,1,6,2,5,10,4,8,3,9,7 +140,6,9,5,1,10,11,4,3,2,7,8 +3,11,4,2,6,7,3,5,9,8,10,1 +88,7,10,1,6,5,9,8,3,2,11,4 +74,4,11,5,3,10,2,9,6,8,7,1 +112,7,2,4,5,6,11,3,10,9,1,8 +91,8,5,4,11,2,1,3,7,6,9,10 +195,6,1,4,7,3,2,10,5,8,9,11 +162,9,3,6,1,11,8,10,4,5,7,2 +92,4,8,7,1,6,10,9,11,3,5,2 +131,3,6,4,9,1,11,10,5,2,7,8 +194,8,5,11,9,10,6,4,2,3,1,7 +42,3,10,7,4,9,5,8,2,6,11,1 +19,9,11,2,1,3,4,8,10,7,5,6 +133,9,2,11,10,6,5,4,7,3,8,1 +186,9,5,10,7,2,11,3,4,6,8,1 +192,4,7,11,8,1,2,10,6,5,9,3 +153,4,5,2,10,6,8,1,11,7,3,9 +197,7,6,3,8,1,11,10,9,2,4,5 +122,5,6,1,8,11,10,7,2,4,9,3 +50,1,7,9,3,2,4,5,11,8,6,10 +183,1,4,11,5,8,10,7,3,2,6,9 +111,7,10,11,1,9,4,8,6,5,3,2 +6,9,7,2,3,1,10,6,5,8,11,4 +114,6,3,8,10,7,5,1,2,9,4,11 +0,6,11,9,2,10,3,5,8,7,4,1 +183,2,11,9,1,3,6,10,4,5,7,8 +158,7,4,10,3,5,9,11,8,1,2,6 +189,10,4,2,1,11,9,5,3,7,8,6 +94,6,1,5,3,9,10,2,4,11,7,8 +113,8,5,7,1,2,9,11,6,4,3,10 +109,9,1,6,3,11,7,10,2,5,4,8 +21,5,6,3,2,11,10,9,8,1,7,4 +191,8,2,3,1,5,9,6,10,4,11,7 +110,6,4,1,11,3,2,8,9,10,5,7 +155,2,11,6,4,1,10,5,8,9,7,3 +145,2,7,9,3,11,1,8,5,10,4,6 +86,3,2,8,11,9,6,4,1,7,10,5 +144,1,10,11,2,7,5,6,3,9,8,4 +29,2,3,4,9,10,8,7,11,5,1,6 +142,11,9,1,2,10,6,4,5,8,3,7 +32,1,4,8,2,9,11,7,6,3,10,5 +1,1,8,6,7,4,5,3,9,2,10,11 +180,8,4,3,7,11,2,5,9,1,10,6 +79,1,5,10,2,9,11,3,4,6,7,8 +165,4,6,1,9,10,5,2,3,8,7,11 +82,11,8,7,2,5,1,10,9,3,6,4 +138,2,4,7,6,1,8,11,10,9,3,5 +155,4,3,2,7,8,11,1,9,10,6,5 +115,4,9,6,5,2,7,3,11,1,10,8 +64,5,1,3,9,7,2,6,4,11,8,10 +79,1,9,6,11,2,8,7,3,10,5,4 +73,5,7,3,6,2,1,8,9,4,10,11 +38,4,11,7,5,2,3,6,10,1,9,8 +90,10,6,7,4,9,3,11,8,5,2,1 +132,1,5,3,6,4,2,10,9,11,7,8 +154,6,3,10,7,1,2,5,11,8,4,9 +179,11,7,1,6,2,3,9,8,5,10,4 +16,6,11,7,2,8,4,10,5,3,9,1 +137,4,2,5,11,7,3,9,8,1,10,6 +162,4,3,7,8,10,6,9,5,2,1,11 +64,8,1,7,4,6,9,11,2,3,5,10 +192,2,1,6,10,4,3,9,7,11,8,5 +75,5,7,8,9,1,10,3,4,2,6,11 +43,10,5,9,3,1,7,8,4,2,6,11 +6,1,8,10,11,3,2,9,7,6,5,4 +145,2,11,4,9,3,5,1,10,6,7,8 +166,10,3,2,7,4,11,1,6,5,9,8 +193,11,5,4,6,2,9,8,10,7,1,3 +49,2,10,3,7,8,9,5,6,4,11,1 +46,7,10,2,5,4,1,11,9,3,8,6 +118,4,11,8,5,3,1,10,9,6,2,7 +47,4,3,11,7,10,5,6,9,1,8,2 +49,5,8,1,10,4,11,7,6,9,3,2 +107,11,5,8,6,4,2,1,3,7,9,10 +61,7,10,9,1,2,3,5,11,4,8,6 +140,6,3,9,2,10,7,8,5,1,11,4 +72,9,6,8,4,1,5,3,11,7,10,2 +39,3,1,9,4,2,10,6,7,5,11,8 +186,4,11,6,10,3,2,9,1,5,7,8 +38,6,7,2,5,11,3,9,1,8,4,10 +107,6,10,7,8,3,9,4,11,1,5,2 +62,4,8,6,2,3,10,9,7,5,11,1 +102,10,2,8,6,4,1,7,11,5,9,3 +180,9,7,6,10,3,2,1,11,4,5,8 +138,5,2,1,8,3,6,4,9,7,11,10 +50,1,11,6,9,3,2,8,5,7,10,4 +69,10,2,7,3,8,6,11,4,9,1,5 +169,6,8,2,7,3,9,10,1,5,11,4 +109,2,5,3,7,6,9,10,11,8,1,4 +124,6,5,10,2,11,3,7,8,4,1,9 +124,3,5,2,9,7,10,1,6,8,4,11 +136,6,8,9,11,3,1,7,5,10,4,2 +34,2,6,7,4,11,8,3,5,10,1,9 +107,2,1,9,5,7,10,6,11,4,8,3 +130,8,5,9,11,4,10,3,1,7,6,2 +60,2,10,9,7,5,1,11,6,4,8,3 +187,4,5,11,8,7,6,3,9,1,2,10 +81,9,7,3,2,4,10,11,8,5,6,1 +108,9,2,6,5,11,4,10,8,7,1,3 +75,5,3,2,11,8,9,1,6,7,10,4 +199,2,4,10,3,1,6,8,5,7,11,9 +98,1,9,7,2,10,4,8,5,11,3,6 +19,11,10,1,2,7,8,4,9,6,5,3 +65,7,9,10,11,6,5,2,1,8,4,3 +104,6,3,8,1,10,9,5,11,7,4,2 +25,7,5,9,3,4,1,6,10,2,11,8 +37,2,4,10,6,7,3,11,5,8,9,1 +15,4,8,11,7,1,2,10,9,3,5,6 +170,10,11,9,8,2,1,7,6,5,4,3 +200,10,6,5,11,8,4,7,9,3,1,2 +151,9,8,10,1,6,3,4,11,7,5,2 +36,10,6,5,1,4,11,9,7,8,2,3 +119,5,9,2,4,1,3,7,6,11,8,10 +56,1,5,3,9,7,2,4,8,11,6,10 +126,9,7,6,10,4,5,11,8,1,3,2 +196,11,10,7,9,6,2,3,1,4,5,8 +108,7,6,10,4,1,9,2,3,8,5,11 +21,1,5,10,2,6,3,8,4,9,11,7 +23,9,2,1,5,8,4,10,11,6,7,3 +99,2,6,11,9,7,10,4,5,3,1,8 +74,2,8,11,5,4,1,7,10,9,6,3 +103,1,3,10,11,9,7,8,4,5,2,6 +169,10,2,6,4,5,8,1,11,3,9,7 +109,9,11,5,1,10,3,4,7,2,8,6 +173,7,8,1,6,3,2,11,9,5,4,10 +115,8,7,6,9,11,5,1,4,2,10,3 +198,11,1,10,2,9,7,5,8,4,3,6 +99,6,2,3,4,10,7,9,8,11,1,5 +110,6,5,1,7,8,3,2,10,11,9,4 +3,5,8,7,11,10,4,9,6,1,2,3 +36,2,3,10,11,1,4,5,7,6,9,8 +139,8,10,11,4,7,3,9,6,1,2,5 +182,11,1,3,6,5,4,10,7,2,9,8 +6,11,1,7,2,8,3,9,5,10,4,6 +96,5,11,6,9,7,10,4,1,3,8,2 +178,11,9,5,10,6,3,2,8,7,1,4 +72,6,10,8,11,2,3,1,5,4,9,7 +200,5,9,11,3,2,1,10,8,4,6,7 +166,10,11,8,4,7,3,1,9,2,6,5 +118,8,7,3,4,1,5,10,2,11,9,6 +144,3,9,7,5,4,2,1,6,8,10,11 +141,10,8,6,1,4,11,5,2,7,3,9 +24,8,10,4,1,5,9,3,11,6,2,7 +32,2,6,7,8,3,9,5,4,11,1,10 +167,10,9,4,3,1,8,11,6,5,2,7 +56,7,11,2,4,1,5,9,8,10,6,3 +185,2,1,10,5,3,4,9,7,11,8,6 +96,6,2,1,8,3,10,4,11,7,5,9 +122,11,1,4,3,2,6,5,9,7,10,8 +136,11,8,5,1,4,6,3,9,10,2,7 +52,3,2,6,8,5,4,11,1,9,7,10 +174,7,6,1,10,11,2,8,9,5,4,3 +19,8,3,10,7,4,1,11,6,9,5,2 +76,7,4,11,8,3,5,1,6,10,2,9 +127,9,2,5,3,1,6,4,10,7,11,8 +86,11,10,1,6,5,9,4,3,7,2,8 +43,10,8,11,1,7,5,6,2,4,9,3 +162,11,5,9,10,1,4,2,6,3,7,8 +163,11,4,5,10,8,1,7,2,9,3,6 +77,2,7,10,1,5,11,8,4,6,9,3 +11,7,1,5,3,10,6,4,8,2,9,11 +118,3,9,2,4,11,6,1,8,5,10,7 +14,5,10,7,8,3,6,9,4,11,1,2 +73,7,2,10,3,9,6,4,8,11,5,1 +82,7,2,5,11,9,6,1,4,10,3,8 +129,6,7,1,10,3,9,2,4,8,11,5 +61,6,5,8,3,7,4,1,11,9,10,2 +162,6,2,5,10,11,4,9,3,1,7,8 +116,8,2,3,10,9,5,6,4,11,1,7 +51,2,9,1,8,11,4,3,10,5,7,6 +33,2,3,7,1,8,6,11,10,9,4,5 +142,5,8,6,11,1,3,2,10,7,9,4 +197,3,5,1,4,8,10,11,2,9,7,6 +137,2,8,3,6,4,10,5,9,7,1,11 +86,1,3,5,11,6,8,2,9,7,10,4 +95,11,4,2,10,7,1,8,6,9,3,5 +126,4,5,10,2,7,6,9,11,1,3,8 +75,8,7,1,4,9,3,10,6,2,11,5 +65,9,7,5,8,3,6,11,4,10,1,2 +44,11,8,2,5,3,7,4,10,1,6,9 +30,9,7,1,10,3,6,5,4,11,8,2 +128,10,11,1,4,5,8,6,2,9,3,7 +78,6,2,5,9,4,1,11,8,3,10,7 +23,8,9,1,4,2,11,6,10,7,3,5 +153,9,11,6,2,1,4,8,7,10,3,5 +52,11,3,9,7,6,1,8,4,5,10,2 +143,9,10,4,2,3,11,5,8,1,7,6 +66,6,8,4,10,11,7,2,5,1,9,3 +198,3,10,9,7,5,8,4,11,6,2,1 +195,4,6,5,9,3,10,2,1,7,11,8 +4,8,1,11,4,6,3,7,10,2,5,9 +9,8,6,2,7,1,4,10,9,3,5,11 +195,4,3,2,7,6,10,5,1,9,11,8 +162,10,5,2,3,9,8,4,6,11,7,1 +187,7,2,11,8,3,4,9,10,6,5,1 +119,8,2,3,5,10,1,6,9,11,4,7 +168,9,2,4,7,5,10,6,8,11,1,3 +137,9,7,5,4,11,10,6,3,1,8,2 +74,2,11,10,4,7,9,3,6,5,1,8 +93,3,9,10,5,4,6,8,2,7,1,11 +50,11,1,7,4,3,8,5,10,9,6,2 +78,10,11,5,7,8,9,4,1,6,3,2 +86,7,9,11,4,10,3,5,8,6,1,2 +136,4,5,1,11,10,7,2,8,9,3,6 +142,11,6,9,1,10,3,7,4,5,8,2 +141,10,2,5,6,1,8,7,3,9,4,11 +3,2,3,10,5,6,8,9,1,4,7,11 +9,8,9,2,6,7,11,5,4,10,3,1 +176,9,4,10,5,3,8,2,6,11,1,7 +166,7,1,6,3,2,10,5,8,11,9,4 +81,3,4,10,1,6,5,7,2,11,9,8 +187,11,10,5,7,9,2,8,4,3,6,1 +45,7,9,3,8,6,2,1,10,11,4,5 +38,8,11,2,1,6,5,9,7,10,4,3 +182,6,11,2,5,8,7,1,4,3,9,10 +111,6,8,2,11,5,9,3,4,1,10,7 +50,7,2,9,8,10,3,6,1,4,11,5 +9,4,9,5,7,10,3,1,6,2,11,8 +34,5,1,7,3,2,4,8,6,9,11,10 +3,4,7,1,6,5,2,11,10,8,3,9 +25,6,9,8,11,5,7,4,10,2,3,1 +143,9,10,7,6,8,1,5,3,11,2,4 +46,6,3,10,4,11,5,2,7,9,8,1 +149,7,8,2,3,1,9,6,10,4,5,11 +58,3,11,6,8,5,7,1,9,10,4,2 +124,10,11,1,6,5,8,7,2,4,3,9 +61,11,3,2,9,6,4,8,5,10,7,1 +76,2,5,3,8,7,6,11,4,10,9,1 +118,10,11,5,4,7,1,3,9,2,6,8 +116,3,10,11,4,6,1,2,8,7,5,9 +26,2,3,1,7,4,11,10,6,8,5,9 +93,6,11,9,3,8,5,1,4,10,7,2 +121,4,6,2,1,5,11,8,9,10,3,7 +18,4,7,9,5,1,3,2,6,11,10,8 +33,3,9,8,1,4,7,6,2,11,5,10 +141,8,3,11,6,7,5,1,2,4,10,9 +108,11,10,9,4,2,3,5,1,7,6,8 +85,5,11,3,6,7,4,8,9,2,1,10 +84,5,6,2,11,8,4,10,9,7,3,1 +56,7,2,1,6,5,9,11,10,8,4,3 +31,6,8,11,2,1,9,10,4,7,5,3 +79,10,4,11,7,2,5,8,1,9,3,6 +96,11,7,9,8,4,5,2,3,10,1,6 +82,4,3,9,1,8,10,6,2,11,7,5 +123,8,6,1,4,2,3,9,11,5,10,7 +136,2,11,5,3,4,10,6,9,1,8,7 +143,9,4,1,10,7,2,5,8,3,6,11 +142,8,1,9,7,3,6,10,5,11,4,2 +46,11,10,4,3,6,8,7,5,9,1,2 +36,7,3,10,1,6,9,5,4,11,2,8 +113,2,11,1,9,7,3,5,10,4,8,6 +57,11,3,10,6,1,8,9,5,4,7,2 +134,9,2,3,8,4,7,11,5,10,6,1 +171,7,11,5,8,10,1,4,2,9,3,6 +172,11,4,1,7,3,9,5,10,2,6,8 +146,5,2,8,10,9,4,6,3,11,1,7 +114,11,10,2,5,9,4,6,7,8,3,1 +109,7,4,1,9,8,10,2,11,3,6,5 +129,11,8,5,3,9,7,6,4,1,10,2 +26,6,7,3,11,4,5,8,10,9,1,2 +25,11,8,5,9,10,2,4,1,6,3,7 +57,8,10,7,6,5,11,2,3,9,4,1 +150,5,8,10,6,11,9,3,2,7,4,1 +148,8,11,6,3,9,5,4,1,2,7,10 +109,6,9,11,1,7,5,2,4,10,3,8 +63,9,5,7,11,4,10,2,1,6,8,3 +44,10,4,1,11,6,2,9,8,5,3,7 +195,5,7,1,4,3,6,2,10,8,11,9 +90,11,4,7,5,2,10,1,6,3,9,8 +102,3,8,2,9,10,5,7,4,6,11,1 +93,5,4,2,1,3,6,9,11,7,8,10 +146,4,11,3,6,5,9,1,10,8,2,7 +147,6,11,8,3,2,1,4,7,5,9,10 +145,6,7,4,1,5,11,9,8,2,3,10 +96,6,7,9,10,2,5,11,8,3,1,4 +130,7,5,3,11,10,2,4,8,1,9,6 +63,6,2,7,10,4,1,3,9,8,11,5 +61,6,10,3,1,4,8,5,2,7,9,11 +93,7,11,8,10,5,2,6,1,4,3,9 +62,5,4,11,7,2,1,8,10,9,3,6 +102,9,3,11,4,5,8,10,7,6,2,1 +187,10,2,4,11,1,6,5,3,8,7,9 +82,7,10,2,1,4,3,5,9,11,8,6 +57,6,10,7,3,5,8,1,2,9,11,4 +40,10,8,7,11,9,3,4,6,2,1,5 +108,4,6,1,10,3,11,5,7,2,8,9 +68,4,6,3,10,11,5,9,8,7,1,2 +191,5,2,4,7,10,6,3,1,9,11,8 +120,2,4,5,7,10,1,9,3,8,6,11 +67,3,8,2,11,5,10,4,6,9,7,1 +62,8,1,9,10,4,3,6,2,11,5,7 +31,4,9,11,2,5,7,6,1,10,8,3 +82,10,3,9,6,8,4,5,1,2,11,7 +197,5,11,1,8,10,6,4,7,2,3,9 +90,4,1,9,5,2,7,6,10,8,3,11 +159,1,10,2,3,7,9,5,8,6,11,4 +2,9,8,3,1,2,6,4,7,11,10,5 +89,11,5,2,3,6,10,9,1,7,4,8 +18,2,3,11,9,7,4,5,8,1,10,6 +168,7,5,3,11,1,8,6,10,9,2,4 +8,1,2,8,4,10,6,9,5,3,11,7 +142,8,2,6,5,11,9,4,1,3,7,10 +67,10,4,3,9,11,5,1,7,8,6,2 +188,7,1,5,4,9,6,11,10,2,8,3 +115,10,5,6,9,7,8,3,11,4,1,2 +38,5,10,6,3,4,1,2,7,8,11,9 +120,3,7,5,6,2,11,9,4,8,1,10 +159,4,2,11,10,9,5,7,1,8,3,6 +130,3,2,4,10,1,6,9,11,8,7,5 +92,8,9,5,3,7,11,1,10,2,6,4 +29,11,3,1,4,7,8,2,5,10,9,6 +53,6,5,8,11,1,2,4,3,10,9,7 +176,8,11,10,4,1,5,2,7,9,3,6 +21,3,5,4,8,2,1,11,7,10,9,6 +102,5,2,4,11,8,6,1,10,3,7,9 +73,9,5,3,6,11,7,4,2,10,8,1 +38,5,7,6,1,3,10,11,2,9,4,8 +140,7,2,6,5,11,4,8,1,10,9,3 +72,8,10,3,9,7,11,1,5,4,2,6 +122,6,9,4,3,7,2,10,5,8,1,11 +22,1,4,5,7,9,10,11,3,6,8,2 +112,7,6,2,1,10,8,4,5,11,9,3 +164,10,5,2,7,8,9,4,6,1,3,11 +124,9,1,10,2,3,11,6,8,4,5,7 +155,4,9,3,8,6,5,10,2,1,7,11 +180,7,9,8,6,3,4,2,5,1,11,10 +108,1,5,11,4,6,7,8,2,10,3,9 +57,6,2,10,7,3,9,5,4,1,8,11 +131,4,11,5,8,1,6,2,9,10,7,3 +53,7,9,3,8,6,5,1,10,11,4,2 +192,1,10,4,11,5,2,7,6,9,3,8 +28,7,2,8,1,4,10,3,11,9,6,5 +86,11,6,7,9,3,8,1,5,4,10,2 +132,11,7,2,8,4,9,5,6,10,1,3 +173,3,9,5,4,6,2,8,7,10,11,1 +37,1,11,3,6,7,2,8,4,9,5,10 +45,11,9,7,2,8,6,1,10,3,5,4 +41,5,6,4,7,11,1,8,10,3,2,9 +106,8,2,6,4,11,1,9,10,7,3,5 +165,1,3,9,4,7,2,5,11,10,6,8 +139,7,4,2,8,3,6,9,5,10,1,11 +81,4,3,8,9,1,5,10,6,11,7,2 +146,5,7,9,10,11,3,4,2,1,8,6 +76,10,5,1,9,11,8,7,3,2,4,6 +55,1,2,5,3,9,6,4,8,10,7,11 +29,3,4,11,10,8,7,6,2,1,5,9 +62,3,10,9,6,8,2,7,11,5,1,4 +38,5,10,1,7,9,8,3,4,2,6,11 +133,11,10,8,5,6,9,7,4,3,2,1 +41,2,1,5,4,11,3,10,7,6,8,9 +122,7,8,3,11,10,6,2,5,4,9,1 +37,8,1,5,9,3,2,4,11,7,10,6 +37,1,3,5,7,10,4,11,2,6,9,8 +75,6,10,5,7,4,11,8,2,3,1,9 +118,6,11,5,3,7,2,1,10,4,8,9 +185,5,6,9,2,10,8,4,3,11,7,1 +17,3,2,7,6,10,1,8,9,4,5,11 +102,4,3,1,5,8,9,6,11,2,7,10 +159,6,7,3,1,11,4,2,9,5,8,10 +104,1,2,9,11,7,4,8,10,5,6,3 +41,4,10,2,8,7,11,9,1,6,3,5 +167,4,1,5,8,2,3,9,6,7,10,11 +22,3,7,2,5,4,9,10,8,11,6,1 +149,10,1,6,11,7,5,8,9,2,4,3 +67,6,3,7,10,8,9,4,1,11,5,2 +147,5,11,6,7,1,3,8,10,2,4,9 +27,11,9,1,6,4,3,5,7,10,8,2 +124,1,2,10,5,11,3,7,8,4,6,9 +27,8,6,1,4,5,9,2,11,7,10,3 +24,9,7,5,2,8,4,3,6,10,11,1 +15,9,4,10,2,11,8,7,6,1,5,3 +156,8,3,10,1,7,5,9,6,4,2,11 +167,8,2,4,7,3,10,6,9,1,5,11 +82,5,7,8,10,1,9,2,4,11,3,6 +17,9,2,1,5,11,8,6,4,3,10,7 +138,2,7,11,3,6,1,10,8,4,5,9 +142,9,5,10,4,8,6,1,3,2,7,11 +149,1,6,8,4,5,3,2,11,10,9,7 +68,3,1,11,6,10,5,7,2,4,8,9 +68,4,11,1,8,2,9,6,10,5,7,3 +60,9,2,7,11,4,10,6,3,1,8,5 +95,7,4,3,5,10,1,6,9,11,2,8 +73,7,2,1,3,5,6,10,8,9,11,4 +132,1,11,3,10,6,7,9,8,5,2,4 +40,4,7,6,2,11,1,3,9,8,10,5 +36,6,9,7,4,2,8,5,10,1,11,3 +181,11,3,10,2,8,1,9,4,6,5,7 +24,9,2,4,1,7,10,8,5,11,6,3 +77,6,2,9,5,10,11,4,7,1,3,8 +44,3,8,5,9,2,11,1,7,10,6,4 +89,3,1,9,5,10,11,8,4,2,6,7 +123,1,8,7,2,6,10,9,11,5,4,3 +85,1,5,6,8,11,10,4,3,7,2,9 +193,5,4,1,3,8,11,7,6,10,9,2 +81,5,4,2,6,8,7,11,10,3,1,9 +104,4,9,2,10,3,5,6,7,8,11,1 +27,7,4,5,11,3,10,9,6,1,2,8 +159,5,3,8,2,11,1,6,10,4,7,9 +124,7,9,11,8,4,1,3,10,2,6,5 +89,2,4,7,11,3,10,6,9,5,8,1 +149,10,8,11,1,9,3,7,4,2,5,6 +124,1,4,11,6,8,5,9,2,7,10,3 +115,6,4,8,5,1,7,9,11,3,10,2 +174,9,1,2,7,4,10,11,6,8,5,3 +7,5,6,10,11,7,4,8,2,3,1,9 +21,2,8,5,4,1,10,11,9,7,6,3 +51,5,4,11,8,3,2,6,10,1,7,9 +103,8,11,2,7,5,1,10,6,4,3,9 +29,2,11,6,5,1,8,9,7,4,10,3 +122,10,9,3,7,4,5,8,2,6,1,11 +137,10,7,3,6,9,5,1,2,4,8,11 +174,11,8,3,6,2,9,10,4,1,5,7 +24,3,11,7,10,4,2,9,6,5,8,1 +87,11,6,9,3,7,2,5,8,10,1,4 +93,6,5,7,8,11,2,4,10,1,9,3 +166,9,8,2,3,7,1,11,6,4,10,5 +82,3,8,6,5,10,4,9,2,1,7,11 +108,4,8,7,6,2,3,10,11,5,9,1 +64,7,3,6,5,9,10,4,8,2,11,1 +5,8,10,3,2,7,6,4,1,9,5,11 +16,8,9,3,10,5,7,11,6,4,1,2 +157,6,10,1,5,3,11,7,2,4,8,9 +102,4,5,2,7,8,6,11,10,9,3,1 +62,7,4,10,3,6,11,5,9,2,1,8 +78,1,3,2,9,5,11,6,8,4,10,7 +77,9,6,7,3,10,1,8,11,4,2,5 +97,8,11,1,5,7,10,6,2,9,4,3 +13,3,10,2,7,1,11,6,4,8,5,9 +183,3,4,5,7,10,11,1,2,8,9,6 +91,2,4,6,1,9,8,10,7,3,5,11 +165,6,5,7,11,3,4,2,8,1,9,10 +145,7,4,5,11,9,2,3,10,1,6,8 +1,7,2,1,10,3,9,11,5,8,6,4 +75,9,5,10,11,1,4,6,8,3,7,2 +180,3,8,9,4,6,5,1,11,2,10,7 +180,1,7,10,9,3,4,5,6,2,11,8 +162,10,7,5,1,11,3,6,2,4,8,9 +163,10,1,2,3,9,11,5,6,7,8,4 +62,7,9,3,11,6,10,1,5,8,2,4 +69,1,9,3,10,5,2,6,11,7,8,4 +21,10,2,8,7,11,9,6,3,4,1,5 +92,1,6,3,5,9,8,2,7,10,11,4 +153,10,11,8,9,7,3,4,6,2,5,1 +146,1,7,4,10,5,6,11,3,2,8,9 +35,9,2,1,11,7,5,3,10,8,6,4 +15,10,9,5,4,2,3,7,8,11,1,6 +60,1,11,4,6,8,3,9,5,7,10,2 +31,9,8,2,1,4,6,5,11,10,7,3 +6,1,9,11,8,10,6,4,5,2,3,7 +74,11,5,10,4,2,7,8,6,3,1,9 +108,6,9,4,2,8,11,7,10,1,3,5 +24,5,4,6,2,8,9,1,11,3,10,7 +40,3,8,4,9,2,1,11,6,5,10,7 +124,5,1,8,3,4,9,7,10,11,2,6 +45,6,4,1,8,2,9,3,5,7,11,10 +152,7,6,9,5,10,1,8,11,2,4,3 +163,11,5,9,1,7,8,2,6,3,4,10 +62,11,4,6,3,5,9,8,2,1,7,10 +188,7,1,3,9,8,11,4,6,10,2,5 +96,8,9,2,6,1,7,4,5,10,3,11 +79,7,3,5,6,4,10,9,11,1,2,8 +60,7,3,8,6,4,9,10,5,2,11,1 +28,5,11,3,6,9,8,4,7,2,10,1 +83,11,3,9,5,2,10,1,6,7,4,8 +36,6,8,9,5,4,11,2,1,3,7,10 +28,3,10,4,8,1,2,9,6,11,5,7 +147,7,11,3,9,4,6,2,1,8,10,5 +107,3,11,8,7,9,10,6,4,2,1,5 +169,10,5,7,3,9,6,11,4,2,8,1 +182,1,7,10,9,11,8,6,4,5,3,2 +141,11,2,4,1,10,5,6,7,3,9,8 +118,5,8,1,10,7,6,2,3,11,9,4 +35,5,9,11,8,3,6,2,7,4,1,10 +187,9,3,5,10,8,6,11,4,2,7,1 +129,7,5,4,6,2,9,1,8,10,3,11 +198,7,9,4,5,3,10,6,8,11,2,1 +114,5,6,8,1,11,7,2,4,10,3,9 +126,9,3,2,10,6,4,8,1,11,7,5 +182,5,3,1,2,8,4,11,7,10,6,9 +50,10,4,1,2,5,8,6,7,11,9,3 +29,11,5,2,1,9,3,8,4,10,7,6 +160,4,2,7,10,3,11,1,9,8,5,6 +154,11,6,4,2,5,3,1,10,9,8,7 +127,7,1,3,6,4,11,5,10,2,8,9 +171,4,9,1,5,2,3,10,8,11,7,6 +144,4,1,2,6,5,7,9,10,3,11,8 +83,6,7,3,2,10,4,5,11,9,1,8 +21,6,3,9,7,5,8,10,2,1,11,4 +58,10,11,3,1,8,9,2,4,6,5,7 +24,11,2,8,1,10,9,5,7,4,6,3 +106,6,8,9,3,11,5,1,2,4,7,10 +11,6,9,7,2,1,8,10,11,5,3,4 +134,5,2,10,11,4,3,1,9,8,6,7 +164,10,7,1,4,2,5,6,8,3,9,11 +50,11,8,10,6,1,4,2,9,7,5,3 +14,11,7,9,10,1,3,5,2,4,8,6 +24,11,3,6,4,1,8,7,5,10,9,2 +43,10,2,9,3,4,11,5,7,1,8,6 +65,7,8,4,5,1,9,2,6,11,10,3 +103,6,3,9,4,1,8,7,10,2,5,11 +142,2,3,9,6,11,10,5,7,1,8,4 +22,9,6,10,5,11,8,1,4,7,2,3 +102,8,11,3,6,9,5,7,2,10,1,4 +76,4,3,2,7,10,8,1,5,9,11,6 +88,4,3,11,10,1,8,7,9,5,2,6 +159,6,2,5,3,7,9,10,8,1,11,4 +178,8,11,4,2,7,9,5,6,3,1,10 +180,1,10,9,3,6,7,2,5,4,11,8 +149,4,8,9,6,11,5,1,3,7,2,10 +160,1,5,6,2,11,9,8,4,10,3,7 +85,9,4,3,5,2,1,6,7,8,11,10 +144,9,8,11,7,5,1,4,2,10,6,3 +200,8,10,2,1,4,11,9,6,7,5,3 +54,6,10,2,5,7,1,4,3,9,8,11 +23,6,10,11,3,7,4,2,5,1,9,8 +3,10,7,3,1,8,6,11,9,4,2,5 +92,7,3,1,11,2,6,9,10,5,8,4 +160,5,1,10,6,11,7,4,9,8,3,2 +37,6,2,5,7,1,3,4,10,11,8,9 +160,10,3,8,7,9,11,1,6,5,2,4 +102,5,4,9,3,1,6,2,7,10,11,8 +21,4,9,2,6,10,8,3,7,5,1,11 +18,11,2,5,8,6,4,7,3,1,10,9 +35,7,3,9,2,5,4,11,1,10,8,6 +159,4,1,10,11,3,2,5,8,9,7,6 +57,5,8,1,4,9,3,6,2,10,7,11 +175,10,4,1,8,2,9,11,3,7,6,5 +109,7,5,11,9,3,1,10,8,6,4,2 +20,8,4,10,7,11,2,9,6,5,3,1 +7,4,8,3,2,5,6,10,1,7,9,11 +157,3,10,6,4,1,5,11,8,2,9,7 +101,10,2,7,5,6,3,9,4,1,8,11 +46,6,2,11,10,4,9,3,1,5,8,7 +199,8,7,5,3,6,2,1,9,10,4,11 +194,6,11,7,9,8,1,3,4,10,5,2 +178,11,6,10,3,8,4,9,7,2,5,1 +33,6,8,1,10,9,2,4,7,5,3,11 +149,7,3,8,4,1,2,11,10,9,6,5 +181,11,2,9,4,10,7,5,3,6,8,1 +8,9,6,4,5,8,10,2,11,1,7,3 +5,9,5,2,4,3,11,8,7,1,10,6 +19,8,4,10,1,3,7,5,9,6,11,2 +60,1,9,4,2,5,3,11,8,6,7,10 +192,8,6,10,11,3,7,1,9,2,5,4 +139,6,2,7,10,4,9,5,11,8,1,3 +92,2,1,5,3,10,4,9,8,7,11,6 +45,6,9,4,3,7,11,5,8,10,1,2 +189,5,7,1,4,3,11,10,2,8,6,9 +73,3,1,7,9,2,10,5,4,8,11,6 +63,6,5,10,11,8,3,2,1,9,4,7 +41,4,10,11,8,6,7,2,9,5,1,3 +62,1,5,7,6,8,11,2,10,9,4,3 +136,4,10,1,5,3,6,11,7,9,8,2 +31,7,3,5,1,4,2,8,10,6,9,11 +133,11,9,6,3,7,1,8,5,2,10,4 +104,6,2,1,3,5,8,9,7,4,11,10 +187,3,5,2,6,8,4,9,1,7,10,11 +174,4,9,10,1,5,2,11,8,6,3,7 +58,10,11,4,1,3,5,7,2,8,6,9 +28,4,9,7,6,11,8,3,5,2,10,1 +138,7,3,9,4,11,8,6,10,2,1,5 +20,1,3,10,2,9,11,4,8,6,7,5 +149,7,3,4,11,5,6,2,8,1,9,10 +118,7,1,9,11,10,8,6,5,4,3,2 +190,10,7,2,9,3,8,5,1,4,6,11 +192,2,6,1,9,3,7,5,10,8,4,11 +71,5,1,2,10,9,4,6,8,11,7,3 +196,2,9,11,7,5,1,4,10,8,6,3 +74,6,5,1,7,9,4,10,3,11,2,8 +155,1,11,4,3,5,8,6,10,7,2,9 +13,4,5,11,1,3,2,8,10,7,9,6 +36,3,11,8,10,5,6,9,4,7,1,2 +195,5,9,2,11,6,3,1,8,4,7,10 +55,1,7,10,3,5,6,9,11,2,8,4 +153,10,2,4,11,9,8,1,7,6,3,5 +153,7,11,4,1,9,10,5,3,6,2,8 +158,4,6,8,7,2,3,5,1,10,9,11 +89,5,6,11,3,2,1,10,9,7,4,8 +166,4,3,1,10,11,7,6,8,2,9,5 +124,6,8,7,3,5,4,11,2,9,1,10 +190,2,5,6,10,9,3,1,4,8,11,7 +32,2,7,4,5,1,6,8,3,10,9,11 +145,9,3,5,11,7,1,4,6,2,8,10 +157,11,9,3,10,2,1,7,5,8,4,6 +58,3,7,9,11,8,6,10,5,1,2,4 +48,9,10,4,3,2,8,5,7,1,11,6 +172,4,3,11,9,5,6,1,7,8,2,10 +98,9,8,4,11,3,6,5,10,7,2,1 +110,10,6,5,7,8,9,4,11,2,1,3 +190,2,6,11,7,5,3,1,10,9,4,8 +158,6,2,11,5,8,9,1,7,4,10,3 +190,1,2,8,7,4,5,9,10,11,6,3 +120,10,9,7,3,6,8,4,11,2,5,1 +68,8,1,9,6,2,3,4,7,10,5,11 +164,8,7,3,1,9,4,2,11,5,6,10 +68,1,3,8,7,10,4,2,6,11,9,5 +74,3,4,1,8,7,5,6,10,2,11,9 +8,8,3,11,5,4,1,6,7,2,10,9 +172,3,2,8,11,4,6,7,9,10,1,5 +95,2,1,7,9,3,6,11,8,10,5,4 +48,5,10,4,6,7,1,3,8,11,9,2 +14,2,5,10,11,3,8,7,6,1,4,9 +78,8,10,1,7,11,3,2,6,5,4,9 +144,1,2,8,7,5,6,3,9,4,11,10 +70,9,5,1,3,6,8,4,7,10,2,11 +55,11,3,8,6,1,2,5,7,4,9,10 +53,6,3,1,4,7,9,5,10,11,2,8 +93,6,2,7,10,3,1,4,9,8,11,5 +41,4,11,7,6,2,5,10,1,9,8,3 +127,4,11,6,2,8,7,1,10,5,3,9 +141,5,4,7,1,3,2,8,11,10,6,9 +92,2,8,4,10,9,6,11,1,5,3,7 +79,3,10,7,9,2,11,5,1,6,8,4 +59,10,2,9,7,4,8,1,6,3,11,5 +68,2,6,1,3,4,9,11,8,5,10,7 +166,6,8,11,9,2,1,3,7,10,4,5 +21,9,10,2,4,11,8,1,7,3,6,5 +49,6,9,3,5,2,11,8,1,10,4,7 +83,4,9,7,10,8,5,11,3,6,1,2 +180,2,4,11,5,3,6,10,1,8,7,9 +85,10,7,5,4,3,11,1,2,8,9,6 +27,10,6,9,2,1,4,8,11,3,5,7 +112,4,9,5,7,11,6,1,3,2,10,8 +159,4,2,6,3,7,5,10,1,8,11,9 +5,9,5,4,3,7,11,10,6,2,1,8 +76,5,4,9,3,6,11,7,8,10,1,2 +62,5,8,4,6,10,11,2,3,7,9,1 +134,7,10,9,6,1,8,5,2,4,3,11 +106,5,1,11,8,9,3,4,7,6,10,2 +6,2,3,10,4,9,1,11,6,5,7,8 +103,9,1,3,2,11,10,8,6,5,7,4 +67,9,1,11,10,6,2,4,3,5,7,8 +78,3,7,4,2,8,10,9,11,5,1,6 +188,11,6,10,3,8,7,5,9,1,2,4 +49,2,3,4,8,5,9,7,1,10,11,6 +120,4,9,8,10,1,11,5,2,7,3,6 +75,2,1,10,8,6,4,9,7,3,11,5 +109,3,8,11,9,4,2,6,1,5,7,10 +189,9,10,11,5,4,7,2,3,8,1,6 +141,6,10,3,11,7,8,4,9,2,5,1 +165,11,5,6,3,9,7,10,1,2,4,8 +178,7,5,10,8,2,6,4,1,9,3,11 +175,7,2,4,6,10,8,5,1,11,9,3 +182,6,11,7,8,10,5,1,4,3,2,9 +18,5,8,1,4,6,9,2,3,7,11,10 +37,6,2,7,11,3,9,5,8,10,4,1 +8,11,10,8,4,2,6,5,9,1,7,3 +136,5,8,2,1,7,6,10,9,4,3,11 +95,3,11,9,4,2,10,7,6,8,5,1 +178,2,6,8,4,7,5,1,9,10,3,11 +30,9,2,10,5,8,1,4,11,3,6,7 +38,4,5,6,9,2,10,3,11,7,8,1 +3,11,3,4,7,5,2,10,9,8,6,1 +150,4,1,9,3,6,10,5,7,8,2,11 +139,4,8,5,7,9,2,10,11,1,6,3 +111,5,3,9,1,7,4,11,8,2,10,6 +4,8,4,6,5,1,11,10,7,3,9,2 +190,11,7,5,4,6,2,10,1,3,9,8 +88,6,11,4,2,8,7,1,3,10,9,5 +41,5,9,7,10,11,1,6,8,4,2,3 +65,10,4,1,7,5,8,2,11,9,6,3 +9,1,5,7,3,4,2,11,6,8,10,9 +26,5,8,6,9,3,4,7,2,11,10,1 +115,3,8,11,2,4,1,6,9,7,10,5 +196,6,9,3,2,1,4,5,10,7,8,11 +96,3,11,4,10,1,6,5,9,7,8,2 +84,5,8,9,2,10,6,4,11,7,3,1 +103,6,5,3,7,8,10,4,1,9,11,2 +183,11,7,5,2,1,4,9,3,10,6,8 +44,6,4,1,7,5,8,10,9,3,11,2 +56,8,6,7,4,1,11,2,9,10,5,3 +115,4,1,9,5,10,2,3,11,6,8,7 +107,3,11,7,1,10,6,5,4,2,9,8 +93,7,1,6,3,5,2,9,4,8,11,10 +74,7,11,3,2,8,1,4,10,5,6,9 +13,1,6,5,11,2,7,8,10,9,4,3 +88,4,1,9,11,2,7,8,10,6,5,3 +11,11,1,7,2,9,8,4,3,10,5,6 +52,10,11,6,8,2,3,4,7,9,5,1 +75,10,9,4,5,2,1,7,3,8,11,6 +113,10,7,9,5,6,3,2,8,4,1,11 +149,7,11,5,2,9,8,10,6,4,3,1 +192,11,4,6,9,5,10,3,1,2,8,7 +181,11,7,10,5,8,4,9,1,3,2,6 +26,6,10,2,8,1,11,7,5,4,3,9 +189,4,10,8,6,9,11,7,5,3,2,1 +80,4,8,11,3,9,7,6,5,2,10,1 +95,2,8,3,7,10,11,9,1,5,4,6 +35,7,11,1,3,4,2,6,9,8,5,10 +105,9,10,1,7,5,8,4,2,3,6,11 +146,3,11,2,9,1,10,6,5,4,8,7 +178,6,11,5,8,9,10,4,3,7,2,1 +95,7,5,2,9,6,4,11,1,10,3,8 +13,2,3,8,6,11,7,9,10,4,5,1 +200,8,9,7,10,3,5,1,6,4,2,11 +132,6,3,5,1,11,10,2,4,7,8,9 +29,1,5,3,11,6,2,9,4,8,10,7 +146,6,8,1,10,5,7,9,3,11,2,4 +198,9,4,1,2,5,11,6,3,7,8,10 +133,5,1,3,6,8,2,11,9,10,7,4 +59,2,1,8,4,11,10,7,9,3,5,6 +76,6,9,11,5,10,2,3,8,4,7,1 +158,5,6,7,8,2,1,9,4,3,10,11 +163,2,3,5,6,10,4,9,11,8,7,1 +96,10,8,1,11,4,3,9,2,5,7,6 +101,11,5,9,7,6,4,3,1,8,2,10 +81,10,3,9,6,1,7,8,11,2,5,4 +137,1,9,3,7,6,11,5,10,8,2,4 +49,2,8,6,7,5,3,4,11,1,9,10 +54,2,11,1,7,5,6,3,4,8,10,9 +31,3,5,4,10,9,1,6,8,11,2,7 +141,3,9,5,10,6,8,11,2,7,1,4 +1,10,11,7,9,1,8,4,2,5,6,3 +90,9,2,3,7,8,4,11,1,10,5,6 +56,3,11,8,6,9,1,7,5,2,10,4 +69,2,7,6,3,5,8,9,4,11,10,1 +105,3,10,8,6,1,2,5,9,7,4,11 +132,3,8,10,11,5,7,6,1,4,2,9 +146,10,2,5,9,6,8,4,3,1,11,7 +188,5,6,8,7,3,1,2,10,4,11,9 +31,2,6,10,8,3,5,7,9,11,1,4 +135,5,4,10,2,9,6,7,8,11,3,1 +8,9,6,2,3,1,7,10,5,11,4,8 +37,6,9,10,7,5,1,4,11,2,8,3 +125,6,11,3,7,9,5,4,8,1,10,2 +115,9,11,1,10,2,8,6,4,3,5,7 +52,2,9,4,5,6,1,11,10,8,7,3 +75,1,4,8,10,7,9,5,3,6,2,11 +34,1,10,9,8,5,3,11,7,2,6,4 +155,6,9,3,11,4,8,2,10,7,5,1 +71,8,5,6,10,9,2,7,11,1,3,4 +110,4,1,8,2,7,6,5,10,3,9,11 +163,10,11,5,4,3,6,7,2,1,8,9 +6,3,1,4,8,10,7,9,5,11,2,6 +149,9,3,2,7,11,8,1,5,10,6,4 +28,3,1,4,5,8,11,2,10,7,6,9 +13,7,6,9,8,5,4,11,10,2,3,1 +180,2,7,8,1,5,11,3,10,9,6,4 +110,6,11,1,4,2,9,8,5,7,3,10 +135,9,5,4,8,11,1,6,10,3,2,7 +110,6,3,8,10,1,11,4,2,9,7,5 +7,10,11,1,2,7,8,9,6,5,3,4 +119,9,11,5,10,6,4,2,3,1,8,7 +173,9,2,11,10,6,7,3,5,8,4,1 +133,8,2,5,9,7,6,1,3,4,11,10 +85,8,5,6,11,1,2,7,10,3,4,9 +63,10,7,4,5,3,2,11,9,6,1,8 +200,11,10,1,9,3,7,4,5,6,8,2 +111,1,3,8,2,4,7,6,5,10,9,11 +55,7,10,6,9,2,8,1,4,11,5,3 +108,9,11,5,1,8,7,4,6,10,2,3 +194,9,4,5,6,11,3,7,10,2,8,1 +151,8,11,4,3,7,2,1,9,6,10,5 +30,3,9,5,1,2,7,8,6,10,4,11 +136,11,8,4,2,3,10,7,5,6,9,1 +32,11,2,1,7,8,4,6,3,10,5,9 +140,3,6,9,8,1,11,10,4,2,5,7 +144,7,6,5,2,11,1,9,3,10,8,4 +90,6,7,10,5,1,11,3,2,4,8,9 +18,9,3,10,7,8,1,5,2,4,11,6 +59,11,9,5,6,10,8,3,2,7,4,1 +81,2,1,10,7,8,11,6,9,4,5,3 +36,7,1,2,3,4,5,9,8,6,10,11 +37,7,6,8,1,9,10,2,11,5,4,3 +74,6,3,11,1,9,8,7,2,4,5,10 +81,3,10,2,8,9,7,6,11,1,4,5 +95,8,4,7,6,11,5,3,1,9,10,2 +111,4,11,5,1,9,6,7,8,2,3,10 +109,7,3,10,5,8,6,9,11,1,2,4 +39,5,2,10,11,4,6,1,3,7,8,9 +107,5,8,11,6,4,9,3,1,7,2,10 +56,11,5,6,7,4,3,2,8,10,9,1 +159,10,3,1,2,9,8,7,6,4,11,5 +22,8,2,1,3,6,10,7,11,9,4,5 +114,5,2,3,8,11,10,4,9,1,7,6 +108,9,3,4,7,2,11,10,1,6,8,5 +85,7,5,1,10,4,8,11,2,6,3,9 +108,7,9,1,11,3,5,6,10,2,4,8 +43,6,4,1,3,10,7,5,8,11,9,2 +56,3,5,2,8,11,10,7,9,4,1,6 +183,11,1,8,7,6,10,2,4,3,5,9 +137,9,11,3,6,2,1,8,4,5,7,10 +97,1,4,6,2,5,7,9,11,10,8,3 +128,5,1,6,9,11,10,4,2,8,7,3 +181,7,4,2,10,9,8,6,3,1,5,11 +168,2,4,10,3,6,5,7,1,8,9,11 +26,2,4,10,9,6,11,7,3,8,5,1 +193,5,3,6,1,11,9,4,8,7,2,10 +22,2,8,4,3,6,11,10,5,7,9,1 +99,5,2,11,1,7,4,3,6,9,8,10 +62,6,5,8,9,10,7,1,2,11,3,4 +21,8,4,10,6,3,9,2,11,5,7,1 +92,8,5,4,10,7,6,2,9,3,11,1 +133,1,11,5,3,7,2,9,6,8,4,10 +195,2,1,4,3,9,11,8,10,6,5,7 +69,7,6,5,8,9,3,1,4,10,11,2 +8,5,11,9,2,4,6,7,8,1,3,10 +157,8,11,4,6,2,9,1,7,3,10,5 +57,5,7,3,1,4,6,9,10,2,11,8 +142,3,9,5,2,8,7,11,4,6,1,10 +39,8,1,3,7,4,11,5,2,10,6,9 +23,5,6,10,11,2,9,4,3,1,8,7 +140,7,2,5,1,10,3,11,9,8,4,6 +163,3,4,6,8,11,7,1,2,9,5,10 +123,5,10,3,6,4,2,8,11,7,9,1 +11,4,3,6,10,8,2,7,5,9,1,11 +77,10,8,2,6,3,9,4,5,7,11,1 +97,1,4,10,3,5,11,7,8,2,9,6 +102,6,10,8,7,9,5,3,2,1,4,11 +61,6,10,5,7,9,2,8,3,1,11,4 +158,9,3,10,1,11,2,6,5,7,4,8 +82,4,10,8,9,5,7,2,6,11,3,1 +122,3,6,10,11,8,7,2,9,5,4,1 +180,11,6,7,4,3,2,10,9,8,1,5 +9,8,1,4,2,11,6,5,10,3,9,7 +134,8,4,2,5,10,9,7,3,11,1,6 +34,7,2,3,8,6,11,4,1,9,10,5 +149,5,2,7,8,1,3,11,4,10,6,9 +23,1,7,3,10,5,9,2,6,4,11,8 +88,6,5,4,9,10,2,7,1,3,11,8 +48,8,5,6,1,9,7,3,4,2,11,10 +26,1,3,4,9,11,2,8,10,6,5,7 +160,2,7,4,1,3,8,9,10,5,11,6 +197,2,3,10,6,7,1,8,4,5,9,11 +44,9,10,11,4,3,5,2,7,8,1,6 +129,1,11,8,7,10,3,9,4,6,2,5 +151,2,11,5,9,4,8,1,10,3,7,6 +64,9,11,3,6,10,8,4,5,1,7,2 +38,4,1,11,9,7,2,8,6,5,3,10 +112,6,4,3,10,1,9,7,5,2,11,8 +153,11,2,10,3,1,8,7,4,6,9,5 +191,5,1,8,7,9,4,10,2,6,11,3 +111,5,2,4,11,1,3,10,8,6,9,7 +7,11,10,3,9,5,7,2,4,6,8,1 +87,4,1,6,3,11,5,8,7,10,2,9 +93,3,9,4,7,1,10,8,6,5,2,11 +64,1,6,10,9,2,3,5,8,7,4,11 +71,6,7,9,10,5,8,11,1,2,4,3 +119,3,8,5,7,4,2,6,9,1,11,10 +193,1,5,11,9,7,3,10,8,4,2,6 +63,11,8,2,9,7,3,4,6,5,1,10 +132,10,1,6,7,9,4,2,8,11,3,5 +131,7,11,2,1,8,10,5,4,9,3,6 +80,2,6,8,1,11,3,10,7,5,4,9 +82,2,11,10,3,5,6,1,9,8,7,4 +167,10,7,4,9,6,3,1,5,8,11,2 +134,8,5,10,1,7,9,4,6,2,3,11 +24,1,8,9,10,5,7,11,4,3,2,6 +142,1,8,2,6,5,7,9,10,4,11,3 +70,7,1,9,6,11,2,5,8,10,4,3 +87,9,11,8,2,5,10,7,3,6,1,4 +156,9,3,2,10,7,11,5,8,1,6,4 +17,2,3,10,4,9,8,6,11,7,1,5 +178,10,1,4,5,2,7,3,6,9,8,11 +155,2,10,9,5,4,3,7,8,11,1,6 +187,4,9,7,1,10,3,11,8,5,6,2 +151,11,6,10,1,5,4,2,8,3,7,9 +168,9,5,1,6,11,4,2,8,3,10,7 +100,8,5,3,10,6,11,1,4,7,9,2 +132,2,10,1,9,6,5,11,8,3,4,7 +158,3,11,8,10,6,4,9,7,1,5,2 +104,7,9,8,5,10,2,3,11,4,1,6 +155,9,8,10,2,7,1,5,4,3,6,11 +96,10,5,2,8,7,11,9,4,3,6,1 +146,1,4,8,9,10,11,7,6,5,2,3 +138,1,8,3,9,11,5,6,4,7,10,2 +4,7,9,10,2,6,4,3,1,8,5,11 +187,9,4,11,5,8,3,10,2,7,6,1 +3,9,3,10,4,6,7,5,11,8,2,1 +167,10,7,9,2,5,1,11,3,4,6,8 +137,3,7,10,6,9,8,1,5,2,11,4 +135,3,4,10,2,6,9,8,5,11,1,7 +142,7,4,11,8,3,1,10,9,2,6,5 +78,11,2,7,4,9,10,5,6,8,1,3 +32,11,1,3,6,10,9,2,7,5,8,4 +117,2,11,8,6,5,9,10,3,4,1,7 +193,9,1,7,6,5,3,10,8,4,2,11 +140,3,11,9,5,1,8,6,7,4,2,10 +55,3,2,4,6,10,5,8,1,7,9,11 +130,5,10,2,11,7,3,1,8,9,6,4 +130,6,1,8,5,2,9,4,7,11,3,10 +70,1,11,4,9,8,10,3,6,5,7,2 +195,9,1,2,3,11,8,7,10,5,4,6 +23,7,4,9,3,8,5,1,10,2,11,6 +67,6,4,8,3,7,1,10,5,2,11,9 +71,2,11,10,7,4,9,5,3,6,1,8 +95,8,11,10,3,6,7,4,1,2,5,9 +158,9,8,5,3,11,10,1,4,7,2,6 +187,9,6,3,2,8,1,11,5,10,7,4 +99,7,9,11,5,2,4,3,8,6,1,10 +2,7,1,5,6,9,4,3,2,11,8,10 +52,8,11,3,9,7,10,1,4,2,5,6 +128,10,8,11,9,2,7,1,5,4,6,3 +151,4,7,3,9,11,1,8,10,5,2,6 +87,6,3,11,10,8,2,7,4,1,9,5 +60,6,5,11,8,7,2,1,4,9,10,3 +158,3,4,2,10,1,11,7,6,9,8,5 +128,5,3,10,6,1,11,8,2,9,4,7 +150,5,1,6,10,9,11,3,8,4,7,2 +115,9,5,10,7,6,3,2,1,8,4,11 +16,2,9,1,8,5,7,6,11,4,10,3 +126,11,5,7,6,8,4,9,3,10,1,2 +177,1,11,4,2,10,6,9,7,3,8,5 +11,11,3,7,6,9,8,1,10,5,2,4 +183,10,5,11,4,3,7,6,1,2,8,9 +149,8,9,11,6,10,2,1,3,4,7,5 +154,9,11,3,8,6,5,1,2,10,4,7 +14,11,1,6,2,9,5,8,4,3,7,10 +108,2,8,4,5,11,6,9,10,3,7,1 +193,9,2,10,5,8,3,7,1,6,11,4 +144,3,10,5,9,11,6,8,4,1,2,7 +142,10,1,7,8,9,2,6,5,3,11,4 +74,3,8,4,7,6,10,5,11,9,1,2 +110,10,5,2,1,3,6,9,11,8,7,4 +186,10,4,11,9,8,7,1,3,2,6,5 +5,4,9,8,5,10,6,7,3,2,1,11 +183,8,5,6,3,10,2,11,9,7,4,1 +45,6,10,8,3,11,4,1,7,9,5,2 +17,3,2,7,4,1,6,9,10,8,5,11 +199,4,5,8,6,11,10,2,3,1,9,7 +150,6,10,1,4,8,7,11,2,3,5,9 +46,11,7,3,10,4,8,2,1,5,9,6 +94,8,10,5,6,1,7,4,11,2,3,9 +13,1,2,6,10,4,3,11,9,8,7,5 +116,8,7,10,3,11,9,5,4,1,2,6 +129,9,8,2,4,7,3,10,6,5,11,1 +60,5,7,4,1,6,8,9,2,11,10,3 +53,4,9,2,11,3,7,10,5,8,6,1 +150,11,2,3,7,9,6,5,8,4,1,10 +157,7,11,3,9,5,10,1,8,4,2,6 +77,3,5,10,11,6,1,7,8,4,2,9 +36,8,5,6,2,3,1,4,7,10,9,11 +90,2,1,7,5,9,10,11,4,8,6,3 +37,6,4,8,10,2,3,5,11,9,1,7 +31,11,8,4,5,9,3,10,7,6,1,2 +88,2,10,7,11,9,8,1,3,5,4,6 +95,4,8,10,2,3,5,1,11,7,6,9 +116,7,9,10,1,2,4,3,11,6,8,5 +39,10,5,2,7,1,9,11,6,4,3,8 +149,1,11,6,8,7,10,2,4,3,9,5 +144,2,3,4,10,9,6,11,8,1,7,5 +68,5,9,1,6,11,4,7,2,10,3,8 +178,2,9,11,4,8,6,5,7,10,3,1 +3,1,5,6,2,9,8,7,11,10,4,3 +97,1,8,9,3,7,11,6,5,2,10,4 +44,1,11,3,10,6,8,4,7,2,9,5 +15,3,9,6,8,11,5,10,2,4,1,7 +192,5,3,9,2,6,10,11,8,1,4,7 +177,11,3,8,10,5,7,1,9,4,6,2 +105,8,7,1,10,3,4,6,9,5,2,11 +89,1,3,6,5,11,8,2,4,9,10,7 +3,3,5,8,2,7,9,4,10,1,6,11 +81,2,3,7,11,1,8,6,5,10,4,9 +159,3,9,6,7,4,2,10,11,5,1,8 +164,5,2,6,3,4,1,8,9,7,10,11 +47,8,2,10,1,6,9,11,4,3,5,7 +3,7,10,2,5,8,9,1,4,6,3,11 +174,11,7,5,4,8,1,10,3,9,6,2 +138,6,10,4,1,2,11,5,3,9,8,7 +51,8,2,7,3,11,5,6,9,10,1,4 +131,1,8,5,3,6,7,2,4,9,11,10 +16,10,2,4,7,1,8,5,3,9,11,6 +116,10,7,6,8,2,4,5,11,9,1,3 +158,10,9,11,4,8,2,6,7,5,3,1 +164,7,5,6,3,10,1,9,8,11,4,2 +186,4,7,11,3,2,5,8,1,9,10,6 +24,1,8,6,2,9,7,4,10,3,11,5 +189,11,2,5,8,1,6,10,7,4,3,9 +99,1,2,6,11,7,5,4,8,3,10,9 +42,11,2,6,3,10,7,8,5,9,4,1 +193,10,7,9,11,8,6,4,1,3,2,5 +150,3,4,7,8,5,1,11,10,9,6,2 +195,5,7,8,10,3,4,2,9,11,1,6 +112,2,1,8,11,9,6,3,10,7,4,5 +152,5,7,4,10,1,8,9,6,11,3,2 +185,4,7,5,6,9,2,3,1,10,8,11 +66,6,11,3,9,5,7,10,2,8,4,1 +130,10,8,6,1,9,3,7,11,4,5,2 +81,4,11,10,2,6,5,8,7,3,9,1 +186,5,10,11,7,2,9,6,3,8,4,1 +73,1,9,7,8,11,10,4,6,3,5,2 +168,9,3,8,4,6,1,5,7,2,11,10 +64,8,5,1,10,6,7,4,9,11,3,2 +47,9,6,5,3,4,8,1,7,11,2,10 +36,9,3,8,11,4,2,1,6,10,7,5 +24,7,6,2,3,8,1,11,10,4,9,5 +145,2,3,8,11,5,4,1,9,7,6,10 +91,7,4,5,9,6,11,10,3,8,2,1 +49,4,8,7,3,2,6,11,5,10,9,1 +138,3,10,4,2,11,9,1,7,8,6,5 +172,7,3,4,10,8,2,5,9,6,11,1 +20,5,4,2,6,10,3,1,11,8,7,9 +143,7,5,2,10,4,11,9,3,6,1,8 +167,11,1,2,6,7,10,4,9,3,5,8 +111,10,3,1,2,7,9,8,11,4,6,5 +85,3,10,7,9,4,11,8,5,1,6,2 +81,5,10,8,1,6,3,4,2,7,11,9 +95,3,11,4,9,1,10,7,8,6,5,2 +49,7,3,2,6,5,4,11,1,10,9,8 +68,1,6,10,9,2,7,3,5,4,8,11 +115,5,4,9,7,2,6,1,10,8,11,3 +190,6,8,7,2,1,4,11,5,10,9,3 +27,10,1,3,11,9,6,8,7,4,5,2 +51,2,8,1,5,7,4,3,11,9,10,6 +97,7,11,4,3,8,5,1,2,9,10,6 +121,3,5,1,2,4,9,8,7,6,11,10 +167,1,3,2,11,5,7,9,4,8,10,6 +14,7,10,8,1,2,4,9,6,11,3,5 +154,8,5,3,4,7,10,11,9,6,1,2 +93,11,8,2,6,4,7,10,1,5,9,3 +95,5,10,8,11,4,2,9,7,3,1,6 +8,4,1,5,11,7,9,2,8,6,10,3 +98,3,6,1,8,7,5,2,10,11,4,9 +164,9,8,11,2,1,7,4,6,3,5,10 +5,1,3,7,9,6,8,11,5,4,2,10 +99,3,1,4,10,7,9,6,11,8,5,2 +121,2,11,5,6,3,7,10,4,8,1,9 +154,11,4,7,8,2,5,1,6,10,9,3 +1,1,5,2,7,4,9,11,10,6,3,8 +64,5,11,1,8,4,10,7,6,2,9,3 +56,9,3,7,2,6,8,5,4,1,10,11 +156,11,7,6,4,9,2,3,8,5,10,1 +104,6,9,2,4,7,8,1,5,10,3,11 +149,9,4,2,8,1,11,10,5,3,7,6 +101,10,11,8,1,9,2,7,4,3,5,6 +72,11,4,7,6,10,8,9,3,2,5,1 +127,1,3,8,9,7,6,5,2,4,10,11 +200,2,9,3,11,10,1,7,8,5,4,6 +181,10,8,3,9,1,6,5,11,2,4,7 +82,1,9,11,6,10,2,3,7,5,4,8 +103,2,11,4,8,6,9,1,7,3,5,10 +16,4,9,1,6,2,8,10,7,5,3,11 +108,5,3,11,1,10,2,9,7,8,6,4 +149,10,3,4,1,6,8,9,2,11,7,5 +155,6,10,2,4,9,11,1,7,5,8,3 +46,7,2,6,1,8,5,4,9,11,3,10 +130,10,5,2,7,11,8,6,9,3,1,4 +159,6,8,2,4,11,10,5,9,7,3,1 +144,2,3,9,7,4,6,11,1,10,8,5 +146,11,8,5,7,6,1,4,3,2,9,10 +51,8,1,5,7,2,9,11,4,6,10,3 +4,2,4,5,3,1,6,10,8,11,9,7 +82,9,11,2,3,7,10,4,5,6,8,1 +8,7,2,8,10,9,4,6,1,5,11,3 +168,4,11,1,7,6,10,9,2,8,5,3 +111,11,2,7,9,8,6,4,1,3,10,5 +138,10,7,1,5,8,3,11,9,4,6,2 +96,5,7,6,3,2,4,10,1,8,11,9 +165,1,10,2,6,4,11,7,5,9,8,3 +28,5,9,11,2,8,1,6,3,10,4,7 +36,8,2,7,5,9,1,4,10,3,11,6 +62,7,11,5,1,4,6,10,3,2,8,9 +145,7,5,6,9,3,4,11,2,8,10,1 +122,6,9,11,7,8,2,5,10,1,3,4 +59,8,4,7,11,3,6,5,9,1,2,10 +119,8,5,9,4,11,2,1,10,3,7,6 +145,6,9,11,3,7,1,8,10,5,2,4 +97,8,11,5,3,9,10,4,2,1,7,6 +9,4,1,6,2,7,8,11,9,10,3,5 +113,4,9,3,1,11,6,7,2,8,5,10 +66,4,6,8,9,2,3,10,1,7,11,5 +141,11,3,4,5,1,7,8,2,10,6,9 +127,11,10,8,2,4,6,1,5,7,9,3 +47,4,6,5,8,1,10,11,3,7,9,2 +139,9,4,10,5,7,2,8,3,1,11,6 +138,6,4,7,5,2,8,9,10,1,11,3 +123,11,9,7,3,10,4,6,8,5,1,2 +125,4,2,9,3,1,7,11,8,6,10,5 +53,5,7,4,2,3,10,8,1,6,11,9 +174,9,7,4,8,1,3,5,11,2,6,10 +15,7,3,11,6,2,9,4,8,1,10,5 +131,5,7,3,2,1,11,4,9,10,8,6 +161,3,9,4,7,11,6,1,10,8,2,5 +54,3,9,6,11,7,4,2,5,1,10,8 +198,1,5,8,7,9,11,6,2,4,3,10 +6,8,7,5,9,11,3,10,2,4,1,6 +153,4,5,11,7,3,10,9,6,8,2,1 +23,1,2,7,4,5,3,8,11,9,6,10 +26,6,5,10,4,11,3,8,2,7,1,9 +16,5,1,8,6,11,4,9,7,2,3,10 +167,3,4,1,7,2,6,8,11,9,10,5 +114,11,10,9,7,6,3,1,8,5,4,2 +128,3,11,5,7,8,6,1,9,2,4,10 +107,5,3,1,11,4,7,6,10,2,8,9 +36,10,6,1,9,4,11,5,2,7,3,8 +96,11,4,3,9,6,2,7,5,1,10,8 +190,6,3,11,1,10,8,2,4,5,9,7 +72,4,6,3,7,10,1,9,2,5,8,11 +59,8,7,9,6,3,5,10,2,4,1,11 +155,7,8,2,4,11,10,9,6,3,1,5 +13,4,2,5,7,11,9,3,8,6,10,1 +83,7,4,5,11,2,6,8,9,1,10,3 +172,11,4,7,10,6,5,8,3,1,9,2 +49,4,3,6,7,8,2,10,11,1,9,5 +147,11,5,7,10,9,8,4,1,6,2,3 +119,7,2,3,11,1,9,5,8,4,10,6 +190,3,7,2,10,8,4,1,5,6,9,11 +190,5,4,1,6,9,8,10,3,11,2,7 +160,1,8,7,2,10,9,6,11,5,4,3 +97,1,11,9,6,5,7,4,10,3,2,8 +8,6,7,3,8,5,1,4,11,9,10,2 +24,1,10,2,3,4,6,11,7,5,8,9 +89,2,7,3,9,8,1,11,10,5,6,4 +3,8,2,7,3,9,6,11,1,10,5,4 +18,6,8,11,3,2,10,7,9,1,5,4 +118,3,1,5,6,11,4,10,8,7,2,9 +89,5,11,2,3,7,8,9,10,6,1,4 +65,2,3,1,7,5,8,6,11,9,4,10 +109,4,10,3,2,5,11,1,9,6,7,8 +195,9,6,10,7,4,3,8,5,2,11,1 +98,1,5,7,9,4,11,2,6,10,3,8 +176,11,10,4,3,1,7,5,9,2,8,6 +100,3,7,2,10,6,1,4,9,8,11,5 +32,1,11,3,2,7,8,5,4,10,9,6 +127,5,3,4,1,11,9,7,6,8,2,10 +52,7,4,6,8,1,9,10,3,5,11,2 +7,5,3,6,7,9,8,4,11,10,2,1 +52,8,3,10,5,4,7,11,1,9,2,6 +95,3,10,7,11,2,9,6,8,4,5,1 +131,7,6,4,11,2,5,8,9,10,3,1 +36,6,3,5,2,4,1,7,8,10,11,9 +159,8,7,3,10,5,6,1,9,4,2,11 +31,9,5,6,10,11,7,2,4,3,8,1 +66,11,8,10,7,9,4,2,3,5,1,6 +46,11,9,3,5,2,8,7,1,4,10,6 +151,6,9,1,2,10,7,3,11,4,5,8 +166,6,1,10,7,3,9,4,2,11,5,8 +123,10,11,4,9,7,1,3,8,6,5,2 +110,4,3,9,1,8,5,10,7,11,2,6 +199,11,8,10,7,1,9,3,2,4,6,5 +1,5,7,6,4,1,3,2,10,9,11,8 +84,9,10,3,5,2,1,7,6,11,8,4 +96,7,4,3,5,2,8,9,6,11,1,10 +81,7,1,6,8,10,2,9,4,3,5,11 +198,9,2,11,5,6,4,7,8,10,1,3 +199,5,8,9,2,11,10,4,3,7,6,1 +122,8,4,11,5,1,3,6,2,10,7,9 +82,3,10,6,11,2,4,1,8,5,9,7 +195,6,4,10,3,9,7,1,2,11,5,8 +27,6,5,1,8,9,10,7,2,4,3,11 +54,2,5,6,3,10,8,9,11,7,4,1 +198,8,5,10,3,4,11,7,6,2,9,1 +132,10,6,9,1,4,11,5,3,7,2,8 +82,7,1,11,4,6,8,9,3,5,2,10 +142,3,4,8,7,6,9,2,1,10,5,11 +177,8,1,9,10,6,5,11,3,7,4,2 +58,11,7,3,6,2,8,5,9,4,10,1 +113,6,9,3,4,11,2,1,8,10,5,7 +196,11,8,3,2,5,1,4,9,7,10,6 +85,2,1,9,8,6,11,3,4,10,5,7 +88,5,9,10,7,11,6,1,2,8,4,3 +186,10,4,2,11,1,9,5,3,6,8,7 +165,3,2,10,9,11,8,5,1,6,7,4 +102,6,7,5,9,4,10,1,2,11,8,3 +114,2,8,6,9,7,5,3,11,10,1,4 +141,11,1,9,6,2,7,5,4,8,10,3 +19,10,2,8,4,3,7,6,1,9,5,11 +104,2,3,6,11,10,7,5,1,8,9,4 +175,6,11,9,4,10,8,1,2,7,3,5 +7,2,11,6,9,7,5,1,4,3,8,10 +115,4,3,10,8,7,5,6,1,2,9,11 +31,11,9,2,5,4,8,3,7,10,1,6 +43,1,9,3,4,7,6,8,11,5,2,10 +138,4,2,11,9,3,8,1,5,10,7,6 +121,11,7,8,5,9,2,1,6,4,3,10 +30,8,2,7,4,10,9,1,5,11,3,6 +91,9,3,2,8,11,6,4,7,1,5,10 +63,9,3,8,10,5,11,7,6,2,4,1 +151,1,7,3,8,11,2,6,10,5,9,4 +84,5,4,9,8,1,7,2,6,10,3,11 +96,10,4,3,9,6,1,8,5,7,11,2 +1,10,6,7,3,8,2,9,1,5,11,4 +71,3,8,4,2,6,10,7,1,11,5,9 +121,8,11,4,7,2,5,6,1,10,9,3 +192,10,6,8,1,9,7,3,4,5,11,2 +117,8,7,10,11,2,1,6,3,4,5,9 +23,9,7,5,2,6,8,10,11,4,3,1 +95,10,6,11,2,4,7,5,1,9,3,8 +68,4,7,5,11,9,2,1,10,8,6,3 +170,2,9,10,11,8,7,6,3,4,1,5 +100,1,3,4,8,6,10,7,2,5,11,9 +12,10,9,1,11,2,4,5,8,3,7,6 +1,5,2,11,10,1,8,6,9,4,7,3 +136,7,2,10,5,9,8,11,6,4,3,1 +34,4,10,3,11,8,6,5,1,7,2,9 +122,3,4,2,7,5,8,6,11,9,1,10 +176,4,9,3,2,7,6,5,8,10,1,11 +116,4,11,5,10,6,1,7,8,3,2,9 +74,10,7,11,2,3,9,1,8,4,6,5 +50,8,9,11,6,2,3,7,1,10,4,5 +147,10,8,6,3,5,2,7,9,11,1,4 +27,5,11,3,6,4,1,9,8,10,7,2 +164,1,6,10,8,4,5,2,7,11,3,9 +122,1,5,3,6,10,2,7,9,8,11,4 +18,1,6,7,8,2,11,10,9,5,3,4 +176,1,9,6,2,7,3,8,10,5,4,11 +101,5,4,11,9,8,7,2,6,1,10,3 +151,8,5,10,1,9,7,3,4,11,2,6 +82,7,8,6,5,3,11,9,10,2,4,1 +110,11,1,10,9,8,3,7,5,4,2,6 +95,6,4,3,7,10,9,2,1,8,5,11 +87,9,11,6,4,10,2,5,1,8,7,3 +70,6,1,8,3,5,11,4,2,10,9,7 +184,10,4,6,1,3,7,11,2,5,8,9 +14,1,10,2,9,7,3,6,11,5,4,8 +121,1,8,4,10,2,3,6,9,7,5,11 +120,7,11,6,3,10,9,1,5,4,8,2 +163,2,7,8,1,11,9,5,3,6,4,10 +86,7,4,3,6,11,1,8,9,10,2,5 +97,10,7,5,9,1,6,3,11,2,4,8 +71,9,10,8,11,1,3,4,7,2,6,5 +42,8,5,7,4,10,9,3,1,11,2,6 +142,10,6,5,4,3,2,1,9,7,11,8 +1,8,7,10,11,2,3,4,5,1,6,9 +159,3,8,7,11,5,4,1,6,2,10,9 +196,8,6,7,5,2,1,4,10,11,3,9 +114,11,1,7,6,3,10,8,4,5,9,2 +73,9,11,6,8,3,4,1,5,10,2,7 +30,9,11,10,8,5,3,2,4,1,7,6 +116,6,9,10,2,7,11,8,5,3,1,4 +127,10,9,6,3,8,5,11,1,7,4,2 +70,7,1,2,11,6,8,3,10,9,4,5 +113,1,10,5,4,11,6,2,8,7,9,3 +94,4,10,6,11,2,8,5,7,9,1,3 +198,7,8,1,3,11,10,9,2,5,6,4 +50,10,11,1,4,2,6,5,8,7,3,9 +162,5,11,9,8,3,7,2,6,10,1,4 +96,10,8,3,2,4,5,1,11,7,6,9 +97,8,7,6,3,1,4,11,10,2,9,5 +179,6,3,1,10,7,5,9,2,11,4,8 +147,2,4,1,11,3,9,6,5,10,8,7 +13,4,8,5,10,6,2,9,1,3,7,11 +33,11,2,10,4,8,6,3,7,5,9,1 +144,10,3,4,2,7,9,11,8,5,6,1 +103,11,1,8,4,9,6,2,3,5,7,10 +69,2,9,1,10,5,4,6,7,11,3,8 +177,5,4,6,7,1,9,11,2,10,8,3 +167,4,6,1,2,8,11,3,10,9,5,7 +97,10,11,1,3,7,9,4,2,5,8,6 +71,10,3,4,9,1,11,8,5,7,2,6 +176,8,7,6,11,3,1,2,5,10,9,4 +129,6,8,10,4,1,2,9,7,3,5,11 +139,3,9,7,1,10,6,2,5,4,8,11 +151,1,11,7,8,10,5,4,2,3,6,9 +104,1,7,5,10,9,6,8,3,11,2,4 +165,8,5,3,1,4,7,6,11,2,10,9 +88,10,3,5,7,8,6,1,2,11,4,9 +10,6,3,10,1,11,4,2,9,7,8,5 +168,9,7,6,4,10,1,8,3,2,5,11 +166,9,6,4,5,11,8,2,3,7,1,10 +87,6,3,2,1,11,8,5,10,4,9,7 +73,3,1,2,8,4,7,9,11,6,10,5 +138,11,8,7,10,3,4,9,6,2,1,5 +139,8,1,6,9,7,4,10,11,2,5,3 +191,8,11,4,9,1,3,10,5,2,7,6 +84,3,2,9,4,11,6,1,5,7,8,10 +111,11,8,5,6,1,3,9,2,4,10,7 +110,9,11,2,5,4,1,3,8,10,7,6 +142,1,7,9,5,2,11,4,3,10,6,8 +141,10,6,5,1,4,2,8,7,3,9,11 +189,4,8,10,7,3,6,1,9,5,2,11 +0,7,8,11,3,4,9,2,6,5,10,1 +132,4,1,3,2,6,7,9,10,11,5,8 +162,10,6,7,9,3,8,1,5,2,4,11 +150,9,4,6,1,3,5,8,11,2,7,10 +105,7,2,3,10,5,6,9,11,1,8,4 +49,5,9,2,8,10,6,3,7,4,11,1 +45,9,7,6,1,3,2,10,4,5,8,11 +165,4,6,1,7,3,8,5,9,2,11,10 +195,7,8,11,9,4,2,1,6,10,3,5 +10,8,11,5,4,9,2,1,3,7,10,6 +50,5,11,4,8,10,2,7,6,3,1,9 +167,4,5,6,2,7,11,10,9,8,3,1 +101,5,9,3,8,11,4,10,1,2,6,7 +152,11,9,1,3,2,8,5,6,7,4,10 +14,6,8,2,1,9,5,11,10,3,7,4 +129,6,11,3,2,9,4,10,7,1,5,8 +162,4,1,6,10,2,11,5,9,7,8,3 +99,5,2,6,8,11,3,1,9,7,4,10 +65,4,9,2,3,8,10,7,6,5,11,1 +93,7,5,9,10,3,6,1,2,8,11,4 +44,8,1,9,2,4,6,11,7,3,5,10 +185,7,1,10,11,6,3,4,8,5,2,9 +172,11,8,7,1,3,6,10,9,5,4,2 +63,3,7,5,6,9,10,1,2,8,4,11 +48,9,2,6,10,1,4,5,3,8,11,7 +35,10,6,8,9,1,3,4,2,11,5,7 +186,7,1,4,2,9,10,6,8,5,3,11 +110,6,9,8,11,5,4,1,7,10,3,2 +178,1,7,10,8,6,11,4,2,3,5,9 +22,10,4,8,2,5,1,11,6,9,3,7 +123,2,8,11,9,3,5,4,7,1,10,6 +2,4,3,9,11,10,5,8,2,7,1,6 +129,4,8,6,5,3,9,2,10,11,1,7 +30,7,6,2,5,9,4,1,3,8,11,10 +16,5,3,9,6,11,8,10,7,1,4,2 +148,7,4,9,1,6,5,3,8,10,11,2 +25,8,4,10,7,5,1,9,2,3,11,6 +46,9,10,7,3,1,8,2,6,5,11,4 +119,9,5,4,3,10,11,1,6,7,8,2 +141,7,9,8,11,10,2,1,3,5,6,4 +41,3,4,6,8,5,2,1,7,9,11,10 +77,1,7,4,2,5,8,6,3,10,9,11 +102,7,10,3,6,9,2,1,11,4,8,5 +129,8,3,1,2,4,5,10,11,9,7,6 +87,6,4,9,7,3,8,2,1,5,11,10 +1,11,4,7,3,10,1,5,6,9,2,8 +125,2,9,5,1,4,8,6,11,7,3,10 +91,6,4,10,9,11,3,8,7,2,5,1 +8,4,9,1,8,7,5,6,11,10,2,3 +192,1,9,6,8,11,10,4,5,7,2,3 +81,6,9,4,3,11,1,5,10,7,2,8 +28,8,6,7,1,3,11,9,2,5,4,10 +137,5,1,4,6,10,9,3,7,2,8,11 +164,4,8,7,9,11,5,3,2,6,10,1 +73,1,2,7,6,8,3,9,5,4,10,11 +131,6,10,2,9,3,5,1,11,4,8,7 +16,5,11,3,1,10,6,4,8,7,9,2 +178,11,1,10,9,7,4,2,3,6,5,8 +160,11,9,3,4,6,7,5,8,10,2,1 +187,11,5,9,7,10,2,4,1,8,6,3 +123,11,9,4,6,2,10,3,1,5,8,7 +148,7,6,8,4,3,11,1,10,9,2,5 +145,8,1,5,3,7,4,11,9,6,2,10 +57,10,11,5,9,1,7,6,4,8,2,3 +134,4,2,1,6,5,9,10,8,3,7,11 +54,1,4,8,2,3,5,10,9,11,6,7 +75,10,7,3,9,5,2,11,1,8,6,4 +131,1,5,6,4,2,10,9,7,8,3,11 +80,11,5,6,2,7,1,10,8,9,4,3 +157,7,9,8,1,2,5,4,6,11,3,10 +168,8,9,5,3,10,2,7,11,1,6,4 +123,7,1,4,10,8,5,11,9,2,6,3 +170,7,6,11,9,10,5,3,1,8,4,2 +52,7,8,10,11,2,3,1,4,6,9,5 +140,7,6,1,3,2,9,4,5,11,8,10 +54,10,11,7,1,9,2,5,6,4,3,8 +131,10,1,7,8,4,6,9,2,11,3,5 +157,11,1,9,4,10,7,2,5,6,3,8 +153,6,4,9,2,11,7,5,1,3,10,8 +95,4,2,11,10,1,9,3,5,7,8,6 +188,10,6,5,1,2,9,8,4,3,7,11 +125,6,5,11,1,2,8,7,10,9,4,3 +8,1,2,3,7,11,10,9,5,6,8,4 +86,1,10,11,5,6,7,4,3,2,8,9 +197,10,6,1,5,8,9,2,4,3,7,11 +83,10,4,5,7,2,3,1,8,6,11,9 +36,4,1,9,11,3,8,5,7,10,6,2 +148,11,10,4,9,8,1,2,6,5,7,3 +8,11,9,6,8,2,1,7,4,10,5,3 +151,5,11,7,10,8,6,1,2,9,3,4 +13,10,4,11,9,7,8,5,6,3,2,1 +128,5,3,2,11,9,4,8,1,7,6,10 +67,5,1,2,8,4,7,10,6,3,9,11 +36,11,9,10,1,7,8,6,3,5,4,2 +115,8,9,6,4,2,10,3,1,5,11,7 +25,6,1,11,4,2,5,3,7,9,8,10 +8,2,1,3,9,8,10,7,4,11,5,6 +173,1,6,8,11,9,3,7,2,5,10,4 +165,7,4,1,2,6,11,10,5,8,9,3 +21,10,2,9,4,6,1,3,11,7,5,8 +41,6,9,10,7,3,4,5,1,11,8,2 +53,8,5,6,1,11,9,2,7,10,4,3 +175,3,1,5,4,2,10,9,11,6,7,8 +172,2,4,1,7,8,10,11,9,3,5,6 +6,9,1,7,11,6,8,2,5,3,10,4 +165,10,5,11,8,7,4,6,3,9,1,2 +109,4,6,3,2,9,10,5,7,8,11,1 +110,10,9,5,7,2,3,6,4,11,1,8 +0,7,3,1,9,10,11,5,2,4,6,8 +150,9,11,5,6,7,4,1,8,10,2,3 +46,10,3,2,9,1,6,11,5,8,7,4 +132,2,11,3,10,6,4,9,8,1,5,7 +51,6,10,2,11,8,9,5,1,3,4,7 +43,10,3,11,2,4,9,5,8,6,7,1 +116,11,1,7,2,10,3,5,6,8,9,4 +91,7,11,2,6,3,4,1,5,9,10,8 +131,3,1,7,2,8,11,6,10,5,4,9 +57,2,5,7,6,1,11,4,9,8,10,3 +72,8,4,6,2,10,7,11,3,5,9,1 +138,9,2,6,11,1,8,10,7,3,5,4 +32,10,3,5,9,4,2,8,11,6,1,7 +175,11,6,7,9,2,1,10,8,3,4,5 +189,8,6,2,9,4,5,1,11,10,3,7 +72,8,5,11,7,10,2,6,3,1,9,4 +96,4,10,5,8,6,11,9,1,2,3,7 +30,10,1,6,11,4,9,7,3,5,8,2 +74,1,4,7,6,8,11,5,10,2,9,3 +166,4,7,8,2,9,1,5,11,6,3,10 +40,6,11,9,4,7,10,3,1,5,2,8 +21,8,9,7,5,2,4,3,6,10,11,1 +189,1,8,6,3,9,5,7,11,2,10,4 +135,4,5,2,9,3,8,7,10,11,1,6 +5,8,4,5,7,1,11,2,9,6,10,3 +62,6,7,4,11,1,10,2,3,5,9,8 +81,4,8,3,6,11,9,7,10,2,1,5 +34,4,3,10,7,11,5,2,1,9,8,6 +109,1,8,7,9,2,3,6,10,5,4,11 +149,11,9,6,4,8,2,1,10,7,5,3 +190,1,9,2,7,4,10,5,3,8,6,11 +81,2,5,1,7,8,3,9,4,6,11,10 +114,2,5,4,3,6,10,9,7,11,8,1 +63,5,10,3,6,7,4,11,8,2,1,9 +16,7,3,11,2,6,1,4,9,10,8,5 +41,10,5,9,8,6,11,1,2,3,7,4 +124,10,2,9,5,3,11,1,4,7,6,8 +115,7,11,2,6,10,9,4,8,5,3,1 +96,9,3,10,7,2,5,6,1,4,8,11 +71,10,3,9,8,1,4,5,11,2,6,7 +112,8,9,5,2,6,7,4,10,1,11,3 +180,2,7,3,4,5,1,6,10,8,9,11 +154,10,6,8,11,5,9,7,1,3,2,4 +191,2,1,5,4,3,9,8,6,10,11,7 +90,3,7,8,1,10,2,6,11,9,5,4 +12,7,10,2,6,8,5,11,9,1,4,3 +39,9,4,5,3,7,11,6,2,1,10,8 +146,4,7,3,6,9,8,2,11,1,5,10 +61,5,2,4,8,10,11,3,7,9,1,6 +190,4,11,10,2,7,8,1,9,5,6,3 +137,10,9,6,7,3,2,8,11,5,1,4 +114,5,7,11,8,10,4,9,2,6,1,3 +58,1,4,2,7,3,8,11,6,9,5,10 +168,5,8,11,3,4,7,1,2,6,10,9 +150,11,3,1,10,7,5,9,6,2,4,8 +108,9,3,6,10,4,11,7,5,2,1,8 +87,10,1,11,5,2,6,9,7,4,8,3 +53,10,9,1,6,7,11,3,2,5,4,8 +26,7,4,3,6,11,9,2,5,10,8,1 +13,4,7,5,3,11,9,8,6,2,10,1 +122,11,8,5,10,3,6,2,4,7,9,1 +155,4,2,3,6,10,9,8,5,11,1,7 +123,4,8,3,5,9,11,6,1,10,7,2 +67,4,6,11,7,1,8,9,5,3,10,2 +94,9,2,3,11,5,6,4,7,10,1,8 +157,3,6,2,9,8,4,7,11,1,10,5 +1,8,3,9,7,1,2,4,11,6,10,5 +163,5,1,6,7,10,9,2,4,3,8,11 +93,3,5,4,2,11,6,1,9,8,10,7 +198,7,8,9,3,2,5,11,6,1,10,4 +137,7,8,5,3,10,4,6,1,2,9,11 +120,9,10,8,7,3,4,11,1,2,6,5 +195,9,6,5,2,10,1,8,7,4,3,11 +15,2,9,5,8,11,7,10,3,1,6,4 +200,7,9,1,10,6,5,8,3,4,2,11 +116,5,4,1,7,9,3,10,6,8,11,2 +121,7,6,10,2,3,5,4,11,1,8,9 +78,10,8,2,3,4,11,1,9,7,6,5 +168,5,6,10,7,9,8,11,3,2,1,4 +175,10,1,9,5,8,4,2,7,6,11,3 +28,9,3,4,8,5,7,2,10,11,6,1 +122,2,7,9,10,5,6,3,11,1,4,8 +168,3,6,8,7,5,4,1,2,10,11,9 +12,3,11,5,9,7,8,10,1,6,4,2 +50,6,4,2,5,3,1,11,10,9,7,8 +183,1,3,9,6,11,7,4,2,5,10,8 +146,3,6,11,4,5,10,8,2,7,9,1 +101,4,11,7,6,5,10,2,3,9,1,8 +30,2,11,4,7,9,5,10,1,8,3,6 +121,8,4,3,10,2,5,7,9,1,11,6 +161,7,8,5,11,6,4,3,2,1,10,9 +200,4,8,3,6,11,10,9,2,5,7,1 +68,7,1,10,3,11,9,6,2,5,8,4 +113,9,8,2,7,3,11,4,1,10,5,6 +145,4,8,9,10,3,7,6,1,5,11,2 +193,4,5,10,9,11,2,6,8,7,3,1 +22,7,8,6,2,5,1,3,4,9,10,11 +117,5,2,6,3,10,1,4,7,11,9,8 +42,1,6,3,11,2,10,5,7,4,8,9 +198,1,10,5,7,8,4,9,11,2,6,3 +156,1,11,5,9,7,2,10,6,8,3,4 +191,8,5,10,6,11,9,4,3,7,2,1 +50,2,7,4,1,6,5,9,8,11,3,10 +199,5,9,10,11,2,4,1,8,3,7,6 +144,4,5,6,2,7,10,3,8,1,9,11 +185,11,10,9,3,1,5,2,6,7,4,8 +165,10,4,7,8,3,2,9,5,11,1,6 +42,11,5,2,1,8,4,3,10,9,7,6 +82,1,7,10,3,9,2,5,4,11,8,6 +31,8,7,10,5,9,11,3,2,4,1,6 +62,2,5,11,9,6,8,1,4,10,7,3 +27,8,2,3,9,7,10,6,5,1,4,11 +67,4,3,10,6,9,2,11,5,7,1,8 +76,10,3,5,1,8,9,7,2,4,6,11 +103,11,10,7,8,5,6,2,4,9,3,1 +192,9,10,7,2,4,6,5,1,8,3,11 +48,6,7,9,10,4,2,3,5,1,11,8 +125,9,2,8,1,11,3,4,7,10,6,5 +195,3,5,9,4,8,7,11,2,1,6,10 +70,3,10,7,6,11,9,8,5,4,2,1 +71,3,4,8,7,11,5,6,10,1,9,2 +34,5,8,4,9,1,2,3,7,6,10,11 +31,6,5,7,3,2,9,1,10,11,8,4 +66,11,7,2,5,4,10,9,6,8,3,1 +91,6,1,9,10,7,11,4,8,2,5,3 +122,11,2,7,10,9,4,1,6,5,8,3 +107,3,5,4,10,7,6,9,8,1,11,2 \ No newline at end of file diff --git a/input-13c-2000r b/input-13c-2000r new file mode 100644 index 0000000..aa22240 --- /dev/null +++ b/input-13c-2000r @@ -0,0 +1,2015 @@ +13 +1,a +2,b +3,c +4,d +5,e +6,f +7,g +8,h +9,i +10,j +11,k +12,l +13,m +201786,201786,2000 +78,7,4,1,8,11,5,2,13,10,3,6,9,12 +21,12,8,10,11,4,9,3,2,7,1,6,13,5 +14,12,6,13,9,11,4,10,8,3,5,2,7,1 +184,1,11,4,5,12,8,9,13,3,10,2,6,7 +160,9,3,11,6,1,12,4,8,10,7,2,13,5 +153,13,10,7,3,9,1,4,11,12,2,5,6,8 +66,12,11,8,7,3,5,1,10,4,6,13,2,9 +189,3,6,9,10,13,5,2,11,1,12,4,7,8 +172,9,4,11,8,5,6,10,3,12,7,1,13,2 +104,7,11,1,6,12,13,8,5,3,4,9,10,2 +158,9,7,13,11,3,5,6,8,4,1,10,2,12 +4,10,13,12,5,8,1,2,11,7,6,4,9,3 +115,1,3,2,5,13,7,8,12,11,10,6,9,4 +149,3,5,10,13,6,12,4,11,8,7,1,9,2 +162,10,9,1,13,4,3,6,11,12,7,5,8,2 +79,4,8,6,2,5,13,3,9,1,11,12,7,10 +167,4,12,3,1,5,11,7,6,9,10,13,8,2 +32,2,1,8,12,7,11,13,3,5,9,4,6,10 +113,6,2,13,8,5,12,4,9,10,1,11,7,3 +199,13,9,7,4,10,6,12,3,1,11,8,2,5 +165,5,11,8,3,7,10,9,13,2,4,6,12,1 +184,8,5,2,1,9,13,7,4,12,11,6,3,10 +104,1,12,8,2,10,13,6,5,3,4,9,7,11 +76,7,2,6,11,12,13,4,5,9,3,10,8,1 +131,9,11,3,4,8,12,6,1,5,10,7,13,2 +81,7,13,5,4,10,8,6,2,1,11,12,9,3 +127,3,7,12,6,9,2,4,10,13,11,5,8,1 +3,6,11,9,1,7,10,4,2,5,13,3,12,8 +78,12,11,6,4,3,7,9,8,1,2,13,10,5 +65,3,4,11,10,9,5,8,1,6,7,2,12,13 +110,3,7,13,8,10,1,6,2,11,5,4,12,9 +26,12,3,8,7,4,10,9,1,2,11,13,5,6 +149,12,1,9,13,4,8,10,7,11,2,3,6,5 +111,5,12,9,6,2,7,4,8,3,10,13,1,11 +183,9,10,4,11,12,7,8,2,13,6,5,3,1 +72,13,6,7,12,8,4,2,11,3,9,10,5,1 +69,9,6,2,11,3,7,1,12,13,10,4,5,8 +145,10,13,1,5,12,9,8,3,4,7,6,11,2 +125,1,12,6,7,11,5,13,9,2,3,8,4,10 +34,2,11,6,8,10,12,3,9,1,4,13,7,5 +85,10,6,11,8,3,7,2,1,5,12,13,9,4 +10,4,12,11,9,2,6,5,13,8,3,10,7,1 +196,7,6,3,11,9,12,2,13,1,10,5,8,4 +150,3,9,13,5,1,2,6,4,7,11,10,8,12 +92,4,13,5,11,9,10,2,12,1,8,7,6,3 +59,1,11,4,6,10,2,7,12,13,3,5,8,9 +83,13,6,8,7,2,4,9,3,5,10,1,11,12 +127,9,7,4,13,10,6,11,8,3,5,1,2,12 +51,7,10,6,5,13,11,8,9,2,12,3,4,1 +66,13,3,10,9,8,4,12,11,6,5,2,7,1 +91,6,4,1,2,7,13,11,12,8,5,9,3,10 +46,7,1,8,3,4,9,11,2,6,10,12,13,5 +139,10,5,6,1,8,13,3,9,12,7,2,4,11 +34,7,12,1,8,5,4,6,10,2,11,3,13,9 +19,1,5,11,12,4,3,9,6,2,7,8,13,10 +160,11,7,3,13,8,2,10,6,9,5,1,12,4 +176,10,4,11,12,8,2,7,6,3,9,13,1,5 +15,10,13,12,2,3,7,8,4,9,1,5,6,11 +16,8,10,7,12,4,11,9,5,13,2,6,1,3 +167,13,6,7,10,2,1,9,5,11,8,3,4,12 +59,1,7,8,11,12,2,9,3,6,13,5,10,4 +195,12,2,9,13,3,11,10,4,7,8,6,1,5 +121,6,12,4,5,2,1,10,3,9,13,11,8,7 +172,1,8,4,5,13,6,11,2,7,3,9,12,10 +188,3,5,9,6,12,10,1,11,7,4,13,2,8 +155,5,3,8,13,9,2,11,4,10,6,12,7,1 +123,7,12,13,10,1,11,4,8,3,2,9,6,5 +63,2,9,1,7,5,6,10,4,12,3,8,11,13 +189,3,5,9,13,10,11,12,7,4,1,6,2,8 +33,8,6,4,1,7,10,11,3,13,12,9,2,5 +32,10,5,11,4,12,8,6,13,7,9,3,2,1 +98,4,6,1,10,2,12,11,3,13,8,5,9,7 +97,5,9,10,7,1,11,2,13,8,4,12,3,6 +178,9,7,6,10,2,3,11,12,8,1,5,13,4 +151,5,10,9,6,7,11,1,4,8,12,2,13,3 +65,2,7,5,11,1,8,6,13,3,4,10,12,9 +34,7,9,8,4,3,11,1,10,12,2,5,6,13 +30,4,12,13,11,10,1,2,9,6,8,3,7,5 +12,2,1,7,5,6,13,3,8,11,12,9,4,10 +168,4,6,3,8,1,2,7,11,13,10,5,12,9 +160,10,5,4,11,9,8,7,13,2,3,1,6,12 +12,1,2,3,8,11,10,6,9,5,13,12,7,4 +6,9,6,8,3,4,2,13,5,12,10,1,11,7 +102,4,12,6,11,3,13,8,10,5,9,1,2,7 +174,7,2,12,5,8,13,10,9,11,4,6,1,3 +15,13,2,4,5,6,10,9,11,3,7,12,8,1 +20,6,3,8,11,9,4,13,7,1,10,2,5,12 +13,11,10,4,7,12,8,13,9,5,2,1,3,6 +152,5,13,2,6,10,11,4,8,1,9,12,3,7 +18,4,11,10,5,9,12,2,6,8,7,13,3,1 +20,11,10,1,7,6,13,8,4,5,3,12,9,2 +48,7,10,5,3,13,12,9,11,4,6,1,8,2 +72,3,9,6,7,5,1,11,2,4,8,10,12,13 +5,3,8,2,10,11,1,13,5,12,6,7,9,4 +173,4,12,2,6,3,1,5,10,11,13,7,8,9 +127,10,7,1,5,2,4,8,9,3,6,12,13,11 +197,1,6,3,11,10,13,9,12,2,7,4,8,5 +63,8,5,9,2,7,4,6,12,13,3,11,10,1 +83,1,5,2,9,10,8,3,4,6,12,7,11,13 +14,13,5,3,1,4,12,7,9,11,10,6,8,2 +107,8,12,2,9,6,13,3,1,5,11,10,4,7 +174,12,3,9,4,11,10,1,8,7,5,6,2,13 +33,1,2,6,9,10,13,12,3,4,8,11,5,7 +71,6,9,3,5,12,10,1,2,11,13,8,4,7 +40,5,9,10,8,3,6,4,1,7,12,11,2,13 +32,9,12,13,8,3,11,1,6,4,5,2,10,7 +61,9,2,6,1,10,5,4,12,11,3,7,8,13 +58,10,1,13,11,6,8,5,9,3,2,4,12,7 +59,2,12,6,9,10,4,3,13,8,5,11,7,1 +8,12,5,10,11,4,3,2,9,8,1,13,6,7 +136,2,4,1,6,10,8,9,5,13,3,12,11,7 +85,6,8,12,5,4,13,1,7,10,11,9,2,3 +25,5,4,1,8,7,9,6,13,11,10,3,12,2 +177,3,4,13,6,8,11,10,9,7,2,5,1,12 +97,6,11,1,8,9,3,13,2,10,5,12,4,7 +113,6,9,7,4,2,8,13,5,1,3,11,12,10 +85,8,7,6,5,1,9,3,2,4,10,13,11,12 +192,10,1,13,11,7,6,9,12,4,5,2,8,3 +92,8,6,4,13,10,5,2,12,3,11,9,7,1 +177,9,8,3,2,1,12,11,10,7,13,4,5,6 +16,1,9,3,5,4,12,7,13,10,8,2,6,11 +108,9,13,4,8,2,6,10,1,5,3,12,11,7 +22,11,8,7,3,13,9,5,10,4,1,2,6,12 +57,13,2,10,9,8,3,7,6,4,1,5,12,11 +133,3,12,9,4,2,7,13,8,5,1,10,6,11 +173,4,7,13,12,6,5,3,9,10,11,2,8,1 +38,6,5,13,3,1,9,7,12,2,11,10,8,4 +188,9,4,13,5,12,2,10,7,8,3,1,11,6 +173,9,7,1,11,13,12,5,8,6,10,3,4,2 +118,12,11,2,3,5,6,10,9,4,13,8,7,1 +109,9,7,12,5,8,10,11,6,2,3,13,4,1 +54,9,7,3,5,8,12,10,4,6,2,1,13,11 +105,1,9,6,5,4,7,13,11,12,3,8,2,10 +115,11,12,9,4,6,13,5,1,10,3,7,8,2 +12,9,12,11,8,5,13,3,1,4,7,2,10,6 +78,11,2,13,7,3,5,8,6,10,9,4,1,12 +15,10,9,11,7,5,1,4,3,2,6,12,13,8 +197,13,3,12,11,4,7,10,5,1,8,2,6,9 +159,3,13,2,1,12,10,11,4,6,7,8,5,9 +60,10,3,12,5,13,7,8,6,4,2,9,1,11 +131,10,11,6,5,12,4,8,9,13,7,1,3,2 +157,1,8,13,6,12,11,10,2,9,7,4,3,5 +48,1,4,8,13,2,12,9,7,5,11,10,6,3 +137,1,13,11,12,3,9,6,7,5,2,4,8,10 +64,9,1,5,7,4,11,2,13,3,12,8,6,10 +8,7,4,9,1,11,2,12,6,5,13,3,8,10 +153,2,13,4,3,12,9,6,11,7,10,5,1,8 +26,1,3,6,7,11,4,10,9,12,13,2,5,8 +93,13,4,11,6,1,9,12,7,10,8,5,2,3 +152,12,10,1,9,4,8,2,3,7,11,13,6,5 +18,3,1,6,8,2,13,10,7,9,4,11,12,5 +138,6,7,2,1,13,4,10,11,12,3,9,5,8 +73,13,6,9,11,5,7,10,1,12,3,2,4,8 +146,5,8,9,4,11,13,12,3,1,10,7,6,2 +100,11,9,5,7,13,2,4,1,12,6,8,10,3 +94,7,10,9,4,12,13,11,8,3,1,5,2,6 +119,8,7,11,10,3,12,2,4,9,5,13,6,1 +70,11,2,9,1,13,8,3,6,5,12,4,7,10 +77,9,6,1,2,12,5,13,8,3,11,10,7,4 +130,4,2,9,11,6,3,12,8,5,1,7,10,13 +28,12,6,9,10,8,7,3,4,13,1,2,5,11 +103,7,4,13,9,3,10,8,12,5,2,11,1,6 +96,9,13,7,5,1,4,12,10,3,8,2,11,6 +108,9,1,5,11,13,3,2,10,7,6,4,8,12 +193,5,4,11,13,9,1,8,7,6,12,2,3,10 +74,6,11,12,10,8,2,3,9,1,13,5,7,4 +57,3,10,8,12,6,2,1,9,7,4,11,5,13 +96,3,1,5,11,6,9,12,7,2,10,4,8,13 +200,7,4,12,1,3,5,2,11,9,10,13,8,6 +161,9,1,11,7,4,2,12,10,13,8,3,6,5 +177,1,10,13,5,9,7,4,8,2,11,6,12,3 +115,7,2,13,9,10,3,11,12,5,6,8,1,4 +134,7,8,6,10,9,11,13,2,1,12,3,5,4 +194,3,12,5,11,8,10,2,9,1,7,4,13,6 +142,12,9,8,3,5,13,4,7,1,6,2,10,11 +39,10,12,7,5,9,1,4,6,2,3,8,11,13 +58,8,10,9,3,7,5,6,13,1,4,12,2,11 +0,5,8,13,6,12,4,1,2,10,7,11,9,3 +103,10,9,1,5,7,13,12,2,6,4,8,11,3 +21,5,7,6,12,11,13,3,10,2,4,9,1,8 +179,5,9,13,11,4,7,2,12,1,3,10,8,6 +196,10,5,7,6,8,2,4,9,3,13,12,1,11 +188,3,13,4,7,11,6,9,1,12,8,2,10,5 +33,2,8,3,5,12,7,9,11,1,6,13,4,10 +98,7,2,3,6,9,10,4,8,13,12,1,5,11 +152,3,6,4,5,9,13,2,10,12,8,1,7,11 +135,7,12,4,11,6,2,3,10,1,13,8,9,5 +13,13,4,1,10,3,7,6,9,11,12,8,2,5 +165,9,13,6,8,2,12,7,11,5,4,3,10,1 +80,5,4,2,8,3,1,9,7,6,12,10,11,13 +82,7,1,6,10,8,12,4,13,11,2,9,5,3 +90,10,12,2,5,9,11,1,4,13,6,3,7,8 +56,2,3,9,11,8,6,4,13,10,1,12,7,5 +138,9,5,10,11,2,13,6,8,12,3,1,4,7 +190,11,2,12,13,3,6,9,5,10,8,7,4,1 +145,6,1,3,5,8,4,9,11,12,7,10,13,2 +190,7,2,11,10,5,4,8,9,12,3,13,6,1 +194,8,6,3,13,4,1,10,9,5,2,11,7,12 +56,1,7,9,13,10,6,5,3,12,4,8,2,11 +143,9,4,1,3,13,7,12,6,8,2,10,5,11 +168,8,13,10,7,4,5,12,3,6,1,9,11,2 +79,7,2,9,10,12,13,11,5,6,4,3,1,8 +66,4,12,5,7,6,8,2,11,10,9,3,1,13 +184,12,2,8,6,13,11,10,7,1,4,5,3,9 +48,7,4,1,11,13,10,5,2,9,8,12,6,3 +170,5,4,13,1,12,2,3,7,8,9,11,6,10 +168,13,5,3,7,1,4,8,2,11,6,12,9,10 +121,10,12,8,7,9,5,1,6,13,11,4,3,2 +64,2,6,1,5,4,13,8,10,11,3,7,9,12 +102,5,7,11,1,8,4,3,2,13,10,12,9,6 +72,3,2,4,12,13,9,7,11,10,5,8,1,6 +128,3,13,1,5,4,8,7,10,2,9,12,11,6 +133,8,13,12,4,2,7,5,10,11,1,9,3,6 +83,2,7,9,6,8,4,1,5,10,3,11,13,12 +123,8,10,12,7,11,13,5,6,3,2,4,1,9 +192,9,5,4,8,6,7,11,13,1,2,10,3,12 +4,4,5,9,11,2,12,3,10,13,8,7,6,1 +173,13,5,10,6,2,1,3,11,9,4,12,8,7 +100,7,4,12,9,10,11,13,8,5,3,2,1,6 +200,5,13,8,6,12,4,11,10,9,2,1,7,3 +115,7,8,12,11,6,4,5,9,10,1,2,3,13 +11,12,8,11,1,5,13,2,6,10,9,3,4,7 +36,13,2,12,7,8,4,3,11,10,5,9,6,1 +124,6,9,5,2,10,13,11,7,12,4,1,8,3 +176,4,1,13,6,10,9,5,11,7,12,8,2,3 +148,4,7,12,13,3,8,1,5,2,10,6,11,9 +26,12,9,1,7,3,10,5,4,8,2,13,11,6 +139,7,3,12,9,11,13,2,1,8,5,4,6,10 +134,5,2,4,10,8,9,1,7,3,13,6,11,12 +159,2,8,9,10,13,4,1,6,11,7,12,3,5 +71,10,13,12,1,2,3,11,6,5,8,7,4,9 +179,3,4,10,2,6,11,12,8,9,13,7,5,1 +150,4,9,13,2,3,7,12,8,11,6,10,1,5 +135,4,8,11,3,2,6,12,9,13,7,10,5,1 +47,4,3,12,11,5,13,8,2,7,10,1,9,6 +130,1,8,11,7,13,2,10,9,6,12,4,3,5 +192,3,9,6,7,12,4,1,13,11,5,10,2,8 +82,5,9,11,13,10,2,8,4,3,6,7,12,1 +167,9,8,6,12,5,11,7,1,13,10,2,3,4 +165,8,1,9,12,6,3,7,10,4,2,11,13,5 +112,12,9,3,7,6,2,11,4,5,8,1,10,13 +124,8,10,2,1,4,7,12,3,9,6,5,13,11 +33,5,9,12,4,2,10,8,1,6,11,13,7,3 +192,3,1,9,6,2,12,10,11,5,4,8,7,13 +158,12,8,6,3,9,4,1,2,13,10,7,11,5 +165,7,4,8,11,1,9,12,3,2,13,6,5,10 +137,4,8,3,6,1,13,10,2,11,9,5,12,7 +168,2,3,8,9,1,12,4,5,10,13,11,6,7 +74,13,8,11,12,9,4,5,1,10,3,6,2,7 +75,4,10,7,2,8,1,11,9,5,3,12,13,6 +65,2,12,10,5,3,1,4,6,11,8,13,7,9 +149,11,5,8,9,13,4,7,2,3,10,6,1,12 +150,8,6,13,12,3,7,10,5,4,9,1,2,11 +178,6,12,10,1,7,11,2,5,8,4,13,9,3 +73,12,10,8,4,13,9,5,2,11,7,6,3,1 +161,12,5,6,2,8,4,7,10,3,1,9,11,13 +80,2,10,7,11,1,9,12,3,4,5,8,6,13 +134,2,4,9,7,6,10,8,11,13,1,3,5,12 +197,10,12,6,5,2,3,1,9,13,8,4,7,11 +82,11,9,12,7,13,2,10,5,1,6,8,4,3 +58,7,10,3,11,12,1,13,8,6,2,9,5,4 +98,12,4,8,3,7,11,5,1,10,6,9,2,13 +38,1,3,12,13,5,8,6,7,9,11,2,10,4 +5,10,11,6,4,13,2,12,5,1,9,7,3,8 +27,7,9,3,2,11,13,4,10,1,12,8,5,6 +132,11,8,5,9,2,6,7,4,3,12,10,13,1 +166,3,8,2,7,4,10,9,13,1,11,12,6,5 +154,4,11,5,8,3,7,12,2,1,6,10,9,13 +147,1,10,2,12,8,6,7,3,4,5,13,11,9 +22,3,9,8,1,5,10,4,6,7,2,11,13,12 +34,10,7,1,12,13,2,3,6,5,11,9,4,8 +64,7,2,8,6,4,3,5,13,11,1,10,12,9 +183,3,12,9,1,2,4,11,7,6,10,8,13,5 +119,10,13,4,5,2,11,1,9,6,8,12,3,7 +159,9,6,4,5,1,10,2,7,13,12,3,8,11 +91,4,2,3,13,9,6,8,7,12,5,11,10,1 +33,2,1,12,10,5,9,11,6,7,8,3,13,4 +89,6,12,7,4,9,11,10,3,5,1,8,13,2 +191,3,12,7,11,10,8,9,6,5,2,4,13,1 +89,12,3,10,1,6,5,9,7,4,8,13,2,11 +188,4,9,10,7,12,1,3,6,13,11,8,5,2 +183,3,12,10,2,4,11,13,1,8,9,7,6,5 +195,1,6,13,12,8,3,7,5,10,4,9,2,11 +72,8,4,9,11,2,3,1,10,6,13,5,12,7 +164,5,1,10,12,4,7,13,3,6,2,9,11,8 +163,10,11,1,13,2,3,5,7,4,8,12,9,6 +5,8,7,4,9,11,13,5,2,1,12,10,6,3 +23,12,1,7,3,9,11,10,8,5,13,4,6,2 +159,6,2,10,12,3,1,11,5,9,7,8,4,13 +187,13,1,4,9,10,6,11,5,8,2,7,3,12 +80,7,3,4,12,11,1,6,10,9,13,2,8,5 +33,10,6,1,4,9,7,11,3,2,13,8,5,12 +44,2,12,5,3,6,10,11,13,1,7,8,4,9 +180,3,2,10,13,5,7,1,6,11,12,4,8,9 +110,4,1,9,2,11,10,13,3,5,12,6,8,7 +22,4,6,1,3,9,2,10,13,7,8,5,11,12 +18,6,3,10,8,12,9,2,4,11,7,13,5,1 +170,7,10,4,2,8,3,6,5,9,11,13,1,12 +81,3,1,2,9,10,6,12,11,5,7,4,8,13 +50,5,1,10,8,6,3,11,13,4,9,7,12,2 +169,9,3,11,2,8,6,5,13,12,4,7,10,1 +52,7,12,8,10,11,13,2,3,6,9,1,4,5 +192,6,2,7,10,4,12,9,1,3,13,5,11,8 +167,3,10,13,9,8,12,7,4,2,6,5,1,11 +147,5,6,9,12,1,10,4,2,13,7,8,3,11 +53,7,6,10,5,8,12,3,2,9,13,1,11,4 +96,9,5,13,11,10,1,7,12,8,3,2,4,6 +188,3,5,1,12,8,9,7,11,13,6,4,10,2 +186,10,8,13,7,9,1,3,4,6,11,2,5,12 +43,12,13,3,9,7,4,8,6,1,10,5,11,2 +25,7,9,10,4,1,12,8,3,6,2,13,5,11 +125,1,10,2,5,11,12,4,13,7,3,6,8,9 +105,3,13,11,7,9,4,2,10,1,5,6,8,12 +141,9,12,6,13,3,4,8,11,2,1,5,10,7 +43,11,10,3,9,7,13,8,5,6,1,4,2,12 +46,11,7,3,10,6,8,4,9,12,1,5,13,2 +7,1,6,5,7,10,9,3,2,4,8,13,11,12 +9,12,1,4,13,10,5,3,11,2,8,6,9,7 +153,9,3,7,13,1,10,5,4,2,11,12,8,6 +124,13,10,5,6,4,8,9,3,2,11,12,1,7 +37,7,5,12,2,3,8,10,11,13,4,6,9,1 +163,4,1,3,7,5,9,2,6,12,13,11,10,8 +186,10,8,3,1,7,4,11,5,9,2,13,6,12 +42,13,4,7,5,11,12,2,6,1,9,8,3,10 +95,4,12,5,2,11,10,1,8,6,3,7,13,9 +19,4,3,12,13,1,2,7,11,6,10,8,5,9 +176,3,9,1,8,10,4,13,2,5,12,7,11,6 +187,10,3,5,6,1,4,9,11,13,7,12,8,2 +190,7,11,5,3,9,4,6,8,12,10,2,13,1 +105,6,4,7,8,11,2,13,1,5,3,12,10,9 +127,6,13,3,7,9,8,5,4,1,11,10,12,2 +22,9,5,8,13,2,3,7,4,10,1,6,11,12 +158,6,10,3,9,7,1,13,4,11,12,5,8,2 +95,4,7,1,2,9,13,6,3,10,12,11,5,8 +25,9,8,5,6,10,13,11,7,12,4,3,2,1 +147,10,5,8,1,9,7,12,13,2,3,4,11,6 +121,13,2,4,8,5,3,1,10,7,11,6,9,12 +8,3,5,7,8,2,12,6,4,1,9,13,11,10 +89,12,4,13,9,11,5,1,2,6,10,8,7,3 +184,3,6,13,2,11,1,5,10,9,12,8,7,4 +156,3,1,10,5,13,9,11,8,12,2,4,7,6 +26,3,10,9,5,11,12,4,2,1,8,7,6,13 +59,11,2,12,13,8,9,10,4,6,5,3,7,1 +31,2,6,13,10,3,9,8,11,5,7,1,4,12 +113,5,12,8,6,10,1,4,9,7,13,2,3,11 +135,13,8,6,2,1,7,3,4,10,11,9,12,5 +185,1,8,2,12,5,13,4,7,9,10,11,6,3 +65,7,11,12,4,8,2,3,5,6,13,1,10,9 +172,7,8,10,3,4,6,9,12,13,11,5,1,2 +88,4,8,2,6,10,9,3,1,11,13,12,7,5 +96,7,4,11,12,2,10,3,8,1,5,6,13,9 +64,2,4,13,8,10,11,9,7,6,1,5,3,12 +89,12,11,7,13,1,5,10,6,2,3,8,9,4 +132,11,7,6,2,1,5,13,3,8,4,12,9,10 +134,8,9,12,2,10,4,3,1,6,13,11,5,7 +195,4,5,13,8,10,3,12,6,7,1,2,9,11 +51,12,5,6,1,10,11,4,9,7,13,2,8,3 +95,8,1,6,10,2,3,4,5,11,13,9,12,7 +128,7,10,3,1,2,11,4,13,6,8,5,12,9 +159,13,11,6,3,7,9,12,2,1,8,5,4,10 +105,5,2,10,11,1,9,4,13,12,3,8,6,7 +164,2,1,3,5,7,4,13,10,8,11,12,9,6 +142,12,6,7,9,8,13,2,5,11,4,1,10,3 +36,13,8,4,12,9,3,2,10,11,5,1,7,6 +160,9,4,6,11,8,3,7,12,10,1,2,5,13 +111,10,4,13,6,12,5,2,9,7,3,8,11,1 +33,6,9,2,7,10,4,3,8,12,13,1,5,11 +30,10,9,4,7,1,5,8,13,11,3,12,6,2 +192,6,1,10,3,11,4,12,8,9,7,2,5,13 +51,6,13,7,2,1,8,3,4,12,10,5,11,9 +56,9,12,8,5,1,2,4,7,3,10,6,13,11 +21,3,5,4,2,1,13,9,11,12,6,7,10,8 +193,2,4,12,7,11,10,8,1,5,6,13,9,3 +177,9,1,8,13,2,10,12,3,6,4,11,5,7 +146,10,11,8,7,9,4,6,2,5,12,3,13,1 +56,7,1,9,8,3,11,13,4,6,10,12,5,2 +23,4,1,12,8,13,6,2,9,3,11,10,7,5 +54,9,3,2,5,6,7,12,10,1,4,8,11,13 +163,1,13,12,6,9,7,10,8,11,2,4,3,5 +51,3,4,11,13,2,5,12,8,6,1,10,9,7 +176,8,1,9,13,2,10,7,11,3,5,4,6,12 +59,13,5,3,2,9,12,7,8,11,6,4,10,1 +91,6,10,13,12,4,5,1,2,3,8,9,11,7 +15,4,11,1,12,13,5,10,7,9,8,3,6,2 +117,11,9,4,5,7,8,2,12,3,13,10,1,6 +86,7,6,9,2,4,8,10,1,5,11,3,13,12 +70,11,7,3,5,6,10,4,12,8,1,2,9,13 +40,6,4,7,2,11,13,5,10,9,3,12,8,1 +101,4,1,13,11,8,6,10,3,2,9,7,5,12 +136,6,12,11,3,10,7,8,13,5,2,4,9,1 +132,1,12,2,10,13,8,3,4,7,6,11,5,9 +68,4,3,7,12,1,5,9,8,6,2,13,11,10 +9,4,13,12,7,9,11,3,8,6,10,5,1,2 +85,2,8,5,13,10,7,4,6,12,1,3,9,11 +198,9,8,5,1,6,10,11,7,12,2,3,13,4 +182,12,4,5,6,2,8,11,1,3,13,7,9,10 +198,6,4,10,12,7,3,1,5,2,9,8,11,13 +124,11,7,4,12,13,6,5,3,1,10,9,2,8 +169,3,5,12,8,9,10,11,6,7,2,13,4,1 +22,6,11,10,9,12,8,4,13,5,3,1,2,7 +56,1,8,13,2,12,11,6,5,3,9,7,4,10 +97,3,10,9,1,11,2,7,5,12,8,13,6,4 +86,10,5,11,6,1,4,9,13,8,2,7,3,12 +163,7,3,12,10,4,13,9,8,6,1,5,11,2 +140,1,9,5,2,10,7,4,12,3,8,6,13,11 +100,7,9,8,5,11,12,13,1,6,2,3,4,10 +147,2,1,3,4,9,5,13,6,12,8,11,10,7 +98,4,10,1,12,7,3,9,6,2,5,11,8,13 +162,1,9,13,12,5,11,10,6,4,3,2,8,7 +143,6,4,5,2,12,10,13,1,3,7,8,11,9 +40,11,9,8,3,5,2,1,4,12,13,10,6,7 +157,3,2,4,7,11,6,1,13,8,9,10,12,5 +48,8,11,10,7,1,13,4,6,3,2,5,12,9 +149,3,9,8,7,1,6,4,10,2,12,5,11,13 +150,4,3,6,1,12,7,9,11,2,8,13,5,10 +173,5,11,9,1,13,2,3,7,12,8,6,10,4 +175,9,2,12,6,11,10,7,5,3,1,4,8,13 +184,4,2,8,11,6,1,13,5,9,7,10,3,12 +175,1,9,6,4,13,12,8,2,10,7,3,5,11 +23,8,10,1,9,3,12,6,11,13,7,5,2,4 +199,4,1,8,7,9,12,2,11,13,5,10,3,6 +150,12,5,6,8,1,9,2,7,10,4,13,11,3 +107,1,13,11,8,4,7,12,6,10,3,9,5,2 +15,1,3,13,12,2,8,4,11,10,6,5,9,7 +116,6,8,11,1,9,3,7,10,13,5,12,2,4 +121,13,7,6,4,1,9,5,8,12,10,3,11,2 +181,4,7,13,5,6,2,8,11,10,1,12,3,9 +21,12,1,6,3,11,5,4,8,10,13,9,7,2 +183,11,9,1,4,6,10,3,13,12,5,8,7,2 +7,5,12,2,13,1,11,8,10,7,3,9,6,4 +14,9,12,13,11,1,5,6,10,3,8,7,2,4 +121,8,10,12,4,3,7,2,1,11,6,5,13,9 +44,11,2,4,10,5,12,1,9,3,13,8,7,6 +74,13,12,7,2,11,8,5,9,6,1,10,3,4 +63,4,12,1,11,3,7,8,2,9,13,5,6,10 +177,11,3,8,1,2,12,5,7,4,10,6,13,9 +102,11,4,6,7,13,2,8,12,9,1,10,5,3 +148,11,13,10,8,4,12,5,1,7,6,3,2,9 +10,5,10,2,7,6,4,8,9,3,12,11,13,1 +93,9,2,5,12,3,4,6,10,8,1,11,7,13 +76,10,8,2,12,11,13,9,1,7,5,3,6,4 +128,3,11,2,13,9,5,12,4,10,6,7,8,1 +29,4,9,3,5,10,1,7,13,6,12,2,8,11 +133,3,8,11,5,7,9,13,2,1,4,10,12,6 +76,10,2,5,9,11,13,12,4,1,3,8,6,7 +10,5,8,4,13,3,11,12,6,7,2,1,10,9 +136,3,5,8,7,6,2,12,10,1,4,11,9,13 +190,3,7,13,10,8,9,2,6,1,4,11,12,5 +140,13,9,11,10,8,5,6,12,2,1,4,3,7 +0,8,5,6,9,3,11,1,7,2,10,4,12,13 +50,1,8,9,6,10,7,4,13,12,2,11,5,3 +116,11,1,13,2,12,5,10,7,3,6,8,4,9 +118,13,5,12,7,10,9,2,11,8,4,1,6,3 +44,3,4,13,2,1,12,7,11,10,8,6,5,9 +24,2,13,12,1,9,5,3,10,11,8,7,6,4 +141,3,12,9,8,6,11,7,1,10,13,5,2,4 +154,6,11,7,12,13,2,4,3,5,10,8,9,1 +45,12,9,3,6,10,7,2,5,8,13,1,11,4 +148,4,8,6,12,2,7,13,1,10,9,3,11,5 +160,8,6,10,4,3,9,5,12,1,7,2,11,13 +122,7,1,5,13,12,11,10,9,4,6,8,3,2 +21,5,2,13,11,8,4,1,10,3,7,12,6,9 +29,12,6,4,1,9,11,10,8,5,7,2,3,13 +6,7,5,11,12,1,2,4,8,3,10,9,6,13 +64,6,11,2,10,5,7,4,1,8,9,3,13,12 +195,3,13,10,8,4,5,12,2,6,1,7,9,11 +62,7,6,11,4,9,3,13,12,5,2,10,1,8 +61,5,10,4,6,2,13,8,12,7,3,11,9,1 +155,7,6,11,2,12,5,8,13,3,1,10,4,9 +82,10,3,6,13,11,8,2,12,9,1,4,7,5 +175,10,1,5,9,4,12,2,6,8,11,13,3,7 +157,8,2,12,13,10,7,11,1,3,9,6,5,4 +45,1,11,3,5,10,12,8,13,4,6,9,2,7 +92,8,4,10,3,9,6,11,13,2,7,5,12,1 +183,3,13,4,9,8,10,5,11,12,6,2,1,7 +17,6,1,10,4,9,12,2,11,8,13,7,5,3 +11,11,7,2,9,12,3,4,5,13,6,8,1,10 +123,5,13,8,3,10,12,11,9,1,6,4,2,7 +22,10,8,2,4,11,13,7,6,3,12,9,1,5 +34,11,1,6,12,4,3,5,13,2,9,8,10,7 +41,1,13,3,5,4,7,9,6,11,8,10,2,12 +137,4,12,13,5,3,11,6,7,1,8,10,2,9 +181,2,4,1,9,12,10,8,11,7,13,3,6,5 +162,3,9,11,5,8,2,10,12,4,1,13,6,7 +64,10,11,9,3,1,6,4,12,7,2,5,8,13 +124,11,3,10,12,9,7,6,1,2,13,4,8,5 +185,6,2,5,7,10,11,3,4,9,8,13,12,1 +152,5,3,1,8,2,12,6,11,10,7,13,9,4 +104,7,1,2,12,4,10,11,9,5,3,13,8,6 +194,12,10,8,11,3,6,13,9,5,7,2,4,1 +117,6,5,1,10,7,13,8,2,9,12,3,11,4 +143,8,9,6,4,5,7,3,13,11,12,10,1,2 +55,11,7,12,13,9,1,3,2,6,5,4,10,8 +111,12,2,8,5,3,4,13,11,6,7,9,10,1 +118,11,6,12,3,9,5,8,7,10,4,1,2,13 +175,7,13,2,9,12,1,3,6,5,8,10,11,4 +83,1,13,8,5,9,6,4,12,2,7,11,3,10 +55,8,4,5,6,2,12,3,9,10,1,13,11,7 +15,9,6,7,8,5,1,10,12,11,2,4,13,3 +195,13,10,11,1,2,12,5,4,7,3,9,6,8 +195,2,9,13,7,5,10,8,3,6,1,11,4,12 +27,6,3,11,13,7,10,1,5,4,8,9,2,12 +161,5,6,3,7,8,1,11,12,2,4,10,9,13 +150,7,5,10,4,3,13,9,12,6,2,11,8,1 +100,3,4,11,10,9,12,8,13,2,1,7,5,6 +173,1,4,8,6,12,9,10,5,13,11,3,7,2 +14,6,5,1,11,8,7,2,4,9,10,12,3,13 +50,3,13,6,4,5,11,2,10,9,8,12,7,1 +113,13,6,12,1,7,8,10,11,2,3,9,4,5 +14,11,6,1,2,4,12,10,8,5,3,9,7,13 +160,9,12,7,1,13,3,6,2,4,11,8,5,10 +165,9,2,8,1,13,5,12,6,3,4,11,10,7 +26,2,13,12,11,4,5,10,9,3,6,1,7,8 +156,1,6,3,2,5,11,13,4,12,8,10,9,7 +161,4,6,5,10,1,11,3,8,2,12,7,13,9 +90,13,1,4,2,6,5,3,12,11,10,8,9,7 +176,12,9,2,7,13,5,1,4,10,6,11,8,3 +52,1,3,5,13,11,2,9,10,6,7,12,8,4 +42,2,3,7,12,11,8,9,13,10,6,1,4,5 +178,2,7,8,13,6,11,12,5,10,1,4,9,3 +14,2,1,10,7,6,3,4,8,12,11,5,9,13 +189,1,8,4,9,2,3,10,5,12,13,11,7,6 +70,2,5,13,1,6,11,3,10,9,7,8,4,12 +155,8,5,3,4,6,13,11,10,9,2,1,7,12 +121,6,10,2,8,4,3,13,11,12,5,1,7,9 +142,12,13,3,4,5,10,6,8,2,11,9,7,1 +135,13,12,11,3,5,8,6,4,1,7,9,10,2 +128,6,12,7,8,5,2,1,11,10,3,9,4,13 +136,12,3,6,1,2,13,10,11,9,7,8,4,5 +195,7,3,10,5,8,9,4,13,2,11,6,12,1 +97,3,1,11,9,4,6,7,5,13,8,10,12,2 +66,4,12,7,3,10,2,6,13,1,11,5,9,8 +149,9,6,5,13,4,10,3,12,11,1,2,7,8 +135,3,1,5,9,11,8,12,6,4,10,2,13,7 +116,1,4,11,3,10,12,2,8,9,13,7,5,6 +43,5,9,1,11,8,12,3,13,4,6,7,10,2 +140,10,5,13,6,8,7,3,2,1,12,4,11,9 +19,5,11,4,7,3,2,8,1,9,6,13,12,10 +172,1,12,2,11,9,6,7,10,3,8,5,4,13 +134,13,6,1,9,5,4,2,12,8,7,11,3,10 +168,1,7,9,11,6,10,4,3,13,8,2,12,5 +100,9,4,10,2,12,6,5,7,13,8,11,1,3 +124,4,3,5,12,13,8,1,9,10,6,11,2,7 +171,12,8,6,11,2,4,9,13,5,10,7,3,1 +168,2,10,6,3,4,13,5,7,12,1,11,9,8 +67,3,5,7,2,4,9,12,8,13,10,6,11,1 +113,13,5,7,12,10,6,1,11,9,3,4,2,8 +18,7,8,11,13,3,5,6,12,2,10,4,9,1 +108,7,9,5,11,4,8,2,6,1,10,13,3,12 +118,1,6,13,2,7,11,9,4,8,5,3,10,12 +29,6,1,13,9,2,5,12,7,11,3,4,8,10 +111,8,4,5,3,2,9,1,13,10,6,7,11,12 +12,8,2,10,12,1,11,9,13,3,5,7,4,6 +29,9,12,4,7,13,1,6,8,5,10,3,2,11 +45,1,11,5,2,12,8,10,4,9,6,7,13,3 +97,8,12,7,10,6,5,11,4,13,1,9,3,2 +44,8,4,11,3,10,5,12,1,7,2,6,9,13 +2,11,3,8,4,12,2,5,6,7,13,1,9,10 +147,2,8,11,13,7,12,9,5,6,10,1,4,3 +88,9,7,13,6,10,5,1,8,2,3,4,11,12 +171,11,13,6,9,8,2,3,4,7,1,5,12,10 +76,13,7,5,1,2,11,4,9,10,6,12,8,3 +137,6,2,10,4,1,12,11,8,13,7,9,5,3 +87,2,6,12,5,10,1,3,4,8,13,11,7,9 +117,13,1,3,12,7,5,11,9,2,8,10,4,6 +147,7,2,5,9,11,1,8,10,12,6,13,4,3 +177,6,9,7,3,10,12,8,1,4,11,13,5,2 +107,11,7,6,10,12,4,3,9,2,8,5,1,13 +128,9,8,5,3,7,1,11,10,2,12,6,13,4 +178,4,11,7,10,9,8,1,13,12,5,6,3,2 +19,9,11,13,4,12,10,7,3,8,2,6,5,1 +187,4,13,12,1,6,5,8,11,9,7,10,2,3 +174,4,6,12,13,9,3,5,10,11,1,7,2,8 +152,11,13,3,5,7,9,12,8,1,10,4,6,2 +197,4,10,12,6,9,2,13,3,1,11,7,5,8 +25,7,10,12,5,3,13,8,4,2,6,9,11,1 +112,7,9,4,11,10,6,5,12,3,2,8,13,1 +27,2,4,3,11,7,12,9,10,6,5,1,13,8 +95,4,8,1,12,10,9,3,5,2,13,11,7,6 +85,6,8,3,4,7,12,9,13,11,2,5,1,10 +171,7,12,6,5,3,11,8,1,9,13,2,4,10 +76,1,3,13,5,9,10,12,2,4,6,8,11,7 +154,4,6,3,8,5,11,10,9,7,1,2,13,12 +88,6,13,7,11,1,5,9,3,2,8,4,10,12 +152,2,5,3,11,13,12,1,10,6,9,8,4,7 +42,6,12,5,11,1,4,7,9,13,8,3,10,2 +175,8,3,2,10,4,5,11,13,1,12,7,9,6 +200,11,5,13,3,10,1,2,7,12,8,6,4,9 +149,2,9,11,13,1,7,6,5,8,12,4,10,3 +118,1,4,9,5,11,7,2,10,13,8,12,3,6 +153,9,2,11,12,8,13,1,5,4,7,10,6,3 +17,12,1,13,9,3,5,11,10,7,6,4,2,8 +150,2,6,3,4,8,11,13,5,7,10,9,12,1 +168,13,5,6,1,10,9,2,8,4,3,12,7,11 +148,6,11,8,9,4,10,7,13,12,3,2,1,5 +131,5,6,4,2,10,7,12,9,3,8,1,13,11 +180,8,1,13,12,4,10,9,7,5,11,3,2,6 +132,13,9,4,2,11,1,6,12,3,5,10,7,8 +85,3,7,12,4,1,6,13,9,10,8,2,11,5 +15,5,9,7,13,2,8,11,6,3,1,4,12,10 +79,6,11,7,2,13,9,8,5,4,10,1,12,3 +81,7,11,8,6,2,9,5,10,13,3,4,12,1 +133,8,6,12,13,5,3,10,1,2,11,4,7,9 +187,8,2,12,9,7,5,10,11,6,4,1,3,13 +175,13,11,1,9,3,6,5,10,12,8,7,2,4 +26,5,13,10,4,9,8,6,7,1,11,3,12,2 +184,13,12,8,9,3,6,5,1,10,11,4,2,7 +17,4,1,3,12,7,10,8,13,9,6,2,11,5 +42,12,4,10,8,6,1,7,13,9,2,3,5,11 +84,8,13,3,11,1,2,10,9,5,6,12,4,7 +48,11,5,3,9,1,13,6,12,8,2,10,7,4 +195,13,7,10,11,5,1,8,6,12,9,3,2,4 +79,11,7,5,12,9,10,8,6,1,4,2,13,3 +11,6,5,7,13,2,9,4,10,11,8,3,12,1 +92,13,5,4,2,12,10,7,1,3,9,11,8,6 +137,13,6,11,4,8,9,1,12,7,10,2,3,5 +198,10,1,13,3,6,7,5,2,12,11,9,4,8 +197,2,4,6,11,8,3,13,5,10,9,1,7,12 +181,1,5,9,4,10,12,11,7,2,13,6,3,8 +131,7,1,11,4,8,6,2,9,5,13,10,12,3 +10,12,11,2,3,1,7,9,4,10,13,8,6,5 +99,13,2,4,1,11,9,3,7,10,6,8,12,5 +28,6,11,8,3,7,9,5,12,2,4,13,1,10 +141,2,7,4,3,10,12,11,6,1,13,8,5,9 +180,4,13,7,1,9,10,6,3,12,2,5,8,11 +107,10,6,1,9,7,5,4,3,2,12,13,11,8 +112,4,5,11,9,7,10,6,1,12,13,2,3,8 +147,11,5,8,13,7,9,6,4,1,2,12,3,10 +179,9,2,11,12,10,8,4,7,3,5,1,13,6 +23,11,2,12,6,8,5,3,13,4,7,9,1,10 +76,7,12,8,11,10,2,13,9,3,6,5,1,4 +83,8,12,7,3,4,2,6,10,5,13,1,9,11 +74,5,6,7,10,4,12,9,2,8,1,13,11,3 +108,4,9,8,3,12,11,10,2,7,5,6,1,13 +132,5,6,10,7,2,8,9,4,13,1,11,3,12 +52,1,7,11,12,8,2,10,9,13,6,3,5,4 +135,7,3,6,1,9,4,11,13,2,10,12,8,5 +155,5,4,11,1,9,13,7,8,6,2,3,10,12 +196,5,8,10,11,9,3,7,4,2,13,1,6,12 +19,9,13,8,2,1,12,3,10,6,4,5,11,7 +187,6,4,12,1,2,13,8,7,9,3,10,5,11 +10,10,1,7,9,6,3,11,2,13,12,4,8,5 +170,2,7,13,4,11,5,1,9,6,3,12,8,10 +2,1,8,11,7,10,12,5,2,9,6,13,4,3 +50,13,3,6,10,8,11,12,9,1,7,2,4,5 +87,3,4,9,12,8,1,7,10,2,13,5,11,6 +125,2,7,9,13,12,8,11,5,4,3,1,6,10 +72,6,9,13,4,10,2,11,8,3,1,12,7,5 +83,7,2,10,9,8,11,12,13,3,1,4,5,6 +185,8,7,9,10,6,1,11,5,12,2,4,13,3 +29,8,5,6,13,11,3,4,1,12,10,7,2,9 +165,9,5,3,4,8,2,7,10,11,1,13,12,6 +27,7,10,1,8,4,3,5,2,12,13,9,11,6 +70,9,7,10,4,6,3,2,11,13,1,5,8,12 +159,8,10,12,1,4,9,3,11,7,6,13,5,2 +90,3,4,5,8,6,2,12,1,10,9,11,7,13 +125,9,2,5,13,8,4,12,10,7,11,3,6,1 +52,4,11,7,5,2,13,6,1,3,10,9,8,12 +187,5,10,8,1,6,4,13,12,11,3,2,9,7 +190,5,4,8,10,7,12,3,2,11,1,6,13,9 +192,7,9,13,8,5,12,6,1,11,10,2,3,4 +115,5,8,10,7,12,11,4,9,1,13,2,6,3 +32,8,6,12,1,13,3,2,9,11,7,4,10,5 +35,10,12,3,1,7,8,6,2,9,13,5,11,4 +161,2,8,6,11,12,13,9,7,3,10,4,1,5 +192,11,13,6,5,8,2,10,1,9,3,7,4,12 +110,8,7,10,6,11,12,2,4,3,13,1,9,5 +146,1,9,6,12,4,11,7,5,2,10,8,13,3 +76,13,9,8,4,5,2,10,3,6,11,12,1,7 +163,2,1,12,5,13,8,11,7,10,6,4,9,3 +179,11,10,7,9,13,3,8,4,5,6,1,2,12 +195,9,4,13,11,12,10,7,2,5,6,1,8,3 +80,6,12,3,11,2,4,9,7,8,5,1,10,13 +76,11,1,7,4,8,12,13,10,5,6,9,2,3 +92,13,3,8,5,1,7,12,9,11,6,2,4,10 +156,4,12,2,5,3,1,6,7,9,8,11,10,13 +2,10,3,4,12,13,1,5,6,7,2,9,11,8 +1,1,3,9,6,10,12,11,13,2,8,5,7,4 +135,5,4,3,7,10,9,8,12,6,1,13,11,2 +118,13,8,3,6,11,2,9,5,7,12,1,4,10 +92,10,5,4,6,1,3,9,2,7,8,13,11,12 +114,1,11,9,3,7,5,8,2,12,10,13,6,4 +112,12,8,9,2,1,4,7,5,3,11,10,6,13 +133,2,11,5,1,7,6,4,3,10,13,8,9,12 +9,13,12,3,9,1,5,6,7,8,10,4,11,2 +9,6,4,9,2,1,7,12,10,11,8,13,3,5 +35,4,10,9,1,6,13,11,3,12,7,8,2,5 +106,13,6,11,4,7,9,1,3,10,2,8,5,12 +58,6,13,2,10,5,12,1,9,7,11,3,8,4 +198,8,9,10,11,7,1,2,13,12,5,6,4,3 +164,5,12,11,7,10,3,4,8,9,2,13,6,1 +4,6,12,2,3,5,8,9,4,10,13,7,11,1 +60,1,8,4,10,7,2,9,12,13,6,5,3,11 +173,11,13,7,1,8,2,6,4,10,9,12,5,3 +115,11,10,2,5,3,1,7,12,8,13,4,6,9 +117,10,3,7,4,5,8,11,1,13,12,6,2,9 +71,8,11,2,7,12,4,10,9,13,6,3,5,1 +161,10,12,7,13,11,3,2,8,5,4,1,9,6 +1,11,12,10,6,2,4,9,13,1,3,7,5,8 +62,4,7,9,6,5,2,8,12,10,13,11,3,1 +77,3,5,11,8,13,6,10,9,7,1,12,2,4 +172,8,9,5,7,4,2,11,10,12,1,6,3,13 +169,7,3,11,10,5,6,4,1,8,9,2,13,12 +21,2,3,4,12,10,5,6,11,13,8,9,7,1 +151,5,11,6,2,10,13,7,1,3,12,4,9,8 +148,3,2,8,13,5,6,7,1,11,10,4,12,9 +29,3,8,10,9,11,6,12,1,2,5,7,13,4 +33,12,1,6,9,4,11,8,3,2,5,10,13,7 +130,7,5,6,12,4,3,13,8,2,11,9,10,1 +138,2,7,1,3,11,8,9,5,10,13,6,4,12 +178,9,6,11,1,12,10,2,3,7,8,13,5,4 +195,10,13,2,6,8,1,7,11,3,12,4,5,9 +58,6,3,8,1,11,4,2,5,10,7,12,13,9 +81,2,3,11,12,8,6,13,7,1,9,4,5,10 +13,7,6,4,9,11,10,3,5,12,13,8,2,1 +25,7,12,6,1,8,5,11,10,9,3,4,13,2 +24,9,10,4,2,13,5,3,7,11,1,12,6,8 +176,8,2,6,1,12,9,10,4,11,13,3,5,7 +40,10,1,2,6,3,8,4,13,5,9,11,7,12 +139,5,6,4,12,10,8,7,2,11,1,3,13,9 +94,4,2,9,13,8,7,6,12,11,3,10,1,5 +157,9,4,10,1,6,13,3,7,8,12,2,11,5 +198,1,7,11,13,5,10,2,4,9,12,6,3,8 +130,8,4,7,1,2,6,12,13,5,11,9,10,3 +133,13,10,5,7,12,11,3,8,2,6,4,1,9 +145,5,4,2,11,10,6,9,8,13,7,12,1,3 +24,9,12,3,1,10,6,7,8,2,13,4,5,11 +18,3,1,13,5,4,9,7,6,11,8,12,2,10 +131,1,10,5,12,11,9,2,4,3,6,13,7,8 +8,13,2,12,11,4,5,10,8,9,1,3,7,6 +133,13,12,8,5,9,7,6,3,11,1,4,10,2 +48,13,4,3,7,2,8,9,11,5,10,1,6,12 +31,9,6,10,12,1,3,7,8,4,11,2,5,13 +138,12,5,3,9,13,6,10,8,1,4,11,2,7 +36,11,3,1,6,12,2,8,5,7,10,4,13,9 +25,1,10,2,13,7,9,11,8,4,12,6,5,3 +64,2,5,1,9,8,11,4,3,12,7,10,13,6 +167,4,6,13,8,7,2,9,5,12,11,1,10,3 +135,2,9,3,5,10,8,13,11,1,12,6,4,7 +169,4,13,6,5,9,8,11,10,12,2,1,3,7 +198,3,6,7,4,10,2,5,9,13,8,11,12,1 +26,1,13,10,7,8,4,3,11,2,9,6,12,5 +132,2,13,5,12,10,1,3,9,7,6,8,11,4 +35,5,1,3,11,8,6,7,10,9,2,12,4,13 +77,9,5,11,13,7,2,1,4,3,12,6,8,10 +21,7,2,10,5,6,12,3,11,9,1,13,4,8 +18,1,2,8,7,9,12,6,4,3,13,11,5,10 +72,4,11,2,3,5,13,6,12,7,9,10,8,1 +97,1,6,3,13,4,8,5,11,12,2,10,7,9 +92,6,13,3,12,7,9,4,8,2,11,10,1,5 +43,2,5,3,9,8,11,4,10,1,6,7,12,13 +10,6,13,9,12,5,3,4,8,10,1,7,2,11 +22,2,4,13,8,11,1,9,6,3,5,10,12,7 +121,6,2,1,7,9,3,13,10,12,8,4,5,11 +62,4,3,5,6,11,8,9,13,10,12,7,2,1 +52,4,6,7,10,5,8,3,1,2,11,12,9,13 +15,13,5,11,2,1,8,12,9,6,4,10,3,7 +117,8,12,11,6,13,1,7,10,4,9,5,3,2 +132,6,1,2,8,10,7,12,11,3,4,13,9,5 +49,8,7,6,4,3,11,12,5,10,2,9,1,13 +102,8,10,12,1,7,11,2,6,9,5,13,3,4 +145,9,8,12,2,13,4,10,5,11,1,6,3,7 +12,9,13,10,3,12,8,11,4,6,5,1,7,2 +43,13,9,12,8,3,11,1,5,2,6,7,4,10 +120,3,6,9,7,8,13,10,11,2,1,12,4,5 +2,5,9,2,7,11,6,13,4,12,3,10,1,8 +120,3,5,6,7,4,10,9,8,1,13,12,11,2 +173,6,1,13,2,7,3,10,5,4,12,11,8,9 +16,2,6,12,8,7,11,13,10,9,5,4,3,1 +191,10,3,4,13,2,7,5,9,1,8,11,12,6 +32,5,4,13,12,8,9,3,1,7,11,2,6,10 +103,10,11,8,2,9,7,12,4,13,6,1,5,3 +23,2,7,10,3,1,13,5,11,9,8,4,12,6 +25,5,7,8,2,6,3,11,9,13,12,10,4,1 +66,6,1,3,9,11,5,4,7,10,2,8,13,12 +180,13,1,3,6,10,11,4,5,12,9,2,8,7 +103,13,2,7,6,8,1,9,11,3,10,5,4,12 +187,1,11,12,9,13,8,6,10,3,5,4,7,2 +33,13,6,5,3,4,1,7,8,9,2,10,12,11 +166,6,1,12,11,2,5,3,4,7,8,13,9,10 +64,4,7,6,9,10,3,2,1,11,8,5,13,12 +37,6,2,11,13,7,4,8,10,5,3,9,1,12 +111,5,7,11,2,1,13,3,10,8,6,12,4,9 +173,7,11,13,6,3,5,4,1,9,8,12,10,2 +80,10,1,11,9,4,7,5,3,2,13,8,6,12 +113,9,7,8,3,10,4,13,11,12,6,1,2,5 +153,2,7,13,6,10,12,3,9,4,1,11,8,5 +39,11,9,4,12,7,8,3,10,1,2,6,13,5 +179,13,10,12,2,6,1,4,7,8,3,11,5,9 +80,8,7,6,3,11,4,12,1,2,5,13,10,9 +116,5,11,13,2,9,10,12,7,1,8,6,3,4 +76,8,3,6,2,11,12,9,4,5,7,10,1,13 +200,7,4,11,9,8,1,3,2,10,5,6,12,13 +115,10,9,11,6,3,7,1,5,12,2,8,13,4 +182,9,2,12,6,7,5,3,4,1,13,8,10,11 +94,4,13,1,12,6,9,11,5,2,7,8,10,3 +87,6,10,7,12,3,11,1,4,9,5,2,13,8 +173,6,7,13,5,8,4,2,10,9,3,12,1,11 +95,7,8,12,4,2,1,11,9,3,10,5,6,13 +94,3,4,13,5,12,8,1,6,10,2,11,9,7 +187,3,13,11,1,8,4,7,5,12,9,6,2,10 +115,8,3,12,2,13,7,9,10,4,6,5,11,1 +13,5,4,12,8,3,13,9,6,1,7,10,2,11 +87,2,9,8,4,5,7,3,11,10,13,1,6,12 +197,3,7,4,12,1,6,9,8,2,5,11,10,13 +104,9,1,11,10,12,4,5,3,2,13,8,6,7 +155,4,3,13,9,1,11,8,2,5,10,6,12,7 +35,12,5,2,11,3,9,4,6,10,8,13,1,7 +97,7,10,9,8,11,3,6,4,1,2,5,13,12 +80,5,9,6,3,7,8,1,10,2,13,11,4,12 +16,9,12,3,8,5,1,4,11,13,2,10,7,6 +101,11,8,5,10,6,12,2,3,7,1,4,13,9 +4,11,1,13,5,9,4,12,2,3,6,10,8,7 +128,6,9,10,5,11,12,1,7,3,2,4,8,13 +119,4,6,12,13,7,5,1,8,3,9,11,10,2 +75,8,6,4,13,1,10,2,9,12,7,5,3,11 +61,5,3,8,2,4,12,11,6,13,10,7,1,9 +40,12,8,5,1,3,6,11,4,9,13,7,10,2 +103,6,3,9,2,7,4,13,1,8,10,5,11,12 +40,13,11,8,3,12,5,10,2,7,1,4,6,9 +9,8,12,9,3,1,13,6,10,7,4,11,5,2 +114,10,4,11,9,13,12,6,1,3,7,2,5,8 +68,9,2,5,8,3,12,1,10,7,4,6,11,13 +24,12,13,5,9,8,6,10,7,11,2,1,4,3 +92,9,6,11,2,13,8,7,12,4,1,10,5,3 +87,10,6,5,11,9,7,2,3,8,4,1,12,13 +105,13,12,2,1,11,7,5,3,9,10,8,6,4 +116,12,2,8,10,4,7,13,5,1,9,11,3,6 +20,9,13,12,11,1,7,4,5,8,2,6,10,3 +157,11,3,2,4,9,5,6,12,13,1,10,8,7 +122,12,8,11,9,5,3,6,1,13,10,7,4,2 +4,10,8,12,2,6,5,4,3,7,9,11,13,1 +16,13,9,3,11,12,1,6,2,8,10,4,5,7 +121,2,10,11,3,9,1,12,8,7,13,4,6,5 +93,2,8,6,9,1,10,3,13,7,5,4,11,12 +0,6,4,5,1,8,12,11,10,7,13,3,2,9 +97,13,7,10,5,8,11,1,4,6,12,3,9,2 +133,10,9,3,4,13,6,7,12,1,5,8,11,2 +9,2,12,3,7,11,1,5,13,8,9,4,6,10 +107,7,10,5,8,13,9,6,4,11,2,1,3,12 +99,4,1,12,5,9,2,6,13,8,11,3,7,10 +59,2,5,12,13,7,1,11,3,6,4,10,9,8 +174,12,6,5,11,7,13,1,9,4,8,10,2,3 +113,1,13,5,2,6,7,3,8,9,4,10,12,11 +16,9,5,3,13,10,8,6,1,12,11,2,7,4 +100,8,13,9,11,1,3,12,10,2,6,4,5,7 +66,8,2,5,6,1,12,10,13,7,11,9,3,4 +71,7,12,10,13,8,5,9,4,3,6,2,1,11 +149,5,1,3,4,13,9,6,7,12,11,8,2,10 +27,13,11,9,12,2,4,10,6,7,5,3,1,8 +43,10,1,2,11,7,6,3,9,8,12,5,13,4 +188,7,9,13,10,11,1,4,12,6,3,8,2,5 +31,5,13,11,7,9,4,8,10,6,12,1,3,2 +94,3,13,10,8,11,5,7,9,6,12,2,4,1 +152,9,11,7,8,2,12,13,10,4,3,1,5,6 +139,2,11,10,6,7,4,9,8,3,12,1,13,5 +72,4,3,2,5,13,8,9,7,6,10,12,11,1 +52,4,3,13,12,8,6,10,5,1,2,11,7,9 +134,12,7,3,13,10,1,11,8,6,5,2,9,4 +62,7,8,2,9,5,1,10,11,6,12,4,3,13 +77,10,1,4,12,5,3,13,8,6,7,9,2,11 +118,11,10,2,13,1,12,4,6,3,7,8,9,5 +102,4,10,7,12,6,2,8,11,3,1,9,5,13 +192,3,11,8,13,4,5,10,9,7,1,6,12,2 +184,8,4,3,2,7,5,1,6,13,11,9,10,12 +94,7,12,4,8,2,6,5,13,1,11,9,10,3 +187,5,7,11,3,4,9,8,2,13,12,10,1,6 +102,2,9,13,1,11,5,12,10,8,6,3,7,4 +73,9,1,10,2,11,8,6,12,13,3,4,5,7 +115,2,8,7,3,10,1,5,12,13,9,11,6,4 +19,10,8,3,7,11,9,4,6,2,13,1,5,12 +63,2,7,4,3,9,13,8,12,1,6,11,10,5 +30,7,2,13,12,9,6,10,3,8,11,4,1,5 +76,10,2,8,6,1,12,4,3,9,7,11,13,5 +145,6,2,3,1,4,8,12,10,11,7,5,13,9 +89,9,13,2,12,7,10,11,4,5,3,6,8,1 +33,2,9,12,6,10,13,1,3,8,11,4,7,5 +0,1,11,3,5,12,6,13,8,2,4,10,7,9 +132,9,6,2,5,10,11,8,7,1,13,12,3,4 +100,11,3,13,6,8,2,12,5,7,1,4,9,10 +197,7,2,4,13,8,6,10,9,11,3,5,1,12 +50,7,12,5,1,11,2,3,13,9,10,6,8,4 +169,13,10,1,2,5,7,4,8,12,6,9,3,11 +169,2,13,9,3,10,1,7,11,12,4,8,5,6 +180,12,6,3,7,11,9,2,13,4,5,10,1,8 +5,13,12,4,1,2,9,10,11,8,3,7,5,6 +130,3,9,5,2,13,7,11,4,6,10,8,1,12 +94,4,8,10,6,13,3,12,9,2,5,7,1,11 +96,1,6,5,7,12,8,2,3,10,4,9,13,11 +97,5,6,11,7,4,8,1,10,12,2,9,13,3 +79,3,13,11,4,2,8,9,5,7,10,6,1,12 +1,8,4,1,7,5,10,9,12,2,3,13,6,11 +90,3,13,12,1,4,6,9,10,8,2,5,11,7 +68,3,6,8,9,4,1,12,10,7,11,5,13,2 +2,4,2,7,6,10,3,12,5,1,13,9,8,11 +130,11,7,13,8,4,2,6,10,12,1,5,3,9 +132,1,9,4,3,6,12,10,2,13,8,7,11,5 +11,8,5,7,9,11,12,6,13,2,1,3,4,10 +53,6,4,3,13,9,10,12,8,2,5,11,1,7 +107,2,11,6,5,1,12,4,9,3,8,13,10,7 +106,8,13,3,5,11,4,6,1,9,7,10,12,2 +35,9,12,7,3,13,5,11,1,10,4,6,8,2 +151,9,10,5,6,12,11,4,1,8,2,7,3,13 +132,13,9,7,11,1,10,3,2,12,6,4,8,5 +113,10,12,5,6,8,2,1,3,9,4,7,13,11 +71,7,13,10,3,11,1,9,4,8,12,6,2,5 +68,12,5,8,1,3,6,11,13,4,7,2,10,9 +97,13,11,10,7,2,12,8,1,3,5,6,4,9 +72,9,8,12,5,11,3,1,7,4,6,13,10,2 +143,12,4,3,7,13,9,11,5,2,10,6,1,8 +105,8,2,11,4,6,1,9,13,5,10,3,12,7 +196,4,10,6,13,1,12,2,3,7,8,5,9,11 +65,5,4,9,10,12,6,8,2,3,11,7,13,1 +66,7,10,9,5,12,4,11,2,8,13,1,3,6 +30,11,9,4,2,5,13,8,3,12,7,1,6,10 +193,9,3,1,7,12,8,6,10,11,13,4,5,2 +30,1,10,5,4,3,6,12,2,9,8,7,13,11 +163,1,8,9,7,2,13,5,4,3,11,12,6,10 +184,8,11,13,9,12,10,7,3,2,4,1,6,5 +6,5,6,7,4,8,1,3,10,9,11,13,2,12 +183,10,3,9,2,12,1,4,6,5,8,7,11,13 +164,9,7,13,11,5,8,10,3,1,6,4,12,2 +70,6,4,13,7,9,1,10,8,11,5,12,2,3 +9,11,1,12,9,2,3,6,4,13,5,8,7,10 +195,5,12,9,7,13,3,6,4,8,11,2,1,10 +35,12,11,7,8,1,5,13,10,4,9,2,3,6 +15,10,8,5,3,7,12,9,11,6,1,4,13,2 +35,10,13,5,3,4,6,12,9,11,7,1,2,8 +163,5,13,1,7,6,10,11,8,3,9,2,12,4 +45,6,1,10,9,13,7,12,8,11,4,2,5,3 +182,3,13,9,2,4,5,7,6,10,12,8,1,11 +70,4,2,12,7,8,6,1,5,3,10,13,11,9 +98,2,4,3,9,13,10,5,8,12,7,1,6,11 +70,12,5,6,3,7,8,10,9,11,13,2,4,1 +112,10,13,5,11,4,2,1,3,12,7,9,6,8 +47,4,10,1,13,5,12,11,2,9,6,8,7,3 +135,6,11,12,10,13,8,4,3,2,1,9,7,5 +67,11,3,12,2,13,10,9,1,4,8,6,7,5 +72,1,4,8,6,3,10,9,11,2,7,12,5,13 +3,13,8,4,12,6,11,10,5,1,3,7,9,2 +34,7,5,8,6,1,10,11,3,4,13,9,2,12 +76,7,9,4,6,1,12,13,11,8,2,10,5,3 +33,1,13,8,4,9,2,3,5,7,12,6,11,10 +153,7,10,2,13,8,5,3,9,12,4,1,6,11 +63,10,11,13,12,8,5,3,1,7,4,2,9,6 +16,7,3,2,13,9,6,10,5,1,8,11,4,12 +54,12,6,1,3,13,9,11,8,2,4,7,5,10 +39,10,2,6,7,4,12,13,11,8,9,3,1,5 +93,2,5,7,3,10,9,4,12,8,13,11,1,6 +8,7,12,5,11,6,8,1,4,2,9,3,13,10 +136,13,11,1,10,5,9,6,12,7,3,4,8,2 +155,4,9,7,12,8,1,13,5,11,10,3,6,2 +107,7,11,10,6,5,9,13,8,1,3,12,4,2 +124,4,5,7,3,9,6,8,13,12,1,11,2,10 +112,1,8,2,7,5,4,6,12,11,13,9,10,3 +54,7,1,6,11,10,4,8,2,13,9,5,3,12 +119,9,8,2,6,7,4,1,13,3,10,11,5,12 +129,6,3,12,9,8,10,1,13,7,5,11,2,4 +132,4,8,13,9,6,12,3,5,11,1,7,10,2 +83,5,10,3,13,11,1,8,12,4,9,6,7,2 +81,1,7,2,4,10,12,11,8,9,13,6,5,3 +183,5,9,12,3,7,10,13,6,1,11,4,2,8 +180,8,10,11,9,7,5,13,2,4,1,12,6,3 +186,12,7,8,10,11,2,4,6,1,13,9,3,5 +3,12,3,8,6,5,7,4,2,9,11,10,13,1 +120,7,9,4,8,10,13,2,1,6,3,11,12,5 +94,8,12,7,1,3,2,9,11,4,5,13,6,10 +28,5,11,1,8,4,2,3,6,12,10,7,13,9 +200,5,13,11,3,4,2,7,12,6,10,9,1,8 +64,11,10,6,9,7,2,12,1,3,13,8,5,4 +77,3,6,2,9,13,5,8,10,4,7,12,11,1 +77,2,5,8,6,3,12,13,4,11,1,10,7,9 +77,13,10,11,3,2,7,4,8,12,1,9,6,5 +133,10,3,7,2,1,8,4,12,13,9,6,5,11 +97,1,13,2,9,11,10,12,5,6,3,8,7,4 +11,7,11,4,12,9,6,5,8,10,1,2,3,13 +140,3,9,13,5,8,1,6,7,11,4,10,12,2 +108,9,4,6,3,10,7,12,5,13,2,11,8,1 +175,11,6,8,13,2,9,3,7,4,1,12,10,5 +83,9,4,13,12,1,7,10,3,5,6,8,2,11 +34,10,1,9,12,5,4,7,2,3,6,11,8,13 +106,4,8,10,5,6,11,2,13,9,7,3,1,12 +89,9,2,11,1,5,8,10,12,4,3,13,7,6 +4,10,1,13,5,9,11,7,2,12,8,3,6,4 +129,13,8,7,12,4,5,11,2,10,6,3,9,1 +39,12,11,3,5,13,7,8,1,4,9,10,6,2 +108,2,6,11,3,7,12,5,10,9,8,13,1,4 +73,2,6,9,8,1,12,13,7,3,5,4,10,11 +169,4,3,6,10,1,5,13,9,8,12,7,11,2 +87,4,7,6,12,8,5,13,3,2,9,1,11,10 +25,7,6,11,1,2,8,4,9,10,3,5,12,13 +164,2,12,10,3,4,1,8,13,7,6,9,11,5 +23,3,4,1,5,8,7,11,9,13,12,2,10,6 +127,8,9,1,7,12,13,5,3,10,2,11,4,6 +85,4,9,8,13,6,11,2,12,5,7,10,1,3 +85,13,7,1,5,11,6,12,3,10,8,9,4,2 +180,4,2,13,12,3,8,7,11,9,5,10,6,1 +187,3,12,6,1,10,5,13,9,7,4,8,2,11 +154,7,1,12,5,11,3,13,2,6,8,4,10,9 +151,9,10,11,13,5,3,2,12,1,8,6,7,4 +89,13,3,10,6,8,12,11,7,1,5,4,2,9 +126,10,2,4,3,6,1,7,11,13,8,9,12,5 +93,12,3,10,9,11,1,5,8,4,2,13,7,6 +122,4,2,8,10,5,3,11,7,9,13,12,1,6 +139,7,6,10,2,9,5,4,3,1,8,11,12,13 +192,4,10,2,5,11,9,6,7,3,12,13,8,1 +60,3,11,2,7,10,6,1,12,8,5,13,4,9 +105,5,12,13,11,2,4,6,1,7,10,3,9,8 +197,4,7,9,10,5,8,1,3,13,12,6,11,2 +154,5,6,8,7,9,12,3,10,1,4,2,13,11 +50,13,6,12,2,1,9,8,10,4,5,7,3,11 +111,3,10,7,9,12,11,8,5,2,1,6,4,13 +67,12,5,10,7,8,9,13,6,1,2,4,11,3 +104,9,12,7,1,8,2,6,3,10,13,5,4,11 +130,6,4,10,1,13,7,9,11,2,5,3,8,12 +31,8,1,6,9,10,5,7,11,12,3,2,13,4 +51,1,4,6,12,11,3,13,9,8,2,5,10,7 +36,6,1,2,12,9,5,4,13,8,3,10,11,7 +116,7,3,4,12,8,5,11,2,10,9,1,13,6 +20,13,10,4,9,5,12,6,3,1,8,7,2,11 +85,6,12,13,7,10,9,8,5,3,1,2,4,11 +146,7,6,3,13,2,8,9,12,11,4,10,1,5 +188,5,4,8,2,10,9,6,3,11,1,12,13,7 +147,10,11,1,4,9,6,12,8,5,13,3,2,7 +128,10,8,12,5,11,4,13,6,9,3,2,1,7 +198,13,2,1,3,10,4,12,7,11,9,8,6,5 +62,10,11,9,5,13,12,6,1,4,7,2,3,8 +98,5,3,8,10,11,6,12,1,4,13,7,9,2 +71,5,10,3,12,11,1,6,9,8,4,2,13,7 +71,10,12,7,11,13,8,1,6,5,3,9,4,2 +101,4,10,6,2,7,3,9,12,11,8,1,13,5 +74,9,6,8,2,10,5,3,11,12,13,4,7,1 +162,9,5,1,3,4,13,12,11,8,7,6,2,10 +195,3,4,12,10,8,7,9,1,13,2,11,6,5 +65,1,11,9,8,3,6,12,13,10,4,5,7,2 +179,11,10,1,9,2,4,8,12,3,13,5,7,6 +179,5,1,2,9,6,10,13,11,3,8,12,7,4 +194,5,8,7,3,10,6,11,13,4,12,1,2,9 +51,11,8,7,5,12,9,6,3,10,1,4,13,2 +139,7,2,6,13,3,5,4,11,10,12,8,1,9 +0,10,4,11,8,13,6,12,2,7,5,3,1,9 +123,13,8,10,9,12,2,5,4,3,11,6,7,1 +9,9,3,10,4,6,5,2,7,11,12,13,1,8 +79,1,9,8,13,10,7,2,12,4,11,5,3,6 +30,3,7,5,9,13,1,6,11,12,4,8,10,2 +165,4,10,12,13,11,9,3,8,7,6,5,2,1 +131,3,10,8,6,7,5,4,11,13,1,12,2,9 +125,10,7,1,3,13,11,4,2,5,9,6,12,8 +170,12,4,9,13,10,1,6,2,3,8,11,5,7 +13,7,11,10,2,12,8,13,1,5,3,4,9,6 +91,5,10,7,4,11,3,12,13,6,8,1,9,2 +184,9,13,8,4,2,10,7,3,11,12,6,1,5 +115,2,4,11,12,5,8,3,1,9,6,7,13,10 +145,3,5,12,8,11,9,6,7,4,10,13,2,1 +138,10,12,7,1,3,2,13,9,8,4,6,5,11 +41,1,6,10,4,7,5,9,2,11,12,3,8,13 +112,9,2,13,10,11,5,1,7,3,12,8,4,6 +38,3,10,6,13,12,1,7,11,5,9,8,4,2 +36,10,1,2,8,13,7,3,11,12,6,9,4,5 +115,10,13,8,5,11,3,1,4,7,6,12,2,9 +170,6,3,1,4,11,9,8,5,13,7,12,10,2 +67,8,13,12,5,10,7,1,6,4,9,11,3,2 +173,5,3,2,6,11,13,12,4,10,9,1,7,8 +106,10,4,11,8,2,9,7,6,1,3,13,12,5 +33,9,11,13,7,4,10,6,12,8,2,1,3,5 +111,2,5,7,1,3,10,13,11,6,9,8,4,12 +97,9,8,13,10,3,6,12,11,4,1,2,7,5 +106,4,9,12,6,8,3,7,5,13,2,11,1,10 +67,2,10,13,8,11,4,9,6,7,5,1,3,12 +104,2,13,1,8,11,6,9,5,12,7,10,3,4 +196,6,1,9,5,3,7,13,11,4,8,12,10,2 +23,13,4,12,7,6,8,10,3,5,2,11,9,1 +34,8,11,4,9,6,13,12,3,1,10,5,2,7 +69,6,12,9,4,13,3,11,5,1,7,2,8,10 +115,10,6,13,9,5,2,11,7,3,4,8,12,1 +96,5,13,2,11,9,3,8,6,7,12,1,10,4 +51,8,10,9,12,7,4,6,1,13,3,11,2,5 +155,5,2,12,8,1,13,4,6,7,9,11,10,3 +139,7,11,6,5,4,10,3,12,9,1,13,8,2 +45,11,5,7,3,1,13,9,12,2,8,4,10,6 +24,2,11,10,13,8,1,12,3,9,4,5,6,7 +107,2,3,1,4,6,5,10,11,13,8,12,7,9 +51,2,12,5,9,3,11,1,7,8,6,4,10,13 +189,4,7,12,1,5,9,6,3,11,2,8,13,10 +165,9,10,5,11,7,1,12,3,6,8,13,4,2 +153,12,1,2,6,4,8,11,9,7,13,3,5,10 +148,13,9,3,8,7,5,6,12,11,10,2,1,4 +126,12,9,7,8,10,3,1,6,2,4,13,11,5 +190,1,10,2,12,4,5,13,11,9,6,3,8,7 +8,7,5,8,9,13,4,10,1,2,3,6,11,12 +80,6,2,7,12,3,13,8,1,4,10,11,9,5 +147,6,10,5,7,11,8,13,9,4,2,12,1,3 +110,3,2,8,5,7,1,6,13,9,12,4,11,10 +74,4,3,9,7,8,6,10,5,13,1,12,11,2 +138,5,13,11,10,12,3,7,1,6,4,2,9,8 +181,11,1,4,8,3,6,12,2,13,7,9,10,5 +116,3,2,7,9,1,4,5,6,12,13,11,8,10 +8,5,12,4,11,10,2,8,1,13,7,9,6,3 +116,5,13,12,3,1,8,7,9,10,2,6,4,11 +101,12,4,2,5,8,7,3,1,6,9,13,10,11 +157,11,9,2,13,12,10,5,4,8,7,6,1,3 +24,6,5,2,1,3,7,9,8,10,11,4,12,13 +105,5,10,2,11,9,6,13,12,3,7,4,1,8 +7,11,2,1,4,5,6,13,3,12,7,8,10,9 +116,6,1,8,7,13,9,12,2,10,4,11,3,5 +81,9,12,4,2,8,13,11,7,10,1,5,6,3 +188,1,10,9,5,2,7,8,4,3,11,6,12,13 +90,7,6,4,5,13,3,9,12,10,2,1,8,11 +145,9,6,1,3,7,12,5,11,10,8,4,13,2 +156,13,1,12,2,7,11,10,8,9,4,5,3,6 +82,2,3,11,4,5,10,7,6,13,12,8,1,9 +13,5,10,7,11,13,2,3,6,1,9,4,12,8 +27,9,5,6,3,7,2,10,8,13,11,4,12,1 +185,5,9,6,3,7,13,11,12,4,8,2,1,10 +32,4,1,12,5,11,7,13,3,6,2,9,8,10 +118,7,2,9,5,4,8,12,6,13,11,3,10,1 +177,5,10,9,6,12,7,2,11,1,13,8,3,4 +133,9,11,5,7,13,2,12,1,10,6,8,4,3 +20,3,8,1,9,4,11,13,12,10,2,5,6,7 +23,11,12,3,8,2,10,4,7,6,1,5,13,9 +88,7,5,11,3,4,12,1,6,13,10,2,8,9 +128,3,4,1,10,7,9,6,8,11,12,2,5,13 +169,3,1,12,10,9,5,11,7,4,13,2,6,8 +162,11,10,13,9,12,3,8,2,7,6,4,5,1 +94,12,10,13,4,8,3,7,9,1,6,11,2,5 +135,12,5,10,9,11,7,3,1,2,4,8,6,13 +58,6,13,11,2,8,9,10,5,3,12,1,7,4 +123,8,2,4,10,11,6,1,13,12,7,9,5,3 +43,2,6,7,11,5,13,4,12,9,3,8,10,1 +29,10,8,3,4,2,11,7,5,12,1,9,6,13 +84,11,5,2,1,9,10,6,13,7,8,4,3,12 +6,6,13,1,11,3,12,10,8,4,2,5,9,7 +142,13,12,7,6,5,4,3,10,2,1,9,8,11 +79,10,8,3,2,9,6,13,1,7,5,4,11,12 +2,11,1,9,7,5,13,4,3,8,12,6,10,2 +15,10,7,2,3,9,11,1,5,8,13,12,4,6 +12,10,9,8,6,3,2,11,13,12,4,7,1,5 +2,12,5,2,13,1,6,4,11,7,10,8,3,9 +191,6,10,7,9,5,12,2,11,13,3,1,4,8 +149,13,2,1,6,8,5,3,12,10,7,9,11,4 +198,7,5,12,3,1,10,2,6,11,8,13,4,9 +165,2,5,4,9,7,3,6,11,12,8,13,10,1 +108,8,2,11,1,10,9,4,12,5,3,13,6,7 +56,1,4,6,3,8,13,7,5,11,10,2,12,9 +156,8,10,7,4,12,11,1,9,5,6,3,2,13 +58,7,9,4,13,2,10,8,3,5,1,6,12,11 +65,11,2,3,1,6,8,7,10,5,13,9,12,4 +102,4,3,6,1,5,13,8,9,12,7,2,10,11 +85,4,1,2,13,6,10,12,8,3,11,5,7,9 +49,9,13,10,7,2,11,6,12,1,8,3,5,4 +162,7,3,9,13,4,6,12,2,11,5,10,1,8 +165,9,4,2,12,3,5,11,1,6,13,8,10,7 +65,8,6,9,3,4,11,1,12,2,7,5,10,13 +33,13,1,9,7,10,8,2,3,11,4,5,12,6 +132,2,5,6,11,1,3,12,7,10,8,9,4,13 +33,8,6,3,4,9,2,1,11,10,12,13,7,5 +104,2,9,13,12,6,1,7,3,11,8,10,5,4 +192,3,1,9,2,5,13,4,6,7,12,8,10,11 +135,7,8,4,6,5,10,9,2,11,12,1,3,13 +35,2,4,6,7,13,12,1,9,5,11,10,3,8 +72,13,8,4,12,11,9,1,6,7,10,5,3,2 +125,11,8,10,7,2,6,5,13,9,4,1,3,12 +152,4,10,1,9,7,6,13,12,3,5,11,8,2 +64,12,4,5,7,8,1,10,11,9,2,13,3,6 +141,6,5,3,13,11,10,7,4,1,12,2,8,9 +72,9,13,5,6,1,3,10,8,2,12,11,7,4 +176,3,11,12,10,6,2,7,9,5,8,4,1,13 +153,12,4,7,10,5,2,9,8,3,6,1,11,13 +120,2,9,6,1,8,13,11,4,5,7,10,12,3 +155,1,5,8,10,12,3,4,9,2,13,7,6,11 +21,8,7,3,9,13,2,5,10,6,12,11,1,4 +144,8,7,3,9,5,6,4,2,13,11,1,12,10 +144,1,2,4,9,6,10,3,8,12,7,11,13,5 +29,13,4,6,2,9,11,8,1,5,7,12,3,10 +118,10,1,8,7,9,4,6,3,11,5,13,12,2 +96,9,5,13,10,2,4,6,12,3,11,8,7,1 +91,11,9,8,3,2,7,13,1,12,5,10,6,4 +40,2,5,10,8,3,6,1,9,11,12,4,7,13 +111,6,12,13,4,8,2,3,9,10,11,1,5,7 +165,2,5,1,7,13,10,4,6,11,9,8,12,3 +171,1,9,4,5,6,13,11,12,10,2,3,7,8 +139,6,13,2,9,4,1,12,11,8,10,3,7,5 +79,4,8,2,10,1,6,7,13,9,11,3,5,12 +93,13,4,5,3,11,7,1,8,2,12,9,10,6 +110,8,3,4,10,2,6,12,9,7,11,5,1,13 +76,4,5,6,11,2,8,1,3,12,7,10,9,13 +162,4,10,5,11,13,1,12,6,8,2,3,7,9 +185,7,6,3,9,8,2,1,11,4,5,10,13,12 +49,5,10,2,9,7,8,3,12,4,13,1,6,11 +182,1,3,10,4,9,11,7,6,5,8,2,13,12 +110,4,2,13,12,7,8,11,1,5,10,9,6,3 +147,3,11,2,8,5,9,10,6,4,13,12,1,7 +124,2,6,10,4,9,1,8,11,7,13,12,5,3 +149,5,10,8,9,4,11,2,3,13,6,7,1,12 +22,9,8,5,12,10,4,13,6,7,1,2,11,3 +51,3,12,9,8,7,4,13,10,1,2,6,5,11 +175,3,1,9,6,7,12,10,5,11,8,2,4,13 +198,13,5,4,2,9,10,7,3,11,6,1,8,12 +173,5,1,7,12,3,2,4,10,6,9,11,13,8 +118,2,3,4,6,12,5,10,8,9,11,1,7,13 +27,13,8,7,12,11,2,4,6,10,3,9,1,5 +137,3,10,11,6,13,7,12,1,2,5,9,8,4 +124,11,6,4,13,5,12,2,7,3,1,10,8,9 +1,5,13,2,10,1,11,7,12,6,9,8,3,4 +191,10,1,6,13,8,4,12,2,11,7,9,3,5 +74,9,13,3,12,2,1,4,8,10,5,7,6,11 +118,7,10,11,3,4,12,2,1,5,6,9,13,8 +48,7,12,2,4,8,5,1,3,11,10,6,9,13 +155,11,10,2,7,12,13,6,9,4,3,1,5,8 +15,13,2,12,1,7,3,9,4,5,8,10,11,6 +33,10,7,2,8,4,9,5,11,13,6,12,1,3 +94,12,2,9,1,3,11,4,8,7,5,6,13,10 +57,4,10,12,3,8,7,11,2,9,13,1,5,6 +7,6,12,11,5,4,7,8,13,10,1,9,3,2 +107,8,7,1,9,3,13,2,5,12,11,10,4,6 +105,7,12,2,8,9,1,13,4,3,10,11,6,5 +195,9,13,7,1,5,8,2,10,4,3,6,11,12 +3,3,4,1,13,11,10,8,12,2,6,7,9,5 +190,13,3,8,7,12,11,9,10,1,4,6,2,5 +0,12,11,1,3,8,5,10,6,13,2,7,9,4 +37,4,8,11,1,2,12,9,3,13,7,10,5,6 +22,10,4,5,9,3,8,12,6,1,7,2,11,13 +166,11,6,13,1,12,8,3,5,10,7,9,4,2 +167,11,9,5,12,13,2,10,4,7,1,3,8,6 +101,2,12,4,5,8,10,13,7,1,11,6,3,9 +158,3,5,10,8,6,9,13,11,7,1,12,4,2 +114,12,9,13,8,1,7,5,11,3,2,6,10,4 +190,5,1,11,12,3,6,13,2,4,9,10,7,8 +85,7,9,4,5,1,8,10,11,13,6,2,12,3 +94,2,9,13,12,10,4,6,5,1,11,8,3,7 +105,12,11,7,8,3,2,1,10,9,4,5,6,13 +3,9,12,11,3,1,10,6,7,8,5,4,13,2 +6,6,4,12,7,11,9,1,3,13,10,5,8,2 +57,12,5,13,6,7,1,10,8,11,3,2,4,9 +48,1,2,12,13,4,8,11,3,7,9,6,10,5 +27,11,8,7,10,3,6,5,1,9,2,12,13,4 +72,9,5,12,6,13,3,2,11,8,10,4,1,7 +199,8,1,12,9,3,2,6,13,11,7,4,10,5 +50,2,11,9,10,8,6,13,5,12,7,3,1,4 +85,7,8,12,3,2,11,5,4,9,6,1,10,13 +15,2,1,5,12,9,7,4,13,8,6,3,11,10 +80,4,10,6,2,13,7,12,3,1,8,9,11,5 +179,9,6,7,10,3,1,13,5,4,11,2,8,12 +26,8,3,4,1,7,12,6,9,5,13,10,11,2 +42,5,6,4,13,10,1,12,8,7,3,2,9,11 +47,2,12,9,10,5,13,8,1,4,6,7,3,11 +22,7,9,12,8,4,11,1,2,13,3,5,10,6 +142,3,5,9,13,11,8,1,12,6,4,10,2,7 +22,11,1,4,2,5,6,7,3,8,9,12,13,10 +89,4,12,11,5,3,10,9,6,13,1,8,2,7 +129,11,12,7,4,8,1,5,2,13,6,3,10,9 +79,13,12,9,1,8,2,6,7,5,3,10,11,4 +164,7,11,1,6,3,4,10,13,8,12,5,9,2 +67,4,11,2,7,8,1,10,13,12,9,6,3,5 +28,11,1,13,4,10,3,6,7,9,5,2,12,8 +81,6,13,3,5,4,11,9,1,8,2,7,12,10 +121,5,12,1,8,9,7,10,13,6,4,3,2,11 +55,2,9,1,8,7,12,11,5,13,10,6,3,4 +110,13,5,9,10,12,4,11,8,6,2,1,7,3 +30,7,2,8,4,3,12,10,1,9,6,13,5,11 +11,9,13,10,7,12,5,3,6,8,4,1,2,11 +18,6,11,12,7,8,4,9,3,5,13,2,1,10 +177,10,12,8,9,3,13,6,2,4,1,7,11,5 +12,4,1,6,13,9,2,3,5,8,11,7,10,12 +113,13,12,3,1,8,7,11,6,2,9,10,4,5 +133,9,1,4,6,10,3,8,2,5,11,12,7,13 +58,1,4,2,13,5,11,7,9,3,6,8,12,10 +125,7,1,5,9,10,13,4,12,11,2,6,3,8 +190,3,9,1,6,11,5,4,13,7,2,10,8,12 +166,3,13,9,8,12,5,11,4,7,1,10,6,2 +120,5,12,6,9,13,3,10,7,8,4,2,1,11 +156,4,11,10,12,9,5,7,1,8,13,6,3,2 +155,2,8,13,5,6,3,1,10,7,4,11,12,9 +180,8,12,1,7,3,9,6,11,10,4,2,5,13 +153,10,13,12,9,3,5,8,4,2,7,6,1,11 +162,8,5,3,7,1,12,6,13,4,9,2,11,10 +177,4,11,2,8,5,12,7,6,9,3,13,10,1 +37,2,12,10,4,11,8,1,3,9,5,13,6,7 +91,5,3,1,4,2,7,13,11,10,6,12,9,8 +145,12,7,8,5,11,1,6,4,13,2,3,9,10 +4,6,4,7,1,3,10,8,9,13,12,2,11,5 +87,12,9,10,7,11,3,4,6,13,1,5,2,8 +87,7,6,9,8,13,2,1,3,5,4,11,12,10 +169,1,5,13,12,11,2,4,7,3,9,6,10,8 +151,4,5,11,1,10,6,7,8,12,13,9,2,3 +90,13,5,3,8,9,1,10,2,6,12,7,11,4 +44,3,11,2,9,8,6,12,4,7,5,10,1,13 +71,2,8,3,5,6,10,4,11,12,13,1,7,9 +27,12,3,2,10,4,7,13,6,11,9,1,8,5 +181,5,1,10,12,7,4,6,11,13,9,3,2,8 +13,9,6,12,2,1,13,5,8,3,4,7,10,11 +54,4,10,13,6,7,9,8,11,3,5,1,2,12 +146,1,11,13,6,5,2,8,3,12,7,10,4,9 +60,1,6,13,10,12,11,4,9,2,8,3,7,5 +150,8,6,11,5,3,1,4,10,7,12,2,13,9 +191,10,3,13,7,9,5,2,1,4,6,8,11,12 +20,2,9,5,8,7,1,11,12,13,6,10,3,4 +17,8,5,13,2,3,10,12,9,6,1,7,4,11 +6,4,3,9,10,6,2,11,5,12,13,7,8,1 +79,2,8,10,7,1,6,11,9,5,3,4,13,12 +103,3,13,11,12,10,1,4,2,6,5,8,7,9 +127,3,4,8,7,5,10,11,2,9,6,12,1,13 +155,10,1,11,12,13,9,3,6,8,2,7,5,4 +164,4,3,2,11,10,1,8,9,5,13,12,6,7 +153,10,6,11,1,9,8,5,7,3,13,2,4,12 +147,11,12,6,10,5,8,13,1,3,4,9,7,2 +51,13,6,1,4,5,10,2,8,3,12,9,11,7 +109,8,11,7,10,2,6,12,13,5,3,1,4,9 +116,7,5,12,3,11,8,1,6,9,4,10,13,2 +83,4,11,5,8,7,9,3,13,6,12,1,2,10 +72,2,8,3,5,10,9,11,6,1,7,13,12,4 +22,9,6,2,10,8,3,1,12,13,7,4,5,11 +61,6,13,8,3,2,1,10,9,11,7,4,12,5 +117,9,2,13,3,11,6,10,5,7,8,1,12,4 +84,3,4,2,1,9,8,10,5,6,7,12,13,11 +158,8,10,9,2,12,7,3,1,11,6,5,13,4 +123,8,1,12,5,3,4,2,10,13,11,6,7,9 +15,6,7,3,11,8,10,2,5,1,13,4,9,12 +33,9,6,12,7,10,1,5,8,4,3,2,11,13 +161,13,4,11,5,10,7,6,12,1,3,8,2,9 +78,10,1,2,7,11,8,4,13,6,3,5,9,12 +123,13,7,11,2,4,12,5,8,6,3,10,9,1 +44,13,1,8,9,3,6,7,5,4,12,10,11,2 +140,4,11,7,12,10,8,1,6,5,9,2,13,3 +57,13,1,6,7,11,2,8,9,5,10,4,12,3 +66,13,2,7,6,8,9,11,5,12,1,4,10,3 +36,10,8,11,5,2,7,4,6,1,12,3,9,13 +72,10,3,2,7,4,11,12,8,6,5,1,9,13 +14,3,10,9,13,5,11,1,8,4,2,7,12,6 +66,13,11,1,3,9,4,7,10,5,8,2,12,6 +66,8,1,6,11,9,10,13,4,12,3,2,7,5 +65,12,7,1,5,2,10,8,6,11,9,13,3,4 +68,11,6,12,5,3,9,10,4,7,2,8,13,1 +0,6,12,10,11,7,8,1,13,9,2,4,5,3 +51,6,4,10,9,13,12,3,8,7,11,2,5,1 +95,13,1,11,2,4,7,8,12,9,6,5,10,3 +61,12,7,8,10,3,9,11,2,5,4,6,1,13 +73,1,13,8,7,6,3,11,12,4,2,9,10,5 +108,13,3,8,6,4,2,12,7,9,1,11,5,10 +145,7,8,5,3,9,10,13,1,4,2,6,11,12 +16,13,9,10,5,3,2,6,1,12,8,11,4,7 +168,12,10,7,9,4,1,3,11,2,13,5,6,8 +112,2,8,9,11,13,3,7,10,12,1,4,5,6 +159,4,5,1,11,3,2,8,12,9,13,7,6,10 +121,12,4,9,5,7,11,3,2,1,10,6,13,8 +64,5,2,8,9,10,7,11,12,4,6,13,3,1 +66,1,3,7,9,4,12,6,8,5,2,11,13,10 +7,7,1,6,5,3,8,13,4,12,9,11,2,10 +101,1,9,13,5,7,2,4,11,3,8,12,10,6 +169,3,4,2,10,8,1,9,7,11,13,5,6,12 +194,1,3,2,11,4,6,12,9,7,10,13,5,8 +94,9,8,2,10,13,1,4,6,3,12,5,7,11 +195,1,3,5,13,9,2,11,6,10,4,12,7,8 +185,9,13,1,7,4,6,10,11,3,5,2,8,12 +164,7,2,1,13,8,3,12,9,4,10,11,5,6 +93,1,9,6,10,7,5,13,3,12,8,11,4,2 +176,12,3,11,5,1,13,9,7,2,10,4,6,8 +192,5,3,13,2,1,8,7,6,10,4,12,9,11 +45,10,12,5,1,8,3,7,6,11,4,2,13,9 +127,9,5,11,1,10,7,12,4,3,6,13,8,2 +100,7,8,2,10,4,5,9,12,6,1,13,3,11 +195,3,13,10,6,9,11,4,5,7,2,1,12,8 +12,1,11,12,3,6,9,10,2,8,4,7,5,13 +200,12,3,5,10,8,1,7,9,2,13,11,4,6 +111,12,9,11,1,4,8,3,2,5,7,13,10,6 +99,7,3,13,8,10,4,6,12,9,1,2,5,11 +142,3,1,2,11,12,8,5,4,13,6,9,10,7 +162,7,6,1,11,8,10,12,4,2,3,13,5,9 +184,8,4,1,10,6,13,5,2,9,7,11,12,3 +178,4,10,13,1,6,5,8,3,7,12,11,2,9 +118,5,8,1,10,12,9,11,4,6,3,7,13,2 +147,4,11,2,7,10,1,5,8,9,6,12,3,13 +41,8,6,7,12,4,10,9,2,11,3,5,13,1 +96,4,2,1,6,9,3,5,13,8,11,10,12,7 +25,7,10,12,6,4,11,3,1,8,9,2,13,5 +19,5,12,1,11,4,13,6,7,10,9,3,8,2 +154,10,7,2,13,6,11,8,4,9,12,1,5,3 +180,6,2,12,10,4,9,7,8,1,11,5,3,13 +69,5,1,4,8,11,10,13,12,7,9,6,3,2 +135,12,8,13,3,6,2,1,7,11,5,9,4,10 +139,6,13,5,2,3,10,8,7,1,9,4,12,11 +27,13,12,11,1,6,3,4,8,5,9,7,2,10 +62,2,3,9,7,6,5,10,11,12,8,13,1,4 +3,6,3,4,13,12,1,5,9,7,8,10,2,11 +32,10,13,4,12,8,7,1,9,5,11,2,6,3 +64,2,5,9,10,1,3,11,8,13,7,4,12,6 +88,6,7,2,11,10,4,9,5,1,8,3,13,12 +91,7,2,13,3,1,5,9,12,6,8,10,4,11 +94,5,2,7,6,4,11,1,10,8,13,9,3,12 +15,6,3,2,12,1,10,7,11,5,13,4,8,9 +163,2,8,4,5,12,3,11,7,10,9,1,13,6 +163,7,11,8,13,9,10,6,4,1,3,12,2,5 +60,9,12,2,10,6,13,4,8,7,3,11,5,1 +32,9,13,11,5,10,12,7,2,6,3,8,1,4 +62,2,12,11,8,5,13,6,10,1,9,3,7,4 +194,2,1,13,8,6,4,10,11,9,12,5,7,3 +17,13,1,7,12,2,11,9,10,8,6,5,3,4 +15,1,2,11,4,6,13,12,10,8,7,3,9,5 +180,2,12,8,6,4,1,13,11,9,5,7,3,10 +30,12,7,3,9,13,2,1,11,5,10,4,6,8 +157,7,4,13,6,11,10,2,3,9,1,8,12,5 +66,8,2,11,3,9,13,12,10,4,7,6,5,1 +175,7,1,6,11,2,8,5,13,10,9,3,12,4 +44,8,4,6,11,9,1,5,3,7,12,10,13,2 +176,3,11,12,2,7,10,6,5,8,9,13,4,1 +64,5,12,10,7,2,1,4,9,3,11,6,13,8 +34,7,1,11,13,2,5,10,3,9,8,6,4,12 +157,10,7,13,6,11,1,8,9,3,5,12,2,4 +81,11,5,4,8,7,9,12,3,10,1,13,2,6 +117,9,1,11,4,3,13,7,5,2,12,6,10,8 +96,10,1,4,7,13,8,11,12,3,6,2,9,5 +33,10,8,2,5,11,7,13,1,4,12,9,6,3 +187,6,1,13,10,8,9,12,2,3,4,5,7,11 +52,11,10,6,3,9,4,12,8,1,2,5,13,7 +40,12,4,9,1,6,10,11,8,7,5,13,3,2 +30,13,4,2,12,3,11,1,6,5,9,10,7,8 +70,2,13,6,4,10,5,12,1,7,3,9,8,11 +141,6,13,10,8,4,7,9,2,5,12,1,3,11 +181,10,7,4,13,2,11,1,6,9,3,5,8,12 +194,11,8,4,12,3,10,5,2,6,9,13,7,1 +95,3,11,10,5,8,13,2,7,9,12,1,4,6 +196,10,13,8,3,2,1,11,5,9,12,6,4,7 +32,11,13,2,5,12,1,4,9,7,3,10,8,6 +51,12,11,5,13,2,10,7,4,9,3,6,8,1 +147,10,5,4,3,2,13,12,9,1,7,6,8,11 +33,10,6,8,9,7,1,12,5,13,11,3,4,2 +49,4,1,13,6,10,9,2,8,5,3,7,11,12 +145,12,7,3,5,4,6,10,8,13,1,2,11,9 +75,2,10,8,7,1,4,9,11,13,5,12,6,3 +107,9,11,5,1,6,13,2,3,7,10,4,8,12 +153,3,11,6,10,4,1,9,8,12,2,13,7,5 +103,9,13,6,12,7,11,3,4,1,10,8,5,2 +156,8,10,9,6,3,4,2,11,13,1,5,7,12 +15,13,6,11,4,2,12,1,10,7,9,5,8,3 +21,4,5,8,6,2,13,9,7,11,3,10,12,1 +8,10,12,2,4,13,7,1,5,9,3,8,6,11 +142,12,3,4,8,10,6,2,7,9,1,13,5,11 +154,13,5,1,2,11,7,9,12,8,10,4,6,3 +168,13,8,1,7,4,3,9,11,2,6,5,12,10 +108,4,5,11,2,13,8,9,6,3,1,7,12,10 +33,3,12,8,4,6,1,11,7,10,2,13,9,5 +136,1,13,9,8,4,5,11,10,6,7,2,3,12 +81,11,10,8,1,13,4,6,7,9,5,2,12,3 +35,5,10,9,11,2,7,1,12,8,3,13,6,4 +125,8,3,2,10,1,6,12,4,7,9,11,13,5 +163,11,1,2,4,7,3,5,10,8,13,6,12,9 +94,3,4,2,11,6,10,8,12,9,7,1,5,13 +146,12,10,4,9,7,5,8,3,11,6,1,13,2 +102,6,10,12,7,13,2,11,3,1,8,9,5,4 +62,9,7,8,10,12,3,2,11,1,6,4,5,13 +194,9,4,13,2,6,1,5,10,12,3,11,8,7 +183,4,8,7,6,10,2,1,11,3,9,5,12,13 +28,12,10,1,2,8,4,5,6,7,11,9,13,3 +65,7,11,10,8,4,2,6,5,1,12,13,3,9 +170,11,1,12,10,6,3,5,7,13,2,4,9,8 +15,2,9,6,4,5,11,12,10,7,13,1,3,8 +130,9,6,12,3,11,2,5,4,10,13,8,1,7 +185,8,4,2,3,12,6,9,10,13,7,11,5,1 +184,2,4,6,8,7,5,1,13,12,11,9,3,10 +176,4,13,1,9,2,6,11,10,8,12,7,5,3 +129,12,1,8,11,6,7,9,5,10,2,3,4,13 +26,9,3,10,11,7,5,6,13,12,4,8,1,2 +5,12,2,4,5,3,6,11,13,7,8,1,9,10 +135,9,3,13,6,12,4,11,7,1,8,5,10,2 +182,7,1,8,4,3,2,9,13,10,11,12,5,6 +159,11,5,13,6,12,3,1,2,9,10,4,7,8 +127,3,11,1,6,12,2,8,7,9,4,5,13,10 +198,2,11,9,8,7,6,12,1,13,5,3,4,10 +87,13,9,10,4,7,1,8,3,2,6,5,11,12 +110,8,4,10,9,5,13,2,7,6,3,11,12,1 +117,13,2,7,3,10,5,8,9,1,6,12,4,11 +121,8,12,9,2,1,4,7,13,10,5,11,6,3 +19,11,1,9,8,5,12,13,7,10,2,6,3,4 +8,5,9,11,1,6,13,10,4,8,3,7,12,2 +16,1,3,5,2,9,11,12,10,13,6,7,4,8 +61,4,3,1,5,6,7,8,2,12,9,11,10,13 +109,8,6,9,5,4,10,3,12,1,7,13,11,2 +107,11,3,5,12,6,2,10,9,4,1,7,8,13 +158,11,10,8,4,9,6,1,7,3,12,13,2,5 +81,3,13,12,7,1,9,4,10,6,2,5,11,8 +44,12,11,3,10,2,8,7,4,5,13,1,6,9 +171,4,3,1,2,8,9,10,11,13,6,12,7,5 +104,4,2,5,12,7,3,10,8,13,11,6,1,9 +200,6,8,3,11,5,10,1,9,13,12,7,4,2 +62,13,1,9,4,5,8,6,3,2,10,7,11,12 +110,7,2,6,10,12,11,3,13,4,1,5,8,9 +159,6,9,12,11,7,2,13,5,10,3,4,8,1 +21,12,11,13,8,2,3,7,5,1,4,9,6,10 +36,11,2,6,7,5,10,13,4,3,8,12,9,1 +36,8,7,9,13,5,4,6,2,12,10,1,11,3 +149,5,2,9,1,12,3,4,10,13,7,8,11,6 +68,4,9,12,6,8,3,10,7,13,1,5,2,11 +43,7,4,1,2,9,13,5,11,12,6,10,8,3 +166,12,9,8,1,3,13,6,11,5,4,10,2,7 +162,13,1,4,8,7,5,2,9,6,10,11,3,12 +116,12,13,6,11,2,10,1,7,9,5,8,3,4 +172,11,3,9,10,8,5,7,13,2,12,1,6,4 +93,6,13,4,9,1,2,5,3,8,11,7,10,12 +27,1,10,12,13,7,8,5,6,11,2,3,9,4 +24,6,10,12,2,4,8,9,13,3,5,7,1,11 +139,12,2,11,9,4,3,10,13,8,5,1,7,6 +23,12,4,7,6,3,8,1,11,2,10,5,13,9 +63,9,11,8,7,13,5,12,3,10,4,2,1,6 +49,10,4,12,7,9,11,13,8,2,5,6,1,3 +114,1,8,12,2,7,5,9,6,10,13,3,4,11 +111,4,7,10,3,1,12,9,8,6,5,13,11,2 +54,4,11,6,13,3,8,9,12,2,7,10,5,1 +85,8,11,12,9,6,2,5,10,1,4,13,7,3 +89,13,10,5,7,9,1,12,6,4,11,3,8,2 +15,3,13,12,7,2,6,10,5,1,4,8,11,9 +50,9,1,6,4,12,7,3,5,10,11,13,2,8 +4,4,10,8,11,5,7,9,3,2,13,1,12,6 +179,11,1,9,13,2,3,5,12,10,8,7,4,6 +28,9,12,3,7,4,6,5,8,1,2,10,11,13 +83,1,6,11,12,9,4,3,8,5,2,7,10,13 +130,10,6,5,7,2,9,8,1,13,12,4,11,3 +164,6,9,8,5,3,4,7,13,1,11,2,12,10 +117,1,2,7,10,13,8,5,4,12,9,11,3,6 +129,2,12,10,1,11,4,3,7,8,5,13,9,6 +23,8,7,9,10,2,11,12,13,6,4,1,3,5 +55,2,7,12,3,6,10,9,4,1,5,13,11,8 +66,5,1,8,13,11,10,4,7,2,9,6,12,3 +166,6,10,8,9,4,5,13,2,11,3,7,12,1 +64,12,7,4,8,10,3,2,13,6,1,9,11,5 +134,2,9,11,8,3,6,13,12,10,7,4,5,1 +177,13,2,7,11,5,10,1,8,6,4,3,9,12 +55,1,9,4,2,12,3,10,8,6,5,7,11,13 +103,6,10,13,2,3,9,7,1,12,4,5,11,8 +120,2,8,9,5,6,13,7,4,1,12,3,10,11 +55,8,7,11,1,2,9,12,3,13,5,6,10,4 +85,10,8,1,12,13,7,3,2,4,6,5,9,11 +107,3,12,13,6,5,2,8,9,7,10,11,4,1 +200,4,9,6,1,2,3,13,7,11,12,10,8,5 +137,12,13,9,2,3,1,4,10,11,7,5,6,8 +167,1,3,12,8,9,4,10,7,2,6,13,5,11 +162,12,1,5,9,10,4,7,8,2,13,11,3,6 +155,11,2,6,7,10,9,12,5,3,8,1,13,4 +109,6,10,1,8,12,13,2,4,3,7,9,5,11 +49,13,9,12,11,8,10,2,3,6,1,5,7,4 +138,13,3,10,5,2,8,12,4,7,9,1,11,6 +189,13,7,10,6,9,3,11,1,12,4,2,5,8 +19,2,4,3,5,8,11,6,1,9,7,10,12,13 +143,7,6,5,9,2,1,12,11,4,8,3,13,10 +159,8,2,7,10,4,12,11,6,5,1,13,3,9 +145,11,10,12,6,1,4,7,5,3,8,2,9,13 +92,7,6,2,13,9,11,8,10,3,4,1,12,5 +145,11,9,4,1,13,5,8,3,10,2,6,7,12 +97,1,11,7,5,9,13,10,8,6,3,4,2,12 +78,10,6,9,3,12,8,5,11,2,7,1,4,13 +197,9,6,5,3,11,12,1,10,2,8,4,13,7 +127,8,1,13,11,7,6,3,5,12,4,2,9,10 +178,4,7,11,6,1,8,5,3,10,12,9,13,2 +133,8,1,5,12,4,10,13,6,3,9,11,7,2 +128,10,4,7,6,8,3,2,1,11,9,13,12,5 +158,2,8,3,13,11,1,10,6,12,9,4,7,5 +146,10,9,5,4,7,1,8,11,3,6,12,2,13 +31,12,2,6,1,5,8,13,4,3,11,7,9,10 +37,5,12,7,1,4,2,6,10,9,13,3,11,8 +141,8,5,9,6,13,3,1,7,4,12,10,2,11 +8,5,9,12,11,2,10,13,7,3,1,8,6,4 +173,10,3,11,6,9,2,4,7,1,12,8,13,5 +131,12,10,6,4,11,3,9,1,2,13,5,7,8 +180,1,4,9,11,13,8,5,10,2,12,3,7,6 +80,11,9,1,2,12,13,4,6,10,8,5,3,7 +41,12,4,7,8,10,6,11,3,5,13,2,9,1 +32,13,10,8,9,7,3,6,1,12,4,2,5,11 +91,6,1,5,11,2,9,13,8,7,4,10,12,3 +8,1,6,4,12,7,8,9,13,5,2,3,10,11 +25,5,7,13,10,6,2,9,4,1,11,3,8,12 +139,11,2,8,12,4,6,13,10,5,9,3,1,7 +94,5,11,1,9,8,2,10,13,7,6,3,12,4 +56,5,12,7,8,13,3,9,6,1,4,10,2,11 +13,13,5,7,11,2,1,6,9,4,10,3,8,12 +124,9,4,12,11,5,2,1,7,10,6,3,8,13 +158,9,6,1,2,3,4,13,12,11,5,7,8,10 +124,3,11,9,13,6,1,4,2,10,5,7,12,8 +127,8,12,2,3,1,6,7,9,5,13,4,11,10 +167,8,13,9,6,2,4,3,10,1,7,5,11,12 +139,2,1,6,12,10,8,5,11,9,13,7,4,3 +29,5,11,7,4,12,2,3,8,9,10,1,13,6 +102,11,9,2,7,3,5,8,4,12,13,6,10,1 +135,13,9,7,8,10,3,5,2,11,12,6,1,4 +155,1,8,5,7,11,13,10,12,9,4,3,6,2 +78,1,2,3,11,5,7,6,13,8,9,10,12,4 +89,3,11,2,5,8,12,1,10,6,4,13,9,7 +27,7,9,8,5,2,10,3,13,6,12,1,11,4 +8,3,11,12,8,10,9,2,1,6,7,5,4,13 +178,10,9,2,11,12,1,4,3,5,6,13,8,7 +188,5,9,2,7,13,10,4,3,8,1,11,12,6 +39,8,5,7,9,6,3,11,10,4,2,1,12,13 +168,13,7,5,11,9,12,6,2,4,3,8,10,1 +30,3,8,10,1,2,5,9,11,7,12,4,6,13 +110,8,5,12,10,9,2,4,6,1,7,3,11,13 +23,1,9,8,7,10,13,3,2,5,11,12,4,6 +45,13,9,12,2,11,7,4,5,8,1,10,3,6 +164,9,11,4,5,2,6,8,1,3,10,13,12,7 +10,6,10,3,13,9,11,8,1,4,5,7,12,2 +36,6,7,12,5,9,4,10,3,1,13,8,2,11 +44,13,4,1,3,10,7,6,12,9,2,11,8,5 +145,12,3,13,11,5,2,6,8,4,7,1,10,9 +187,1,10,4,7,11,2,12,8,13,3,5,6,9 +122,10,8,4,6,9,5,11,3,2,1,12,7,13 +31,12,2,6,7,5,13,10,8,1,11,3,9,4 +124,13,6,2,9,5,12,7,4,3,11,8,1,10 +69,10,3,9,12,11,2,8,6,5,4,7,13,1 +17,9,1,11,12,7,3,13,4,8,10,5,2,6 +183,11,6,4,10,1,13,9,8,3,2,12,7,5 +53,6,11,9,1,8,2,5,10,12,13,7,3,4 +35,6,7,12,8,9,4,13,10,1,2,3,11,5 +182,4,12,5,1,10,8,7,9,11,3,6,2,13 +66,5,13,1,12,3,6,9,2,10,4,7,11,8 +126,10,7,1,4,13,11,8,12,5,2,6,9,3 +107,11,1,2,10,13,9,3,4,8,5,12,6,7 +15,9,8,2,11,10,6,5,1,7,12,3,13,4 +33,10,12,11,4,2,5,6,3,13,9,8,1,7 +182,1,3,7,13,9,6,5,11,10,12,8,4,2 +126,7,12,13,5,3,4,11,2,10,8,9,1,6 +158,1,6,9,13,12,4,5,2,11,10,8,3,7 +74,6,4,8,7,11,9,12,1,10,5,13,3,2 +30,11,1,12,6,2,5,3,4,13,10,8,7,9 +65,6,12,13,9,10,7,2,11,8,1,5,4,3 +73,3,13,9,6,7,2,4,12,5,10,8,11,1 +173,1,3,12,4,5,2,9,10,7,11,13,6,8 +151,3,9,10,11,2,1,7,5,6,4,8,13,12 +84,7,2,12,1,3,9,8,10,13,5,11,6,4 +85,6,7,12,2,3,13,10,9,5,11,4,1,8 +115,1,2,4,9,3,11,6,8,7,12,10,5,13 +49,12,2,4,5,3,9,7,10,11,6,1,8,13 +78,12,5,3,6,11,4,2,9,13,8,7,10,1 +156,12,4,7,10,5,8,2,13,3,6,9,1,11 +200,10,6,5,8,13,9,11,1,2,4,7,12,3 +129,11,7,4,2,8,12,3,9,6,1,13,10,5 +15,4,7,10,9,12,8,5,6,13,1,11,3,2 +86,7,11,13,8,10,6,3,12,2,9,1,5,4 +97,2,11,8,1,6,3,4,10,7,13,9,5,12 +144,12,2,8,11,6,13,9,1,5,3,10,7,4 +76,6,5,3,2,12,13,9,10,4,8,7,1,11 +124,12,1,6,8,7,2,13,5,9,3,11,4,10 +12,9,5,12,13,8,11,1,6,10,2,4,3,7 +82,11,1,13,7,2,12,5,3,6,10,9,4,8 +102,11,10,13,1,6,5,2,7,4,8,9,3,12 +15,7,4,3,13,11,12,6,8,5,1,9,10,2 +123,11,4,1,8,5,2,10,3,13,6,12,7,9 +106,5,11,10,2,1,6,7,9,8,12,13,4,3 +107,3,1,6,9,7,13,5,4,10,12,11,2,8 +41,9,12,7,2,4,5,3,13,6,10,11,1,8 +118,9,2,7,4,11,10,5,6,8,1,12,3,13 +196,5,8,3,2,6,10,11,13,9,12,1,7,4 +108,2,1,4,9,7,12,5,8,11,10,3,13,6 +198,5,2,10,6,4,9,8,3,1,12,11,7,13 +184,4,1,6,2,11,12,5,10,13,7,9,3,8 +79,6,12,1,8,13,3,10,9,4,2,11,7,5 +75,3,11,8,2,9,5,7,10,1,6,12,13,4 +45,11,7,2,1,12,10,13,9,8,4,6,5,3 +103,5,9,2,1,10,13,8,12,7,11,4,6,3 +127,5,1,10,3,7,2,13,8,12,11,9,4,6 +15,11,3,6,8,13,1,4,5,7,2,9,12,10 +185,11,2,7,6,12,9,10,1,8,3,4,13,5 +100,5,8,11,4,2,10,12,7,9,3,1,13,6 +27,8,1,3,13,4,5,12,11,10,2,9,7,6 +191,10,12,3,5,9,11,7,13,1,8,6,2,4 +175,11,10,5,12,7,6,9,1,2,3,4,13,8 +178,6,7,4,1,5,12,9,10,11,13,3,8,2 +116,5,10,4,1,13,9,7,8,2,11,6,12,3 +31,1,7,11,5,9,6,2,8,12,10,13,4,3 +76,8,9,5,2,12,11,3,7,4,10,6,1,13 +142,7,8,3,5,13,2,10,11,1,9,4,6,12 +91,6,4,9,7,5,1,13,3,2,11,8,12,10 +45,5,4,13,11,7,12,8,3,10,1,2,9,6 +133,13,12,2,3,8,11,9,10,4,7,1,5,6 +196,9,8,13,6,5,4,2,7,1,12,3,11,10 +131,6,3,9,7,13,11,2,12,4,5,1,10,8 +84,11,9,10,1,7,4,6,12,5,3,8,13,2 +180,9,13,6,2,8,5,3,4,1,12,7,11,10 +53,4,9,3,12,5,8,13,7,11,1,10,6,2 +196,4,7,1,6,2,13,9,10,8,12,11,3,5 +122,4,1,2,7,6,11,12,9,3,8,5,13,10 +4,4,8,11,12,1,2,7,6,9,3,10,13,5 +136,4,12,11,9,8,10,3,1,5,6,2,13,7 +194,3,12,5,1,9,2,13,10,7,6,4,11,8 +114,13,3,1,5,8,4,7,9,10,6,11,2,12 +6,5,7,11,3,2,12,6,10,13,9,4,1,8 +167,13,5,2,10,6,12,4,1,3,8,11,7,9 +4,5,8,11,10,4,6,1,9,2,3,13,7,12 +124,10,1,3,8,12,2,5,9,11,4,6,7,13 +54,12,10,1,9,2,3,7,8,5,11,13,6,4 +121,12,2,10,3,4,9,13,8,7,5,11,1,6 +115,11,9,3,1,10,7,12,6,8,2,13,4,5 +12,2,5,8,6,3,9,1,13,7,10,4,11,12 +44,6,11,2,7,3,9,13,12,1,8,5,10,4 +129,12,3,1,9,6,13,11,10,8,2,7,4,5 +85,8,1,2,9,4,13,12,7,11,10,3,6,5 +20,1,11,7,12,4,9,8,3,13,2,10,6,5 +125,9,3,2,13,8,1,7,12,5,10,4,11,6 +177,4,7,9,6,12,11,8,2,5,3,13,1,10 +10,7,8,10,13,6,1,2,11,12,3,5,9,4 +88,9,12,7,3,4,1,5,6,11,8,2,10,13 +130,1,2,13,12,7,11,10,5,9,8,6,4,3 +184,4,9,1,3,7,8,10,6,12,2,13,11,5 +26,5,8,10,3,1,11,2,7,9,6,13,12,4 +49,9,10,13,7,5,11,4,8,2,12,3,1,6 +120,10,7,12,3,11,9,2,8,6,4,1,5,13 +4,2,13,3,12,6,5,7,4,8,11,1,9,10 +26,1,4,2,6,7,3,9,5,8,10,12,13,11 +98,3,4,2,7,5,13,11,1,6,8,9,10,12 +109,2,6,12,8,7,13,4,9,10,3,1,11,5 +39,7,5,8,1,3,4,6,13,11,9,10,12,2 +17,3,10,7,6,11,12,2,13,9,1,8,5,4 +127,8,5,6,3,13,11,2,9,10,12,1,7,4 +69,8,9,1,6,4,12,11,7,3,2,13,10,5 +61,12,1,3,2,9,13,8,10,7,4,5,11,6 +123,9,12,6,4,3,8,7,11,2,13,1,10,5 +115,11,1,5,8,9,6,7,12,10,13,3,2,4 +160,5,2,7,10,3,6,12,4,11,9,1,13,8 +121,3,1,8,4,2,11,12,6,9,13,10,7,5 +103,10,13,1,4,3,12,7,9,2,5,6,8,11 +199,13,9,12,3,8,1,2,4,10,5,7,11,6 +40,9,1,13,8,6,3,12,10,11,2,4,5,7 +168,2,13,5,7,11,10,12,6,1,8,4,3,9 +110,9,13,1,11,10,8,4,3,2,7,12,5,6 +173,4,11,10,1,12,13,7,5,8,2,3,9,6 +166,12,7,8,10,13,2,4,3,1,11,9,6,5 +167,3,1,9,5,6,8,2,13,12,4,10,11,7 +181,5,13,6,12,8,11,3,10,1,2,9,4,7 +26,4,12,8,11,6,7,9,5,13,2,1,10,3 +62,2,1,6,5,8,10,9,12,7,11,13,4,3 +121,12,5,2,11,9,4,13,7,3,10,1,8,6 +36,3,5,2,8,4,9,10,6,12,13,11,1,7 +95,10,4,2,5,11,1,12,6,13,8,9,7,3 +171,1,12,9,13,8,2,7,5,4,10,11,3,6 +19,5,12,1,8,7,9,2,6,13,11,4,3,10 +41,6,2,8,5,4,13,1,7,3,12,9,11,10 +69,2,3,8,1,4,5,6,11,13,12,9,10,7 +112,10,13,3,2,8,7,12,1,6,9,5,4,11 +132,7,13,1,3,8,2,12,4,9,11,6,10,5 +1,8,1,9,5,13,7,3,11,12,2,4,6,10 +163,6,1,4,10,2,13,3,8,7,9,12,5,11 +69,9,13,12,8,10,2,3,4,1,5,11,6,7 +128,8,4,3,10,5,6,13,2,9,1,11,7,12 +41,2,5,1,3,11,10,12,8,4,6,9,13,7 +20,8,13,4,7,11,3,10,12,2,6,1,5,9 +110,10,8,9,7,11,2,12,4,6,1,13,5,3 +88,5,12,2,11,9,7,13,1,8,4,6,10,3 +70,13,5,9,10,12,1,2,11,4,3,7,6,8 +156,4,2,9,13,7,8,11,12,6,1,5,10,3 +37,6,3,10,4,1,8,13,2,5,7,12,9,11 +1,11,6,12,8,7,1,5,4,2,13,10,3,9 +117,12,7,10,3,1,9,11,2,13,8,6,5,4 +110,5,3,4,9,11,10,2,1,8,7,12,13,6 +18,11,13,1,12,3,6,2,5,10,9,7,4,8 +8,11,3,2,12,4,9,1,7,6,5,13,10,8 +138,3,1,2,13,9,8,11,4,7,5,6,10,12 +6,13,1,6,7,3,9,11,8,10,2,12,5,4 +121,2,8,12,3,7,9,5,1,6,10,11,13,4 +189,7,9,4,10,1,12,5,6,11,8,13,3,2 +161,11,9,8,5,2,1,13,4,7,3,12,6,10 +40,13,2,3,7,5,8,10,12,11,4,1,6,9 +2,1,9,2,8,5,11,12,3,4,10,7,13,6 +110,2,4,9,1,8,6,3,12,7,11,10,13,5 +120,11,8,5,13,4,10,12,7,3,2,6,1,9 +22,4,1,6,11,9,2,7,10,3,13,5,8,12 +36,6,11,2,3,8,7,4,12,1,10,9,13,5 +44,10,8,1,12,3,7,5,6,11,4,2,13,9 +101,7,2,8,12,5,11,9,1,6,10,13,4,3 +125,2,13,3,4,10,7,8,12,1,5,9,11,6 +175,8,10,9,13,12,1,4,7,3,6,11,5,2 +97,13,12,6,4,11,8,1,5,9,2,10,3,7 +114,9,10,4,11,12,3,1,5,8,7,6,13,2 +115,4,2,5,12,13,1,10,7,8,3,6,9,11 +7,4,3,7,8,6,9,10,1,12,2,11,13,5 +13,7,4,11,13,9,5,8,12,1,6,2,10,3 +151,5,2,3,13,10,1,6,7,12,9,8,11,4 +187,4,5,13,11,12,8,6,10,1,2,7,3,9 +21,6,12,5,8,3,4,13,9,1,11,7,10,2 +192,11,12,3,1,8,5,9,2,6,7,4,10,13 +59,4,8,3,9,10,6,13,5,11,2,12,1,7 +134,11,2,9,10,8,5,6,4,12,3,13,1,7 +193,9,4,11,10,6,2,7,13,8,1,5,12,3 +70,13,9,3,2,1,5,8,6,12,7,11,10,4 +142,6,12,13,3,10,5,1,7,11,4,2,8,9 +197,6,8,13,9,2,11,12,3,7,4,5,1,10 +86,7,11,5,6,1,4,13,2,12,10,9,8,3 +169,3,5,11,8,12,13,4,7,10,9,2,1,6 +73,10,3,11,9,13,8,5,7,2,1,12,6,4 +137,4,10,7,11,8,2,9,13,1,5,6,3,12 +96,7,2,3,1,8,13,4,10,5,6,9,11,12 +69,6,9,13,7,10,8,3,2,11,1,5,4,12 +124,7,11,8,3,10,1,9,2,4,13,5,12,6 +16,9,12,1,13,4,11,10,5,6,2,8,3,7 +29,6,13,11,9,12,8,7,4,3,5,10,1,2 +42,13,3,5,10,9,8,12,2,1,11,4,7,6 +44,5,6,12,1,10,13,7,2,4,3,11,8,9 +115,6,2,13,10,7,12,11,1,3,9,4,8,5 +51,6,1,7,9,2,12,3,5,10,13,11,8,4 +139,4,10,11,1,2,3,8,12,5,9,13,6,7 +53,5,8,4,10,7,13,6,11,3,9,12,2,1 +87,3,4,7,9,13,6,8,5,12,11,1,2,10 +8,8,5,9,1,4,11,6,13,10,3,12,7,2 +35,7,4,12,9,11,2,3,13,1,8,5,10,6 +71,12,8,3,9,13,4,7,6,10,11,5,1,2 +154,6,11,2,7,1,9,3,10,8,12,5,13,4 +73,3,8,10,2,4,6,1,9,7,5,11,12,13 +44,2,4,11,10,9,1,8,7,6,13,3,5,12 +67,6,13,10,5,7,12,8,11,1,2,4,9,3 +61,2,6,10,11,3,5,9,13,12,8,4,1,7 +7,11,4,9,2,12,3,10,6,8,1,5,7,13 +151,1,6,2,13,10,8,4,12,3,7,5,9,11 +191,2,1,8,12,9,5,3,6,7,4,13,10,11 +155,9,11,3,8,4,7,12,13,6,1,10,5,2 +21,12,7,4,9,13,5,10,3,11,2,1,6,8 +34,8,5,7,13,3,12,1,6,9,4,10,2,11 +36,5,1,10,12,11,4,13,9,8,2,3,7,6 +160,5,3,4,2,13,1,6,9,7,11,8,10,12 +31,7,10,1,8,13,12,5,3,6,11,4,9,2 +138,12,2,4,6,8,10,1,13,7,5,3,9,11 +83,7,6,1,4,9,11,2,12,5,13,10,8,3 +41,12,6,8,2,5,9,4,7,10,1,3,11,13 +13,2,8,11,12,3,1,13,9,6,7,10,5,4 +117,13,9,1,3,11,4,7,12,2,6,10,8,5 +93,12,8,1,13,10,11,5,4,7,6,2,9,3 +127,7,6,1,10,11,2,4,5,9,12,8,3,13 +110,6,2,12,9,4,1,3,13,8,5,7,10,11 +81,4,2,8,5,10,3,12,11,13,6,7,9,1 +174,10,2,13,6,9,7,1,8,12,3,5,4,11 +181,9,13,11,5,3,6,1,12,8,10,7,2,4 +79,11,12,2,9,8,6,3,4,1,7,13,5,10 +32,3,8,11,13,9,4,12,6,10,2,7,5,1 +85,9,4,3,2,11,5,10,8,12,6,7,13,1 +67,7,10,4,6,3,2,11,9,8,12,5,13,1 +111,11,3,10,13,4,5,8,7,1,12,2,6,9 +99,6,9,10,2,12,13,5,1,4,11,8,7,3 +24,6,7,11,3,2,13,5,9,8,12,4,1,10 +185,6,1,7,4,2,8,11,9,3,12,5,13,10 +131,3,9,8,10,2,1,13,11,7,12,6,5,4 +194,5,8,1,6,2,4,12,13,3,9,10,7,11 +3,4,12,8,7,9,10,5,2,11,1,6,3,13 +38,12,10,3,8,5,11,13,9,1,2,4,6,7 +77,1,12,5,11,8,9,7,13,3,2,10,6,4 +95,8,10,9,5,7,6,13,2,1,11,12,3,4 +109,12,1,10,3,6,9,4,8,13,11,5,2,7 +34,6,11,10,13,9,3,12,5,1,2,7,4,8 +160,9,8,12,4,13,7,2,11,6,10,1,3,5 +177,4,9,3,11,13,8,10,5,2,12,6,7,1 +117,12,3,13,11,2,9,7,8,5,1,6,10,4 +48,11,5,13,3,10,2,6,9,1,4,12,7,8 +161,13,5,3,4,11,10,2,9,12,6,1,7,8 +45,9,6,11,7,3,1,4,2,13,8,12,5,10 +134,6,12,13,7,5,2,11,3,8,1,10,9,4 +90,12,1,3,9,8,13,4,11,6,10,7,2,5 +69,10,7,1,8,2,5,11,13,9,3,4,12,6 +75,11,8,3,9,2,6,4,7,13,12,1,10,5 +7,6,13,5,10,8,4,11,2,3,12,7,9,1 +29,2,11,3,7,10,8,1,6,4,13,12,9,5 +82,8,9,1,6,7,12,5,11,10,13,4,2,3 +130,13,12,4,1,3,5,8,10,9,2,11,6,7 +82,4,11,1,3,8,10,9,5,6,12,2,7,13 +138,2,12,9,10,7,3,11,1,4,8,5,13,6 +120,2,8,3,6,13,9,11,4,1,10,5,7,12 +124,2,3,7,1,13,10,12,11,6,4,5,8,9 +189,11,10,6,12,13,8,7,9,4,2,3,5,1 +84,13,4,1,6,12,8,7,2,5,11,3,9,10 +118,11,13,7,4,6,8,2,9,12,1,5,10,3 +79,11,6,4,7,3,13,12,2,9,5,10,1,8 +102,9,12,13,2,4,5,7,11,6,3,1,8,10 +60,8,9,5,1,2,13,3,11,10,12,7,6,4 +64,3,13,1,12,9,2,7,6,4,5,10,11,8 +158,7,3,11,5,4,12,9,13,6,8,1,10,2 +86,8,7,6,9,3,2,4,5,13,11,12,1,10 +123,6,5,11,1,2,3,4,13,8,10,7,9,12 +176,11,3,12,1,13,5,2,7,6,8,10,9,4 +5,11,2,8,5,6,10,1,4,3,7,13,12,9 +146,4,2,5,9,13,7,12,3,1,8,10,6,11 +32,10,4,7,1,11,6,9,8,5,3,13,12,2 +93,8,4,2,7,13,10,6,1,3,12,9,5,11 +117,4,1,8,2,12,9,13,7,11,6,5,3,10 +102,8,4,6,5,7,3,10,9,13,2,11,12,1 +171,12,2,8,10,7,3,1,11,13,5,6,4,9 +77,11,9,3,10,4,6,5,13,12,7,8,2,1 +32,13,3,5,7,12,6,8,11,2,4,10,9,1 +154,8,1,7,6,5,13,4,11,3,12,9,10,2 +132,2,6,9,5,11,1,8,10,7,12,13,4,3 +22,4,10,8,12,13,2,7,9,5,1,3,11,6 +95,5,7,8,6,13,12,10,3,4,2,9,1,11 +36,4,8,5,3,13,1,7,12,9,11,2,10,6 +6,13,11,3,9,5,2,1,4,10,12,7,6,8 +128,4,3,8,12,6,10,11,5,2,7,1,9,13 +45,1,5,2,13,11,7,6,9,3,12,8,10,4 +24,10,9,2,1,12,5,6,4,7,3,8,11,13 +88,12,1,6,8,7,4,2,11,10,9,3,13,5 +44,4,8,6,7,3,10,1,9,13,5,11,12,2 +190,11,8,10,7,12,1,3,6,13,2,5,9,4 +194,2,6,8,7,3,13,5,9,10,11,1,4,12 +133,4,10,3,12,1,9,5,11,2,8,13,6,7 +90,7,8,11,12,9,13,4,6,1,2,5,3,10 +138,13,8,5,9,1,11,12,2,4,6,10,7,3 +155,6,10,9,7,11,5,2,1,3,13,8,12,4 +58,8,7,5,13,6,12,9,2,3,4,1,10,11 +166,12,4,2,9,11,13,7,3,5,6,1,10,8 +136,13,11,5,4,10,2,12,7,6,1,3,8,9 +15,13,11,5,2,9,3,12,8,6,4,7,10,1 +110,9,7,2,6,11,1,8,13,12,3,5,4,10 +67,11,3,1,5,9,2,7,8,6,10,4,12,13 +78,8,2,3,7,6,5,13,1,12,10,9,11,4 +11,9,7,3,1,4,13,10,5,6,12,2,11,8 +64,7,4,12,1,11,9,13,2,5,3,6,8,10 +99,12,4,3,1,10,7,2,11,9,5,6,8,13 +107,6,2,11,8,13,7,12,4,3,9,1,5,10 +145,9,5,10,3,1,2,12,7,8,6,13,4,11 +73,10,11,1,5,6,12,7,13,8,3,9,4,2 +125,8,5,4,11,1,12,13,3,7,10,9,2,6 +3,3,9,4,6,10,5,12,11,2,8,1,13,7 +31,7,10,1,2,3,4,12,8,9,11,13,6,5 +199,11,4,3,13,2,8,7,1,5,12,6,10,9 +191,6,13,9,1,8,10,7,11,4,2,12,3,5 +134,9,12,1,2,3,6,5,7,13,10,4,8,11 +93,12,6,11,4,9,3,10,5,1,2,7,13,8 +174,1,11,8,3,12,7,2,5,6,9,10,4,13 +14,11,4,2,6,7,8,9,3,12,5,10,13,1 +182,4,7,9,5,1,10,11,8,13,2,6,12,3 +15,9,10,2,13,4,5,11,12,1,3,8,6,7 +172,3,12,7,9,2,6,8,1,11,5,4,10,13 +193,7,13,2,4,1,5,9,11,10,6,3,12,8 +96,7,1,2,8,9,5,4,10,11,3,6,13,12 +83,6,13,4,12,2,11,1,10,5,9,7,8,3 +180,1,6,3,7,2,10,13,4,9,8,5,11,12 +188,10,3,5,12,6,2,13,11,1,9,8,4,7 +61,8,11,9,12,10,1,5,13,2,6,7,4,3 +152,11,1,6,5,13,7,4,10,9,2,8,12,3 +92,4,2,9,13,12,11,10,1,5,8,6,3,7 +101,6,5,13,12,9,1,11,8,3,2,10,7,4 +7,13,12,1,4,6,10,5,7,3,11,9,2,8 +125,7,1,11,4,13,2,10,9,12,8,3,5,6 +90,9,12,7,8,13,5,10,4,2,11,1,6,3 +91,11,5,12,2,13,3,4,1,10,6,9,7,8 +73,8,9,4,7,12,11,5,10,2,3,6,13,1 +155,7,3,6,5,11,4,10,8,12,9,13,1,2 +91,1,11,7,10,8,5,4,3,9,12,13,6,2 +174,3,13,5,11,12,1,8,2,6,10,4,7,9 +48,4,11,6,13,8,3,12,5,7,9,1,2,10 +31,10,11,2,1,13,3,8,4,6,12,9,5,7 +176,12,10,9,1,5,11,4,8,7,3,6,13,2 +101,1,3,12,7,6,10,5,2,4,8,11,13,9 +100,13,12,4,2,7,10,1,8,5,6,11,9,3 +24,5,8,1,11,9,4,3,7,12,10,13,6,2 +51,12,7,10,9,8,3,4,5,2,6,13,11,1 +89,9,10,12,1,8,7,6,5,13,2,11,3,4 +6,10,13,5,7,6,2,4,9,8,12,3,11,1 +33,2,3,10,12,11,6,9,8,1,4,5,13,7 +68,13,6,9,7,4,11,8,5,10,2,1,3,12 +185,8,9,12,7,1,6,5,4,13,3,10,2,11 +93,6,4,2,11,5,3,7,10,8,9,13,12,1 +107,9,7,10,4,11,1,3,5,6,12,2,13,8 +116,13,2,7,9,10,3,12,5,1,8,11,4,6 +23,1,6,11,5,8,9,12,10,2,13,3,7,4 +26,5,11,1,3,4,8,2,7,6,12,9,10,13 +125,11,6,4,12,1,3,5,10,8,7,9,13,2 +82,12,10,3,7,4,13,8,5,2,1,9,11,6 +118,13,4,3,9,5,11,8,6,10,2,12,1,7 +136,13,6,9,1,4,10,11,8,5,7,12,3,2 +117,3,9,1,5,6,8,11,2,12,10,4,13,7 +184,12,5,4,10,2,3,7,8,13,6,1,11,9 +94,12,9,5,13,4,10,11,8,6,2,7,1,3 +158,12,11,9,10,7,2,1,5,3,8,4,6,13 +116,4,7,11,6,3,9,8,13,2,10,5,12,1 +125,6,7,5,3,4,10,13,8,2,9,12,11,1 +185,13,2,12,6,3,7,1,8,5,9,4,10,11 +188,9,11,2,5,12,10,8,7,4,3,6,13,1 +157,6,9,4,5,1,8,11,3,13,10,12,2,7 +43,10,13,11,3,5,12,1,2,9,8,4,7,6 +165,1,6,2,5,9,13,8,4,3,11,7,10,12 +88,2,4,6,3,5,13,10,7,9,11,1,12,8 +17,10,6,7,13,8,3,11,4,12,2,9,1,5 +148,1,2,13,9,12,8,3,11,4,5,10,6,7 +169,8,12,2,9,10,1,11,13,7,3,6,5,4 +35,13,7,9,2,4,10,3,5,1,6,12,11,8 +156,8,4,12,2,10,11,3,13,1,6,5,9,7 +68,12,5,3,6,1,9,11,4,2,8,10,13,7 +199,2,11,13,4,6,5,8,1,10,7,12,9,3 +145,6,2,4,7,5,12,9,3,10,1,11,13,8 +168,3,11,7,2,6,10,9,1,5,12,13,4,8 +80,5,9,4,10,3,8,11,7,13,6,12,2,1 +161,12,13,11,9,7,1,4,6,5,10,8,3,2 +172,6,11,2,7,8,13,1,10,4,12,5,3,9 +122,3,4,8,11,1,13,6,5,12,10,9,2,7 +91,10,4,9,1,5,7,6,2,12,3,11,13,8 +173,6,13,10,7,2,4,1,5,3,11,8,9,12 +53,3,6,10,9,13,11,8,5,7,1,12,4,2 +123,13,3,12,7,1,6,2,5,9,11,8,10,4 +173,8,10,13,4,6,5,1,2,11,9,12,3,7 +86,13,6,11,9,5,4,8,3,2,10,12,7,1 +51,11,1,10,6,9,5,8,13,4,12,2,3,7 +182,2,13,10,9,6,5,12,3,1,4,11,7,8 +172,7,13,9,1,4,11,5,6,8,10,3,12,2 +167,8,13,10,12,1,5,7,4,6,2,3,11,9 +157,4,8,12,10,13,1,6,2,3,5,11,7,9 +121,12,3,7,11,9,1,2,10,5,6,4,13,8 +150,13,12,1,2,4,3,9,5,8,10,6,7,11 +29,7,10,6,3,4,2,5,8,1,9,13,12,11 +21,8,4,9,3,10,6,13,2,1,12,11,5,7 +155,3,7,5,9,13,6,10,1,4,12,11,8,2 \ No newline at end of file diff --git a/input-9c-750r b/input-9c-750r new file mode 100644 index 0000000..9d0009d --- /dev/null +++ b/input-9c-750r @@ -0,0 +1,761 @@ +9 +1,a +2,b +3,c +4,d +5,e +6,f +7,g +8,h +9,i +27461,27461,750 +56,9,7,5,8,4,1,3,2,6 +56,5,6,7,1,2,3,9,4,8 +38,9,8,4,5,6,7,2,3,1 +62,1,2,3,4,5,7,6,9,8 +4,9,8,1,6,5,7,2,3,4 +12,4,6,8,9,7,2,5,3,1 +22,2,6,3,5,1,9,7,8,4 +2,3,6,4,2,7,8,5,9,1 +38,9,7,3,1,5,8,4,2,6 +7,8,9,6,4,5,3,1,7,2 +45,5,6,9,8,2,4,3,1,7 +20,2,7,4,9,5,3,1,8,6 +30,8,1,4,9,5,3,6,2,7 +40,1,8,9,4,5,3,2,6,7 +47,6,4,5,3,7,2,9,8,1 +51,4,3,1,2,8,6,5,7,9 +18,2,9,5,1,8,6,7,4,3 +7,7,4,5,2,8,3,6,9,1 +32,2,6,3,5,7,4,9,8,1 +58,9,3,6,5,4,2,7,1,8 +14,1,2,8,7,6,5,3,4,9 +13,6,7,9,8,3,2,4,5,1 +29,3,2,6,5,7,4,8,1,9 +21,4,1,5,3,9,2,7,6,8 +28,3,7,2,1,4,6,9,5,8 +54,6,2,9,1,5,7,3,8,4 +72,6,3,2,9,7,4,1,5,8 +50,7,2,9,8,6,4,3,5,1 +72,1,2,3,4,8,7,9,6,5 +47,5,9,4,1,3,2,8,7,6 +23,3,6,8,2,1,9,7,5,4 +22,9,3,2,7,6,4,5,8,1 +3,3,7,5,9,2,8,4,6,1 +27,4,6,1,5,7,3,2,9,8 +55,8,7,2,4,1,5,9,6,3 +21,4,7,6,8,5,9,2,1,3 +52,4,7,2,9,6,8,1,5,3 +47,2,7,1,4,3,8,5,6,9 +33,3,7,2,1,6,5,4,8,9 +69,3,8,7,4,6,5,9,1,2 +57,1,8,7,9,4,3,5,2,6 +73,7,6,5,4,9,2,8,3,1 +37,4,6,9,1,8,2,7,3,5 +24,3,7,2,1,6,9,5,8,4 +59,4,7,6,8,9,5,3,1,2 +11,3,4,2,7,5,8,9,6,1 +16,6,1,3,8,7,5,9,4,2 +70,5,9,4,1,7,3,2,6,8 +2,6,4,5,7,2,8,3,9,1 +7,9,5,3,1,6,2,4,7,8 +0,7,3,4,9,5,6,1,8,2 +54,5,7,3,8,2,6,9,4,1 +17,2,9,1,5,7,6,8,3,4 +46,2,7,4,8,9,6,1,5,3 +45,9,8,1,7,6,5,4,3,2 +73,2,4,3,6,1,5,7,8,9 +42,9,4,1,6,3,7,8,5,2 +16,3,8,4,7,1,2,6,5,9 +24,4,6,5,3,1,2,8,9,7 +54,8,5,6,1,3,7,4,2,9 +23,8,5,3,9,4,2,6,7,1 +31,9,8,1,6,7,4,2,5,3 +12,6,4,5,7,8,1,3,9,2 +44,7,3,1,2,8,6,5,4,9 +17,9,5,8,4,7,3,1,2,6 +0,4,5,2,9,1,3,7,6,8 +29,7,9,1,4,6,8,5,3,2 +35,7,8,9,2,4,6,3,1,5 +63,6,1,3,8,2,9,5,4,7 +53,2,5,1,3,7,4,9,8,6 +71,5,1,2,9,8,7,6,4,3 +29,1,8,9,5,7,3,4,6,2 +11,1,2,7,9,6,4,5,8,3 +41,2,7,1,4,9,6,3,5,8 +9,2,5,8,7,6,4,3,1,9 +40,9,6,4,7,2,1,3,5,8 +39,9,2,8,1,6,3,4,7,5 +42,9,2,5,3,6,8,1,7,4 +31,2,5,8,7,9,1,3,6,4 +47,2,3,8,6,5,4,9,1,7 +46,7,8,1,5,6,9,4,3,2 +63,4,6,5,3,8,1,2,9,7 +38,6,2,1,7,8,4,9,3,5 +75,3,8,9,6,4,7,5,2,1 +43,6,4,9,5,2,1,3,7,8 +51,3,5,2,1,4,8,9,7,6 +0,2,6,7,5,1,4,9,3,8 +29,3,2,6,7,9,5,1,4,8 +0,6,8,7,3,5,4,2,1,9 +36,8,3,9,6,5,4,2,7,1 +48,3,2,8,5,4,1,9,7,6 +33,5,4,3,8,9,6,1,7,2 +32,3,2,1,8,9,6,5,4,7 +27,1,9,4,6,3,7,5,8,2 +6,6,3,4,2,1,7,9,8,5 +5,7,2,6,4,3,8,5,1,9 +6,9,6,4,7,3,8,5,2,1 +16,3,1,5,2,9,7,8,6,4 +33,1,3,7,9,5,4,8,6,2 +8,1,8,3,2,5,7,4,6,9 +27,5,8,2,7,4,9,6,1,3 +23,7,3,5,1,8,2,4,6,9 +66,9,7,6,2,8,5,3,1,4 +1,1,2,3,6,5,9,8,4,7 +68,9,1,6,7,2,3,4,8,5 +3,2,6,7,5,4,3,9,8,1 +23,2,5,1,4,6,7,8,3,9 +39,3,2,9,6,5,4,7,1,8 +59,3,2,1,9,5,7,8,6,4 +20,7,4,5,6,1,2,8,9,3 +14,3,1,5,4,6,9,2,7,8 +35,3,1,7,5,6,8,4,9,2 +72,3,1,4,6,5,7,8,9,2 +19,2,4,3,7,6,1,5,9,8 +40,1,8,5,9,7,2,4,6,3 +34,4,8,1,9,6,5,2,3,7 +3,4,9,2,8,5,1,6,7,3 +24,8,9,7,1,3,4,5,6,2 +27,7,2,4,3,5,1,8,9,6 +18,3,6,8,5,2,1,9,7,4 +56,4,8,9,5,7,3,6,2,1 +14,8,6,7,9,1,2,4,3,5 +20,5,3,1,2,6,9,8,7,4 +48,7,3,1,5,2,8,4,6,9 +47,5,9,4,3,6,1,2,8,7 +51,3,2,6,8,9,1,5,4,7 +62,7,4,6,8,3,1,5,9,2 +3,5,8,2,9,3,1,7,4,6 +44,6,3,4,2,9,7,1,8,5 +44,7,2,4,3,5,6,1,9,8 +43,7,1,8,9,2,3,6,4,5 +0,8,6,7,9,1,5,3,4,2 +32,9,6,8,5,3,7,1,4,2 +8,8,4,7,5,9,3,6,1,2 +74,5,1,7,2,6,4,8,9,3 +8,8,6,5,3,9,7,2,4,1 +34,9,4,8,1,6,3,5,2,7 +0,2,1,7,4,8,3,6,9,5 +69,2,6,7,8,4,3,1,5,9 +15,4,3,1,7,8,9,6,2,5 +37,2,4,8,6,7,1,3,9,5 +1,8,9,4,2,6,3,7,1,5 +57,1,9,7,5,6,2,8,4,3 +18,9,7,3,5,8,4,2,1,6 +20,2,1,4,6,8,7,5,9,3 +35,4,5,2,8,1,3,9,6,7 +13,4,5,9,8,2,6,3,7,1 +54,2,7,9,3,6,5,1,8,4 +57,1,7,4,6,3,8,5,2,9 +12,1,2,9,4,6,8,7,5,3 +53,7,1,8,9,4,3,6,5,2 +14,4,6,9,5,2,3,1,7,8 +38,2,8,4,1,9,5,3,7,6 +65,4,1,2,6,7,5,8,9,3 +45,1,6,3,2,5,4,8,7,9 +12,1,2,3,7,6,9,5,8,4 +65,6,2,5,8,7,9,4,3,1 +73,4,9,1,3,5,2,7,8,6 +23,1,6,3,2,5,8,9,4,7 +68,4,9,3,6,8,1,2,7,5 +54,7,6,4,5,8,3,2,9,1 +46,8,6,7,9,5,2,3,1,4 +72,7,8,1,9,5,2,3,6,4 +28,1,3,8,2,4,5,7,6,9 +13,9,3,7,1,6,4,8,5,2 +26,4,7,8,2,6,1,9,3,5 +33,1,2,6,5,9,4,3,8,7 +69,3,1,5,6,7,4,9,8,2 +39,3,4,6,7,5,9,1,8,2 +35,3,5,7,2,1,8,4,9,6 +46,5,9,1,7,3,6,4,8,2 +74,3,7,2,6,5,1,4,8,9 +35,2,8,4,3,5,6,9,1,7 +9,2,3,8,9,5,7,4,6,1 +23,5,9,4,6,3,2,1,7,8 +36,9,6,3,5,2,8,4,7,1 +29,6,8,1,2,5,7,9,3,4 +73,9,2,5,6,7,8,1,3,4 +48,3,6,4,9,2,8,1,7,5 +73,3,6,4,9,2,8,5,7,1 +51,9,1,4,2,6,8,7,3,5 +13,2,3,1,5,7,8,9,4,6 +18,6,8,1,2,7,3,5,4,9 +12,7,3,1,6,4,5,9,8,2 +29,4,5,9,6,1,7,2,3,8 +47,8,9,4,3,5,6,2,1,7 +9,5,2,1,3,7,8,9,6,4 +56,2,8,7,1,5,9,6,3,4 +4,3,8,1,4,9,2,5,7,6 +52,6,2,9,7,1,5,3,4,8 +18,4,7,8,3,1,6,2,9,5 +27,3,7,6,4,8,9,5,2,1 +72,4,7,2,9,3,8,5,1,6 +57,2,7,9,4,5,8,3,1,6 +0,9,5,3,6,4,7,2,8,1 +37,9,6,8,7,5,2,3,1,4 +62,1,8,6,3,5,4,9,7,2 +15,8,7,2,9,5,3,1,6,4 +56,9,2,8,5,3,6,1,7,4 +74,6,4,9,8,5,3,7,2,1 +49,8,2,4,7,9,6,1,5,3 +57,4,3,1,8,9,5,2,6,7 +52,5,8,3,1,9,4,2,7,6 +9,3,7,6,5,1,9,2,4,8 +50,9,3,4,5,6,2,8,7,1 +2,7,1,9,2,6,3,8,4,5 +22,1,3,5,4,9,6,7,2,8 +11,5,8,7,1,2,3,4,9,6 +69,9,5,3,6,8,4,1,2,7 +57,8,7,5,6,9,4,2,3,1 +66,7,3,5,4,9,8,6,1,2 +52,6,4,9,2,8,7,5,3,1 +58,7,9,3,5,8,1,6,2,4 +16,7,1,9,2,6,8,5,4,3 +53,1,3,5,8,2,7,6,9,4 +35,4,9,7,6,1,2,5,3,8 +14,5,3,7,6,4,8,1,2,9 +63,6,9,5,4,7,1,8,3,2 +74,5,7,4,3,9,8,6,1,2 +11,9,2,8,5,6,3,4,7,1 +68,6,7,5,3,2,9,1,8,4 +14,1,2,6,7,9,8,5,3,4 +14,1,9,5,3,7,6,2,8,4 +67,1,6,9,8,5,7,2,3,4 +72,8,3,2,5,4,1,6,9,7 +32,2,9,3,1,6,7,4,8,5 +65,7,5,1,3,4,9,6,8,2 +40,4,6,5,9,7,8,1,2,3 +69,4,1,6,3,8,5,9,7,2 +65,6,9,2,7,8,3,1,5,4 +4,6,5,9,8,3,7,2,1,4 +28,8,1,6,3,5,2,7,4,9 +4,4,3,1,9,6,2,8,5,7 +46,4,2,8,1,5,9,7,3,6 +11,4,5,8,2,7,6,3,9,1 +68,5,2,1,4,8,3,7,9,6 +34,2,4,3,9,8,6,5,7,1 +60,1,4,9,7,6,5,8,3,2 +69,4,5,3,6,8,9,1,7,2 +10,9,3,4,6,1,8,7,5,2 +53,5,1,3,7,8,2,4,6,9 +73,5,6,3,1,4,7,9,2,8 +38,5,2,8,9,7,4,1,3,6 +29,4,5,9,8,6,2,1,3,7 +29,9,6,5,8,7,1,4,2,3 +46,3,8,9,2,1,7,4,6,5 +50,2,8,7,3,9,4,1,5,6 +66,8,6,4,3,5,9,1,2,7 +10,6,4,3,7,2,9,1,8,5 +16,6,4,7,2,8,3,5,9,1 +52,4,1,2,8,6,5,9,7,3 +32,2,1,7,6,9,8,4,5,3 +14,2,9,8,7,3,1,4,6,5 +17,1,3,5,7,9,2,6,8,4 +19,6,8,9,1,3,5,2,4,7 +20,4,2,5,3,9,1,6,7,8 +15,9,5,3,7,8,2,6,1,4 +32,9,8,5,4,3,1,7,2,6 +54,4,3,6,9,1,5,8,2,7 +8,4,6,9,8,3,2,7,5,1 +46,9,6,1,7,3,5,2,4,8 +38,4,8,7,9,1,6,5,3,2 +18,6,8,1,4,2,7,3,9,5 +55,4,9,5,1,2,3,6,8,7 +52,6,8,1,4,5,2,9,7,3 +62,3,6,1,5,2,9,8,4,7 +39,1,9,7,8,6,2,3,5,4 +5,4,7,3,8,6,9,2,5,1 +5,7,5,3,1,9,6,2,8,4 +5,1,3,5,7,4,2,9,6,8 +56,6,3,8,7,1,5,2,9,4 +61,5,6,8,1,2,7,4,9,3 +41,7,1,9,2,8,4,6,5,3 +70,1,9,5,7,6,8,2,4,3 +36,9,4,2,5,1,8,6,3,7 +28,5,1,3,8,6,4,2,9,7 +75,2,3,6,5,8,9,4,1,7 +38,7,5,4,9,8,1,6,3,2 +0,6,2,5,7,8,4,9,3,1 +66,4,3,2,1,7,9,5,6,8 +55,1,4,7,2,8,5,9,6,3 +54,5,6,3,2,4,7,8,1,9 +26,8,2,7,9,6,3,1,5,4 +50,8,2,1,7,3,6,5,9,4 +15,5,7,4,8,3,9,2,1,6 +47,2,6,8,3,5,7,4,1,9 +39,5,4,8,3,9,6,7,2,1 +60,3,6,1,5,8,9,2,4,7 +9,5,7,9,4,6,3,1,8,2 +61,4,6,7,2,3,1,5,8,9 +42,7,9,6,3,1,4,5,2,8 +43,9,7,4,2,1,5,8,3,6 +59,1,4,3,5,9,7,2,8,6 +65,9,4,6,2,7,3,1,5,8 +25,7,2,4,3,8,5,1,9,6 +44,5,7,9,4,8,1,2,3,6 +4,2,8,1,4,9,6,3,5,7 +52,4,5,2,3,8,7,6,9,1 +45,4,2,5,1,3,7,9,6,8 +42,3,6,1,5,9,8,2,4,7 +47,7,3,1,9,8,5,2,6,4 +65,3,9,1,8,5,2,7,6,4 +9,1,6,7,4,5,3,8,2,9 +10,1,7,8,9,5,4,3,2,6 +73,7,1,8,9,3,2,4,6,5 +42,8,7,6,2,1,4,5,9,3 +43,1,2,9,7,8,6,3,4,5 +60,3,1,2,4,7,5,8,9,6 +61,3,1,8,4,7,6,5,2,9 +52,8,1,9,7,3,5,4,6,2 +62,6,9,4,1,2,7,3,8,5 +33,8,9,2,7,6,3,1,5,4 +75,9,1,4,6,3,8,5,7,2 +43,7,4,3,1,6,2,5,8,9 +16,2,8,9,1,3,5,7,6,4 +35,9,5,1,3,2,7,6,4,8 +62,7,8,2,4,9,3,5,6,1 +72,5,1,3,9,4,6,8,2,7 +29,4,8,2,6,9,7,1,5,3 +36,7,4,3,6,5,2,9,8,1 +36,3,9,4,2,8,6,7,5,1 +68,9,3,2,1,7,4,8,6,5 +70,6,1,8,5,9,4,2,7,3 +43,5,4,6,8,1,3,7,9,2 +15,8,3,2,9,7,4,5,6,1 +33,4,1,3,2,6,8,5,9,7 +60,6,4,2,8,5,3,1,9,7 +54,5,7,4,9,3,6,8,1,2 +71,2,5,6,9,3,4,8,1,7 +61,1,5,8,7,4,6,3,9,2 +72,5,3,4,2,1,6,9,7,8 +32,3,5,1,9,4,6,2,7,8 +39,9,1,4,7,2,3,5,8,6 +11,8,4,5,6,2,1,7,9,3 +9,5,2,9,4,1,3,8,7,6 +19,2,6,4,7,5,8,9,3,1 +69,5,7,2,1,8,4,3,6,9 +8,9,5,1,3,7,6,8,4,2 +13,2,8,7,6,1,3,5,4,9 +12,6,7,2,9,3,8,1,5,4 +62,5,7,9,6,8,1,4,2,3 +23,8,6,9,4,7,1,2,3,5 +47,6,3,8,9,5,2,7,1,4 +55,7,1,8,2,3,6,5,9,4 +54,1,2,4,3,7,8,5,9,6 +4,4,1,9,7,8,2,6,5,3 +7,3,7,4,2,5,6,8,9,1 +52,2,1,8,3,5,6,4,9,7 +62,5,9,6,2,3,7,8,4,1 +12,8,7,6,3,1,9,2,5,4 +12,8,5,1,2,7,4,3,9,6 +33,1,6,7,5,8,2,9,4,3 +15,4,9,8,2,1,6,5,3,7 +7,1,3,5,9,2,7,6,8,4 +72,2,8,1,3,5,4,6,9,7 +33,7,5,2,4,6,3,9,8,1 +70,8,1,6,7,3,4,2,5,9 +49,8,9,4,7,3,1,5,6,2 +21,1,5,8,9,6,2,7,3,4 +23,7,9,8,3,1,2,4,6,5 +65,8,9,7,6,3,5,1,2,4 +55,5,8,4,3,9,7,6,2,1 +9,5,9,2,4,6,7,3,8,1 +59,1,8,6,9,3,2,5,4,7 +5,1,8,7,2,9,6,3,5,4 +0,8,5,7,6,3,1,9,4,2 +5,7,1,9,6,2,8,5,3,4 +57,8,5,7,2,1,6,4,9,3 +51,7,3,6,1,5,4,8,2,9 +28,8,1,3,9,5,2,4,7,6 +34,3,1,6,2,9,7,4,8,5 +6,7,9,8,1,3,6,5,4,2 +45,3,6,1,8,5,9,2,4,7 +46,5,1,6,8,7,4,3,2,9 +73,7,3,2,4,6,8,5,1,9 +23,1,8,6,9,3,7,5,4,2 +14,7,1,3,2,5,4,6,8,9 +43,6,2,1,3,5,7,9,4,8 +5,3,4,6,5,2,9,8,1,7 +22,3,1,2,7,6,8,9,4,5 +35,1,8,2,5,6,9,3,7,4 +67,6,5,9,2,7,8,3,1,4 +15,2,8,4,9,7,1,3,5,6 +49,7,6,8,9,2,3,4,5,1 +26,3,2,7,8,4,9,5,1,6 +70,4,9,7,3,1,5,6,8,2 +53,6,1,2,4,3,7,9,8,5 +14,6,3,7,4,5,9,8,1,2 +38,8,6,4,9,5,2,3,1,7 +13,2,3,9,7,4,1,8,6,5 +71,1,3,2,4,8,9,7,6,5 +69,3,6,9,5,1,7,2,8,4 +61,2,1,5,6,3,7,4,8,9 +19,9,1,2,3,5,4,6,7,8 +37,4,1,3,5,8,7,6,9,2 +43,3,5,8,2,4,1,6,7,9 +23,1,5,9,2,6,3,7,4,8 +69,4,9,8,3,1,2,7,5,6 +6,6,9,7,2,5,1,8,4,3 +51,1,2,4,6,9,5,3,8,7 +71,3,1,6,4,7,9,2,8,5 +50,8,1,6,9,2,7,5,4,3 +55,2,6,8,7,1,3,4,9,5 +18,5,7,2,4,1,3,8,6,9 +74,8,6,2,1,9,7,5,4,3 +49,4,2,1,3,5,7,8,6,9 +75,4,3,2,7,5,8,1,6,9 +16,9,4,2,8,1,5,3,7,6 +0,8,4,5,7,9,1,2,3,6 +15,8,3,4,2,7,1,5,9,6 +68,7,5,6,3,8,2,9,4,1 +63,4,5,8,9,6,2,1,7,3 +10,8,5,7,3,1,4,9,2,6 +40,5,6,8,4,1,9,3,7,2 +27,3,8,2,1,9,4,6,7,5 +39,6,2,3,8,9,7,4,1,5 +9,5,4,7,1,2,6,3,9,8 +43,4,2,8,9,3,5,7,6,1 +20,8,4,2,1,3,6,7,5,9 +71,9,8,3,4,1,6,2,5,7 +15,3,1,9,4,2,8,7,6,5 +8,8,5,1,9,3,4,2,7,6 +28,1,7,9,4,5,3,2,6,8 +17,6,5,4,7,9,1,2,3,8 +63,7,6,4,2,3,5,9,8,1 +48,5,4,7,1,3,9,6,8,2 +25,8,1,6,9,7,3,2,5,4 +42,2,8,9,1,3,4,6,5,7 +55,9,4,2,8,6,1,7,3,5 +33,6,3,1,7,5,9,2,4,8 +26,9,2,3,7,4,8,1,6,5 +72,8,6,5,1,7,9,4,3,2 +3,6,8,2,1,4,5,7,3,9 +65,6,8,9,5,3,1,2,7,4 +12,7,8,5,6,4,3,1,2,9 +22,8,2,1,9,3,6,5,7,4 +28,6,1,5,3,7,2,4,9,8 +25,7,3,2,6,1,4,8,5,9 +52,2,1,8,5,4,3,7,9,6 +57,6,3,1,7,8,5,9,4,2 +19,4,3,7,6,2,1,8,9,5 +46,6,2,3,9,7,4,1,8,5 +42,1,3,6,4,2,8,9,5,7 +13,3,2,7,1,5,9,6,8,4 +30,4,3,2,8,5,6,7,1,9 +56,2,7,6,5,3,1,8,4,9 +12,1,3,6,4,5,2,8,9,7 +65,2,5,7,3,9,6,1,4,8 +15,2,1,8,5,6,3,9,7,4 +32,1,7,2,8,9,4,6,3,5 +34,3,8,9,7,6,1,4,5,2 +18,7,8,5,9,1,2,6,4,3 +58,3,5,8,2,4,9,1,6,7 +70,5,9,6,4,7,1,3,8,2 +70,9,7,4,6,5,3,1,8,2 +1,4,9,5,7,2,8,3,6,1 +33,4,5,1,6,8,3,2,7,9 +21,6,3,9,4,2,1,8,7,5 +45,2,5,7,4,1,8,9,3,6 +48,3,4,6,2,7,1,5,8,9 +30,4,7,1,8,2,3,6,5,9 +71,7,9,8,3,4,1,5,6,2 +28,1,9,5,4,7,2,6,3,8 +10,7,9,4,5,3,2,1,8,6 +70,1,7,9,5,3,6,8,2,4 +70,6,4,8,1,5,9,7,2,3 +20,3,1,9,5,2,4,6,8,7 +44,4,5,9,2,1,3,6,7,8 +18,5,6,8,7,3,4,2,9,1 +51,1,7,9,5,4,3,6,8,2 +10,6,3,9,4,5,8,1,2,7 +22,1,3,2,6,8,7,5,4,9 +56,6,4,5,2,9,8,1,3,7 +1,3,5,8,2,9,4,1,7,6 +26,2,8,9,3,1,5,7,4,6 +33,6,2,7,9,4,5,1,8,3 +37,1,9,8,6,7,5,4,3,2 +30,7,6,9,2,4,8,5,1,3 +29,4,3,9,1,5,2,6,7,8 +7,2,5,3,7,8,1,6,9,4 +49,2,4,8,7,5,9,6,3,1 +16,4,3,2,9,1,8,5,6,7 +46,4,1,3,7,9,2,8,5,6 +51,3,8,5,7,1,2,4,9,6 +26,3,7,6,5,2,1,4,8,9 +52,8,7,6,9,2,1,5,3,4 +70,4,8,7,1,9,6,5,2,3 +44,9,6,7,2,3,8,5,4,1 +25,2,5,7,4,9,3,6,1,8 +23,2,4,8,7,9,1,3,6,5 +15,9,6,3,4,5,1,8,2,7 +67,1,2,7,8,3,9,6,4,5 +0,9,2,4,6,3,8,7,1,5 +3,8,6,5,3,2,1,4,7,9 +48,4,5,9,2,7,3,8,1,6 +4,7,4,1,5,6,8,3,9,2 +40,3,7,8,5,6,4,9,1,2 +9,6,4,8,2,3,7,9,5,1 +73,3,4,5,8,7,6,2,1,9 +21,1,2,7,8,4,6,9,3,5 +57,2,4,5,9,8,6,7,3,1 +66,3,2,8,4,1,9,5,6,7 +27,2,4,8,9,1,3,7,5,6 +30,4,3,9,2,8,6,5,1,7 +62,9,7,4,8,6,3,2,1,5 +19,3,6,2,7,5,8,9,4,1 +50,7,3,6,5,8,2,9,1,4 +48,4,1,5,2,6,3,8,7,9 +21,9,1,5,3,8,7,6,2,4 +20,5,8,1,4,7,3,2,9,6 +43,5,9,2,8,7,3,6,4,1 +62,4,1,7,6,5,8,2,3,9 +12,6,9,1,2,3,8,5,7,4 +6,4,3,1,6,2,9,8,7,5 +59,9,6,8,4,3,7,5,1,2 +64,8,3,7,5,2,1,4,9,6 +27,4,2,1,6,8,7,3,5,9 +34,2,7,3,9,6,8,5,1,4 +31,8,9,2,6,7,5,4,3,1 +37,5,2,9,8,7,6,1,3,4 +10,1,4,8,2,3,7,9,5,6 +35,1,3,2,7,9,8,6,5,4 +15,5,3,8,7,4,6,9,2,1 +70,5,9,6,8,2,7,3,4,1 +50,4,1,7,6,9,5,8,2,3 +63,9,5,8,6,2,3,1,4,7 +18,9,7,2,3,5,4,1,8,6 +34,9,4,3,5,1,2,6,8,7 +40,4,5,9,3,6,8,1,7,2 +19,3,5,4,8,1,9,6,2,7 +68,6,1,2,8,5,9,4,7,3 +21,3,1,2,9,7,5,4,6,8 +0,4,9,2,3,1,7,8,5,6 +37,8,7,4,9,3,1,6,2,5 +42,6,5,7,1,3,9,4,2,8 +75,7,9,8,1,3,5,6,2,4 +62,2,3,7,5,8,6,1,9,4 +42,5,7,4,6,1,2,3,9,8 +34,3,8,6,4,9,5,1,2,7 +25,6,3,2,1,4,8,5,9,7 +55,3,9,5,2,1,6,4,7,8 +60,9,4,5,8,7,6,1,3,2 +13,7,8,6,1,2,3,9,4,5 +67,9,8,2,1,6,5,4,7,3 +39,8,1,7,4,6,2,9,5,3 +54,8,7,1,4,5,9,3,2,6 +65,6,9,7,8,2,1,5,4,3 +44,5,2,3,6,9,4,8,1,7 +55,6,7,8,4,9,5,1,3,2 +48,5,2,7,3,9,8,4,1,6 +1,9,2,7,1,4,5,3,8,6 +10,5,9,7,1,2,3,4,8,6 +63,8,2,6,1,9,7,3,5,4 +4,1,4,5,3,9,7,2,6,8 +37,4,7,5,9,3,1,2,8,6 +44,4,2,9,3,8,1,6,5,7 +45,5,7,6,8,4,9,1,3,2 +66,7,8,6,2,4,9,3,5,1 +58,3,9,5,2,6,4,1,8,7 +56,1,2,3,6,4,8,7,5,9 +16,3,1,8,9,5,6,7,4,2 +48,6,5,2,3,9,8,4,1,7 +11,2,7,4,1,9,8,3,5,6 +16,9,6,3,7,1,8,2,5,4 +46,7,3,4,1,2,6,5,8,9 +1,2,6,9,3,8,5,4,7,1 +14,9,3,5,7,6,4,8,1,2 +5,3,7,1,4,5,6,8,9,2 +75,7,9,2,1,8,6,5,3,4 +73,8,5,7,9,6,3,2,4,1 +63,9,5,6,4,3,8,7,2,1 +43,5,4,2,8,7,9,6,1,3 +0,9,4,3,6,1,5,2,8,7 +40,1,6,8,4,9,5,2,7,3 +17,9,2,1,8,6,5,3,7,4 +52,2,6,9,4,3,5,8,1,7 +36,8,1,4,7,5,3,6,2,9 +14,8,9,7,6,2,5,3,1,4 +47,1,7,3,5,2,6,9,4,8 +68,6,1,2,9,8,4,3,5,7 +71,2,8,9,5,6,7,1,4,3 +54,1,2,8,3,6,5,7,9,4 +54,8,3,1,6,9,5,4,7,2 +55,4,7,3,6,8,2,1,5,9 +37,3,5,8,7,6,2,1,9,4 +45,4,6,3,7,1,5,9,8,2 +38,8,9,5,7,6,3,1,2,4 +39,8,7,9,2,6,1,3,4,5 +1,9,1,5,7,2,4,8,3,6 +36,2,6,1,8,5,7,9,3,4 +61,7,4,9,5,1,6,2,8,3 +27,4,5,6,3,2,7,8,9,1 +57,6,2,8,4,5,3,7,9,1 +0,3,9,2,8,7,5,4,6,1 +40,6,4,3,8,7,9,5,2,1 +59,6,1,5,9,3,8,2,4,7 +7,3,7,5,2,4,1,8,9,6 +6,5,1,6,2,3,4,9,7,8 +41,6,1,5,9,3,8,7,4,2 +11,6,5,7,3,1,4,9,2,8 +2,6,9,4,2,5,8,3,7,1 +30,3,1,9,8,5,7,6,2,4 +18,5,3,8,1,2,7,9,6,4 +7,8,2,3,6,4,1,7,5,9 +21,3,9,1,4,7,6,8,5,2 +17,4,9,2,5,8,7,6,1,3 +6,4,9,2,6,1,3,5,7,8 +7,7,8,9,6,1,5,3,2,4 +55,4,5,6,9,3,1,8,2,7 +40,8,2,6,4,3,9,7,1,5 +40,8,9,6,1,3,7,5,4,2 +12,9,3,2,8,7,6,5,1,4 +11,6,3,2,4,9,5,8,7,1 +35,5,3,6,2,8,4,7,1,9 +51,5,7,3,2,1,8,9,6,4 +54,3,5,8,9,2,4,7,1,6 +17,7,6,4,9,8,1,3,5,2 +42,9,1,8,5,6,4,7,3,2 +42,7,3,8,1,5,2,9,6,4 +6,1,3,4,2,6,5,7,9,8 +51,5,4,2,9,8,6,7,3,1 +45,8,7,1,5,9,3,6,2,4 +10,8,2,3,6,5,9,7,1,4 +57,1,4,8,5,7,3,6,2,9 +16,9,1,8,2,6,5,7,3,4 +60,2,7,8,3,5,4,9,1,6 +51,5,7,8,9,3,6,4,1,2 +27,4,1,5,7,6,8,9,3,2 +46,8,9,6,1,7,2,3,4,5 +37,5,6,4,7,2,8,9,3,1 +3,4,3,5,6,8,2,9,1,7 +33,1,5,7,3,2,4,6,8,9 +11,7,1,6,9,4,2,5,3,8 +37,3,4,5,7,1,6,9,8,2 +60,9,2,7,4,3,1,8,6,5 +3,9,2,7,4,3,5,1,8,6 +41,7,6,2,3,4,1,8,5,9 +62,7,1,4,2,6,3,8,9,5 +14,2,4,9,5,3,8,6,7,1 +17,4,5,7,1,2,8,6,3,9 +13,6,9,4,3,5,1,2,8,7 +72,8,6,4,3,2,9,1,7,5 +28,3,7,2,8,4,6,5,1,9 +48,5,8,9,6,1,3,2,4,7 +18,5,7,8,1,9,4,2,3,6 +30,3,7,5,8,1,9,2,4,6 +14,2,7,4,3,9,8,5,6,1 +59,1,7,3,6,8,2,4,9,5 +35,4,3,8,5,2,1,6,7,9 +6,8,3,5,6,2,1,9,4,7 +61,6,4,3,9,8,7,1,2,5 +18,2,4,9,5,7,1,6,8,3 +36,5,3,6,4,7,8,9,1,2 +49,4,2,3,1,5,6,8,9,7 +14,8,3,9,1,6,2,4,5,7 +57,3,4,2,7,9,8,1,5,6 +6,1,8,6,4,5,2,7,3,9 +69,5,8,4,9,2,6,3,7,1 +26,9,7,8,2,6,1,3,4,5 +14,6,9,8,2,7,4,3,1,5 +67,1,2,5,7,3,9,4,6,8 +61,7,9,2,5,1,8,6,4,3 +53,3,8,6,9,7,2,5,4,1 +27,6,9,8,3,1,2,7,5,4 +43,8,7,9,4,3,6,1,5,2 +29,9,6,7,8,4,3,2,1,5 +31,2,8,9,7,5,4,3,6,1 +39,6,9,8,3,1,5,7,4,2 +46,4,9,5,2,8,1,3,6,7 +2,7,9,2,5,3,8,4,6,1 +42,6,2,1,3,4,7,5,8,9 +48,1,8,2,5,4,7,9,3,6 +10,7,8,3,1,9,6,4,2,5 +20,9,5,8,4,3,1,6,2,7 +34,2,9,7,5,8,6,4,1,3 +75,8,1,2,4,7,5,3,9,6 +27,6,9,8,3,2,7,1,5,4 +50,8,6,7,1,5,2,9,3,4 +28,3,2,8,9,5,4,6,7,1 +5,6,5,7,4,9,2,8,1,3 +53,4,6,1,3,5,9,2,8,7 +30,9,4,7,6,5,3,1,2,8 +42,5,3,9,4,2,7,6,1,8 +21,7,6,5,2,3,9,8,4,1 +8,3,9,1,8,5,2,4,6,7 +48,8,7,4,6,9,3,1,5,2 +8,8,3,5,4,2,6,1,7,9 +5,7,8,3,9,4,6,5,2,1 +2,5,9,7,4,2,1,3,6,8 +56,3,6,7,9,1,4,5,8,2 +28,3,4,8,7,2,5,1,9,6 +55,2,6,9,7,8,3,1,4,5 +15,1,5,7,2,6,8,9,4,3 +65,6,5,7,8,1,3,4,2,9 +31,2,5,1,8,4,6,9,3,7 +67,9,5,2,6,8,7,4,1,3 +65,2,8,3,5,1,7,6,9,4 +32,5,3,8,2,1,4,6,7,9 +67,6,5,7,8,1,9,3,2,4 +47,2,8,3,5,4,1,6,7,9 +68,8,5,9,4,7,1,3,2,6 +75,1,5,7,4,6,8,3,2,9 +61,4,7,6,3,8,9,5,2,1 +29,7,4,2,9,8,1,3,6,5 +30,9,1,3,4,6,5,8,7,2 +74,6,7,4,3,5,1,9,2,8 +20,1,8,7,4,3,5,6,9,2 +13,5,3,1,8,7,2,4,9,6 +32,1,6,2,4,8,5,9,3,7 +14,4,3,5,8,2,9,6,1,7 +31,1,4,5,9,6,3,2,7,8 +74,1,5,9,8,6,3,4,2,7 +7,1,4,8,7,5,9,3,2,6 +34,6,1,8,9,2,4,3,5,7 +31,8,7,9,5,3,2,1,6,4 +60,7,4,3,6,2,1,8,9,5 +45,1,8,5,4,3,2,9,6,7 +39,3,9,8,6,1,5,7,2,4 +67,6,9,8,4,1,3,7,5,2 +8,2,4,1,9,8,6,5,7,3 +65,2,5,8,4,3,1,6,7,9 +28,1,7,6,8,3,2,4,9,5 +66,5,6,4,9,2,3,8,7,1 +54,5,6,4,9,2,7,1,3,8 +70,7,2,9,6,4,5,3,8,1 +64,7,1,8,3,4,9,5,6,2 +52,3,7,1,8,9,4,2,6,5 +44,3,8,4,5,1,6,7,9,2 +0,3,9,2,1,5,4,7,6,8 +36,7,1,4,5,3,9,2,8,6 +30,2,3,4,7,1,8,6,5,9 +14,3,2,5,6,1,8,4,7,9 +42,6,4,5,2,8,3,9,1,7 +40,4,1,8,5,7,3,9,2,6 +34,1,5,7,6,3,2,9,4,8 +0,1,8,5,2,9,7,3,6,4 +17,7,2,3,1,8,6,9,5,4 +38,1,7,6,8,5,2,9,3,4 +6,2,6,7,1,8,9,4,5,3 +14,1,9,7,2,3,4,6,5,8 +42,3,4,7,8,9,1,5,6,2 +8,8,5,4,7,6,3,1,2,9 +9,6,3,1,5,4,9,7,2,8 +45,6,2,1,4,7,9,3,5,8 +15,9,2,1,3,6,7,4,5,8 +62,5,8,7,2,1,3,4,6,9 +57,9,8,4,5,6,1,7,2,3 +22,3,4,7,5,2,1,6,9,8 +17,4,2,5,6,7,1,8,3,9 +8,1,6,5,3,8,7,2,4,9 \ No newline at end of file