|
| 1 | +import numpy as np |
| 2 | +from scipy.optimize import fmin_slsqp |
| 3 | +from scipy.optimize import root |
| 4 | +from quantecon import MarkovChain |
| 5 | + |
| 6 | + |
| 7 | +class RecursiveAllocationAMSS: |
| 8 | + |
| 9 | + def __init__(self, model, μgrid, tol_diff=1e-7, tol=1e-7): |
| 10 | + |
| 11 | + self.β, self.π, self.G = model.β, model.π, model.G |
| 12 | + self.mc, self.S = MarkovChain(self.π), len(model.π) # Number of states |
| 13 | + self.Θ, self.model, self.μgrid = model.Θ, model, μgrid |
| 14 | + self.tol_diff, self.tol = tol_diff, tol |
| 15 | + |
| 16 | + # Find the first best allocation |
| 17 | + self.solve_time1_bellman() |
| 18 | + self.T.time_0 = True # Bellman equation now solves time 0 problem |
| 19 | + |
| 20 | + def solve_time1_bellman(self): |
| 21 | + ''' |
| 22 | + Solve the time 1 Bellman equation for calibration model and |
| 23 | + initial grid μgrid0 |
| 24 | + ''' |
| 25 | + model, μgrid0 = self.model, self.μgrid |
| 26 | + π = model.π |
| 27 | + S = len(model.π) |
| 28 | + |
| 29 | + # First get initial fit from Lucas Stokey solution. |
| 30 | + # Need to change things to be ex ante |
| 31 | + pp = SequentialAllocation(model) |
| 32 | + interp = interpolator_factory(2, None) |
| 33 | + |
| 34 | + def incomplete_allocation(μ_, s_): |
| 35 | + c, n, x, V = pp.time1_value(μ_) |
| 36 | + return c, n, π[s_] @ x, π[s_] @ V |
| 37 | + cf, nf, xgrid, Vf, xprimef = [], [], [], [], [] |
| 38 | + for s_ in range(S): |
| 39 | + c, n, x, V = zip(*map(lambda μ: incomplete_allocation(μ, s_), μgrid0)) |
| 40 | + c, n = np.vstack(c).T, np.vstack(n).T |
| 41 | + x, V = np.hstack(x), np.hstack(V) |
| 42 | + xprimes = np.vstack([x] * S) |
| 43 | + cf.append(interp(x, c)) |
| 44 | + nf.append(interp(x, n)) |
| 45 | + Vf.append(interp(x, V)) |
| 46 | + xgrid.append(x) |
| 47 | + xprimef.append(interp(x, xprimes)) |
| 48 | + cf, nf, xprimef = fun_vstack(cf), fun_vstack(nf), fun_vstack(xprimef) |
| 49 | + Vf = fun_hstack(Vf) |
| 50 | + policies = [cf, nf, xprimef] |
| 51 | + |
| 52 | + # Create xgrid |
| 53 | + x = np.vstack(xgrid).T |
| 54 | + xbar = [x.min(0).max(), x.max(0).min()] |
| 55 | + xgrid = np.linspace(xbar[0], xbar[1], len(μgrid0)) |
| 56 | + self.xgrid = xgrid |
| 57 | + |
| 58 | + # Now iterate on Bellman equation |
| 59 | + T = BellmanEquation(model, xgrid, policies, tol=self.tol) |
| 60 | + diff = 1 |
| 61 | + while diff > self.tol_diff: |
| 62 | + PF = T(Vf) |
| 63 | + |
| 64 | + Vfnew, policies = self.fit_policy_function(PF) |
| 65 | + diff = np.abs((Vf(xgrid) - Vfnew(xgrid)) / Vf(xgrid)).max() |
| 66 | + |
| 67 | + print(diff) |
| 68 | + Vf = Vfnew |
| 69 | + |
| 70 | + # Store value function policies and Bellman Equations |
| 71 | + self.Vf = Vf |
| 72 | + self.policies = policies |
| 73 | + self.T = T |
| 74 | + |
| 75 | + def fit_policy_function(self, PF): |
| 76 | + ''' |
| 77 | + Fits the policy functions |
| 78 | + ''' |
| 79 | + S, xgrid = len(self.π), self.xgrid |
| 80 | + interp = interpolator_factory(3, 0) |
| 81 | + cf, nf, xprimef, Tf, Vf = [], [], [], [], [] |
| 82 | + for s_ in range(S): |
| 83 | + PFvec = np.vstack([PF(x, s_) for x in self.xgrid]).T |
| 84 | + Vf.append(interp(xgrid, PFvec[0, :])) |
| 85 | + cf.append(interp(xgrid, PFvec[1:1 + S])) |
| 86 | + nf.append(interp(xgrid, PFvec[1 + S:1 + 2 * S])) |
| 87 | + xprimef.append(interp(xgrid, PFvec[1 + 2 * S:1 + 3 * S])) |
| 88 | + Tf.append(interp(xgrid, PFvec[1 + 3 * S:])) |
| 89 | + policies = fun_vstack(cf), fun_vstack( |
| 90 | + nf), fun_vstack(xprimef), fun_vstack(Tf) |
| 91 | + Vf = fun_hstack(Vf) |
| 92 | + return Vf, policies |
| 93 | + |
| 94 | + def Τ(self, c, n): |
| 95 | + ''' |
| 96 | + Computes Τ given c and n |
| 97 | + ''' |
| 98 | + model = self.model |
| 99 | + Uc, Un = model.Uc(c, n), model.Un(c, n) |
| 100 | + |
| 101 | + return 1 + Un / (self.Θ * Uc) |
| 102 | + |
| 103 | + def time0_allocation(self, B_, s0): |
| 104 | + ''' |
| 105 | + Finds the optimal allocation given initial government debt B_ and |
| 106 | + state s_0 |
| 107 | + ''' |
| 108 | + PF = self.T(self.Vf) |
| 109 | + z0 = PF(B_, s0) |
| 110 | + c0, n0, xprime0, T0 = z0[1:] |
| 111 | + return c0, n0, xprime0, T0 |
| 112 | + |
| 113 | + def simulate(self, B_, s_0, T, sHist=None): |
| 114 | + ''' |
| 115 | + Simulates planners policies for T periods |
| 116 | + ''' |
| 117 | + model, π = self.model, self.π |
| 118 | + Uc = model.Uc |
| 119 | + cf, nf, xprimef, Tf = self.policies |
| 120 | + |
| 121 | + if sHist is None: |
| 122 | + sHist = simulate_markov(π, s_0, T) |
| 123 | + |
| 124 | + cHist, nHist, Bhist, xHist, ΤHist, THist, μHist = np.zeros((7, T)) |
| 125 | + # Time 0 |
| 126 | + cHist[0], nHist[0], xHist[0], THist[0] = self.time0_allocation(B_, s_0) |
| 127 | + ΤHist[0] = self.Τ(cHist[0], nHist[0])[s_0] |
| 128 | + Bhist[0] = B_ |
| 129 | + μHist[0] = self.Vf[s_0](xHist[0]) |
| 130 | + |
| 131 | + # Time 1 onward |
| 132 | + for t in range(1, T): |
| 133 | + s_, x, s = sHist[t - 1], xHist[t - 1], sHist[t] |
| 134 | + c, n, xprime, T = cf[s_, :](x), nf[s_, :]( |
| 135 | + x), xprimef[s_, :](x), Tf[s_, :](x) |
| 136 | + |
| 137 | + Τ = self.Τ(c, n)[s] |
| 138 | + u_c = Uc(c, n) |
| 139 | + Eu_c = π[s_, :] @ u_c |
| 140 | + |
| 141 | + μHist[t] = self.Vf[s](xprime[s]) |
| 142 | + |
| 143 | + cHist[t], nHist[t], Bhist[t], ΤHist[t] = c[s], n[s], x / Eu_c, Τ |
| 144 | + xHist[t], THist[t] = xprime[s], T[s] |
| 145 | + return np.array([cHist, nHist, Bhist, ΤHist, THist, μHist, sHist, xHist]) |
| 146 | + |
| 147 | + |
| 148 | +class BellmanEquation: |
| 149 | + ''' |
| 150 | + Bellman equation for the continuation of the Lucas-Stokey Problem |
| 151 | + ''' |
| 152 | + |
| 153 | + def __init__(self, model, xgrid, policies0, tol, maxiter=1000): |
| 154 | + |
| 155 | + self.β, self.π, self.G = model.β, model.π, model.G |
| 156 | + self.S = len(model.π) # Number of states |
| 157 | + self.Θ, self.model, self.tol = model.Θ, model, tol |
| 158 | + self.maxiter = maxiter |
| 159 | + |
| 160 | + self.xbar = [min(xgrid), max(xgrid)] |
| 161 | + self.time_0 = False |
| 162 | + |
| 163 | + self.z0 = {} |
| 164 | + cf, nf, xprimef = policies0 |
| 165 | + |
| 166 | + for s_ in range(self.S): |
| 167 | + for x in xgrid: |
| 168 | + self.z0[x, s_] = np.hstack([cf[s_, :](x), |
| 169 | + nf[s_, :](x), |
| 170 | + xprimef[s_, :](x), |
| 171 | + np.zeros(self.S)]) |
| 172 | + |
| 173 | + self.find_first_best() |
| 174 | + |
| 175 | + def find_first_best(self): |
| 176 | + ''' |
| 177 | + Find the first best allocation |
| 178 | + ''' |
| 179 | + model = self.model |
| 180 | + S, Θ, Uc, Un, G = self.S, self.Θ, model.Uc, model.Un, self.G |
| 181 | + |
| 182 | + def res(z): |
| 183 | + c = z[:S] |
| 184 | + n = z[S:] |
| 185 | + return np.hstack([Θ * Uc(c, n) + Un(c, n), Θ * n - c - G]) |
| 186 | + |
| 187 | + res = root(res, 0.5 * np.ones(2 * S)) |
| 188 | + if not res.success: |
| 189 | + raise Exception('Could not find first best') |
| 190 | + |
| 191 | + self.cFB = res.x[:S] |
| 192 | + self.nFB = res.x[S:] |
| 193 | + IFB = Uc(self.cFB, self.nFB) * self.cFB + \ |
| 194 | + Un(self.cFB, self.nFB) * self.nFB |
| 195 | + |
| 196 | + self.xFB = np.linalg.solve(np.eye(S) - self.β * self.π, IFB) |
| 197 | + |
| 198 | + self.zFB = {} |
| 199 | + for s in range(S): |
| 200 | + self.zFB[s] = np.hstack( |
| 201 | + [self.cFB[s], self.nFB[s], self.π[s] @ self.xFB, 0.]) |
| 202 | + |
| 203 | + def __call__(self, Vf): |
| 204 | + ''' |
| 205 | + Given continuation value function next period return value function this |
| 206 | + period return T(V) and optimal policies |
| 207 | + ''' |
| 208 | + if not self.time_0: |
| 209 | + def PF(x, s): return self.get_policies_time1(x, s, Vf) |
| 210 | + else: |
| 211 | + def PF(B_, s0): return self.get_policies_time0(B_, s0, Vf) |
| 212 | + return PF |
| 213 | + |
| 214 | + def get_policies_time1(self, x, s_, Vf): |
| 215 | + ''' |
| 216 | + Finds the optimal policies |
| 217 | + ''' |
| 218 | + model, β, Θ, G, S, π = self.model, self.β, self.Θ, self.G, self.S, self.π |
| 219 | + U, Uc, Un = model.U, model.Uc, model.Un |
| 220 | + |
| 221 | + def objf(z): |
| 222 | + c, n, xprime = z[:S], z[S:2 * S], z[2 * S:3 * S] |
| 223 | + |
| 224 | + Vprime = np.empty(S) |
| 225 | + for s in range(S): |
| 226 | + Vprime[s] = Vf[s](xprime[s]) |
| 227 | + |
| 228 | + return -π[s_] @ (U(c, n) + β * Vprime) |
| 229 | + |
| 230 | + def objf_prime(x): |
| 231 | + |
| 232 | + epsilon = 1e-7 |
| 233 | + x0 = np.asfarray(x) |
| 234 | + f0 = np.atleast_1d(objf(x0)) |
| 235 | + jac = np.zeros([len(x0), len(f0)]) |
| 236 | + dx = np.zeros(len(x0)) |
| 237 | + for i in range(len(x0)): |
| 238 | + dx[i] = epsilon |
| 239 | + jac[i] = (objf(x0+dx) - f0)/epsilon |
| 240 | + dx[i] = 0.0 |
| 241 | + |
| 242 | + return jac.transpose() |
| 243 | + |
| 244 | + def cons(z): |
| 245 | + c, n, xprime, T = z[:S], z[S:2 * S], z[2 * S:3 * S], z[3 * S:] |
| 246 | + u_c = Uc(c, n) |
| 247 | + Eu_c = π[s_] @ u_c |
| 248 | + return np.hstack([ |
| 249 | + x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime, |
| 250 | + Θ * n - c - G]) |
| 251 | + |
| 252 | + if model.transfers: |
| 253 | + bounds = [(0., 100)] * S + [(0., 100)] * S + \ |
| 254 | + [self.xbar] * S + [(0., 100.)] * S |
| 255 | + else: |
| 256 | + bounds = [(0., 100)] * S + [(0., 100)] * S + \ |
| 257 | + [self.xbar] * S + [(0., 0.)] * S |
| 258 | + out, fx, _, imode, smode = fmin_slsqp(objf, self.z0[x, s_], |
| 259 | + f_eqcons=cons, bounds=bounds, |
| 260 | + fprime=objf_prime, full_output=True, |
| 261 | + iprint=0, acc=self.tol, iter=self.maxiter) |
| 262 | + |
| 263 | + if imode > 0: |
| 264 | + raise Exception(smode) |
| 265 | + |
| 266 | + self.z0[x, s_] = out |
| 267 | + return np.hstack([-fx, out]) |
| 268 | + |
| 269 | + def get_policies_time0(self, B_, s0, Vf): |
| 270 | + ''' |
| 271 | + Finds the optimal policies |
| 272 | + ''' |
| 273 | + model, β, Θ, G = self.model, self.β, self.Θ, self.G |
| 274 | + U, Uc, Un = model.U, model.Uc, model.Un |
| 275 | + |
| 276 | + def objf(z): |
| 277 | + c, n, xprime = z[:-1] |
| 278 | + |
| 279 | + return -(U(c, n) + β * Vf[s0](xprime)) |
| 280 | + |
| 281 | + def cons(z): |
| 282 | + c, n, xprime, T = z |
| 283 | + return np.hstack([ |
| 284 | + -Uc(c, n) * (c - B_ - T) - Un(c, n) * n - β * xprime, |
| 285 | + (Θ * n - c - G)[s0]]) |
| 286 | + |
| 287 | + if model.transfers: |
| 288 | + bounds = [(0., 100), (0., 100), self.xbar, (0., 100.)] |
| 289 | + else: |
| 290 | + bounds = [(0., 100), (0., 100), self.xbar, (0., 0.)] |
| 291 | + out, fx, _, imode, smode = fmin_slsqp(objf, self.zFB[s0], f_eqcons=cons, |
| 292 | + bounds=bounds, full_output=True, |
| 293 | + iprint=0) |
| 294 | + |
| 295 | + if imode > 0: |
| 296 | + raise Exception(smode) |
| 297 | + |
| 298 | + return np.hstack([-fx, out]) |
0 commit comments