Skip to content

Commit 14f6f6b

Browse files
authored
FIX: inconsistent titles, moved subproblems to bold (#104)
1 parent e9113c5 commit 14f6f6b

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

lectures/dyn_stack.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -473,13 +473,13 @@ The two subproblems are designed
473473
the state variables confronting and the control variables available
474474
to the leader
475475

476-
#### Subproblem 1
476+
**Subproblem 1**
477477

478478
$$
479479
v(y_0) = \max_{(\vec y_1, \vec u_0) \in \Omega(y_0)} - \sum_{t=0}^\infty \beta^t r(y_t, u_t)
480480
$$
481481

482-
#### Subproblem 2
482+
**Subproblem 2**
483483

484484
$$
485485
w(z_0) = \max_{x_0} v(y_0)
@@ -498,7 +498,7 @@ $z_0$.
498498

499499
We now describe Bellman equations for $v(y)$ and $w(z_0)$.
500500

501-
#### Subproblem 1
501+
**Subproblem 1**
502502

503503
The value function $v(y)$ in subproblem 1 satisfies the Bellman
504504
equation
@@ -542,7 +542,7 @@ $$
542542
u_t = - F y_t
543543
$$
544544

545-
#### Subproblem 2
545+
**Subproblem 2**
546546

547547
We find an optimal $x_0$ by equating to zero the gradient of $v(y_0)$
548548
with respect to $x_0$:

0 commit comments

Comments
 (0)