Skip to content

Commit 25dbe43

Browse files
committed
Update arma.md
1 parent 43e685e commit 25dbe43

File tree

1 file changed

+14
-14
lines changed

1 file changed

+14
-14
lines changed

lectures/arma.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ Every ARMA process can be represented in [linear state space](https://python-int
5151

5252
However, ARMA processes have some important structure that makes it valuable to study them separately.
5353

54-
### {index}`Spectral Analysis <single: Spectral Analysis>`
54+
### {index}`Spectral analysis <single: Spectral Analysis>`
5555

5656
Analysis in the frequency domain is also called spectral analysis.
5757

@@ -65,7 +65,7 @@ Having a second representation of this important object
6565

6666
The famous *Fourier transform* and its inverse are used to map between the two representations.
6767

68-
### Other Reading
68+
### Other reading
6969

7070
For supplementary reading, see
7171

@@ -124,7 +124,7 @@ Throughout this lecture, we will work exclusively with zero-mean (i.e., $\mu = 0
124124

125125
The zero-mean assumption costs nothing in terms of generality since working with non-zero-mean processes involves no more than adding a constant.
126126

127-
### Example 1: {index}`White Noise <single: White Noise>`
127+
### Example 1: {index}`White noise <single: White Noise>`
128128

129129
Perhaps the simplest class of covariance stationary processes is the white noise processes.
130130

@@ -138,7 +138,7 @@ A process $\{ \epsilon_t \}$ is called a *white noise process* if
138138
White noise processes play the role of **building blocks** for processes with more complicated dynamics.
139139

140140
(generalized_lps)=
141-
### Example 2: {index}`General Linear Processes <single: General Linear Processes>`
141+
### Example 2: {index}`General linear processes <single: General Linear Processes>`
142142

143143
From the simple building block provided by white noise, we can construct a very flexible family of covariance stationary processes --- the *general linear processes*
144144

@@ -170,7 +170,7 @@ By the [Cauchy-Schwartz inequality](https://en.wikipedia.org/wiki/Cauchy%E2%80%9
170170

171171
Evidently, $\gamma(k)$ does not depend on $t$.
172172

173-
### {index}`Wold Representation <single: Wold Representation>`
173+
### {index}`Wold representation <single: Wold Representation>`
174174

175175
Remarkably, the class of general linear processes goes a long way towards
176176
describing the entire class of zero-mean covariance stationary processes.
@@ -268,7 +268,7 @@ The AR(1) can be generalized to an AR($p$) and likewise for the MA(1).
268268

269269
Putting all of this together, we get the
270270

271-
### {index}`ARMA <single: ARMA>` Processes
271+
### {index}`ARMA <single: ARMA>` processes
272272

273273
A stochastic process $\{X_t\}$ is called an *autoregressive moving
274274
average process*, or ARMA($p,q$), if it can be written as
@@ -330,7 +330,7 @@ The sequence $\{\psi_t\}$ can be obtained by a recursive procedure outlined on p
330330

331331
The function $t \mapsto \psi_t$ is often called the *impulse response function*.
332332

333-
## {index}`Spectral Analysis <single: Spectral Analysis>`
333+
## {index}`Spectral analysis <single: Spectral Analysis>`
334334

335335
Autocovariance functions provide a great deal of information about covariance stationary processes.
336336

@@ -342,7 +342,7 @@ It turns out that there is an alternative representation of the autocovariance f
342342

343343
At times, the spectral density is easier to derive, easier to manipulate, and provides additional intuition.
344344

345-
### {index}`Complex Numbers <single: Complex Numbers>`
345+
### {index}`Complex numbers <single: Complex Numbers>`
346346

347347
Before discussing the spectral density, we invite you to recall the main properties of complex numbers (or {ref}`skip to the next section <arma_specd>`).
348348

@@ -375,7 +375,7 @@ $$
375375
where $x = r \cos(\omega), y = r \sin(\omega)$, and $\omega = \arctan(y/z)$ or $\tan(\omega) = y/x$.
376376

377377
(arma_specd)=
378-
### {index}`Spectral Densities <single: Spectral Densities>`
378+
### {index}`Spectral densities <single: Spectral Densities>`
379379

380380
Let $\{ X_t \}$ be a covariance stationary process with autocovariance function $\gamma$ satisfying $\sum_{k} \gamma(k)^2 < \infty$.
381381

@@ -408,7 +408,7 @@ all of $\mathbb R$ --- the proof is an exercise.
408408
For this reason, it is standard to plot the spectral density only on the interval $[0, \pi]$.
409409

410410
(arma_wnsd)=
411-
### Example 1: {index}`White Noise <single: White Noise>`
411+
### Example 1: {index}`White noise <single: White Noise>`
412412

413413
Consider a white noise process $\{\epsilon_t\}$ with standard deviation $\sigma$.
414414

@@ -458,7 +458,7 @@ The proof is elegant and can be found in many places --- see, for example, {cite
458458

459459
It's a nice exercise to verify that {eq}`ma1_sd_ed` and {eq}`ar1_sd_ed` are indeed special cases of {eq}`arma_sd`.
460460

461-
### Interpreting the {index}`Spectral Density <single: Spectral Density>`
461+
### Interpreting the {index}`spectral density <single: Spectral Density>`
462462

463463
```{index} single: Spectral Density; interpretation
464464
```
@@ -590,7 +590,7 @@ plt.show()
590590

591591
In summary, the spectral density is large at frequencies $\omega$ where the autocovariance function exhibits damped cycles.
592592

593-
### Inverting the Transformation
593+
### Inverting the transformation
594594

595595
```{index} single: Spectral Density; Inverting the Transformation
596596
```
@@ -611,7 +611,7 @@ This is convenient in situations where the spectral density is easier to calcula
611611

612612
(For example, the expression {eq}`arma_sd` for the ARMA spectral density is much easier to work with than the expression for the ARMA autocovariance)
613613

614-
### Mathematical Theory
614+
### Mathematical theory
615615

616616
```{index} single: Spectral Density; Mathematical Theory
617617
```
@@ -873,7 +873,7 @@ then `ma_poly` and `ar_poly` should update automatically to reflect these new pa
873873

874874
This is achieved in our implementation by using [descriptors](https://python-programming.quantecon.org/python_advanced_features.html#descriptors).
875875

876-
### Computing the Autocovariance Function
876+
### Computing the autocovariance function
877877

878878
As discussed above, for ARMA processes the spectral density has a {ref}`simple representation <arma_spec_den>` that is relatively easy to calculate.
879879

0 commit comments

Comments
 (0)