@@ -3,8 +3,10 @@ jupytext:
33 text_representation :
44 extension : .md
55 format_name : myst
6+ format_version : 0.13
7+ jupytext_version : 1.16.7
68kernelspec :
7- display_name : Python 3
9+ display_name : Python 3 (ipykernel)
810 language : python
911 name : python3
1012---
@@ -25,10 +27,9 @@ kernelspec:
2527
2628In addition to what's in Anaconda, this lecture will need the following libraries:
2729
28- ``` {code-cell} ipython
29- ---
30- tags: [hide-output]
31- ---
30+ ``` {code-cell} ipython3
31+ :tags: [hide-output]
32+
3233!pip install --upgrade quantecon
3334```
3435
@@ -73,7 +74,7 @@ We cover only the key features of the problem in this lecture, leaving you to re
7374
7475We'll need the following imports:
7576
76- ``` {code-cell} ipython
77+ ``` {code-cell} ipython3
7778import sys
7879import numpy as np
7980import matplotlib.pyplot as plt
@@ -583,7 +584,7 @@ The following code provides functions for
583584
584585Description and clarifications are given below
585586
586- ``` {code-cell} python3
587+ ``` {code-cell} ipython3
587588# Set up a namedtuple to store data on the model economy
588589Economy = namedtuple('economy',
589590 ('β', # Discount factor
@@ -694,7 +695,7 @@ def compute_paths(T, econ):
694695 a0 = 0.5 * (F @ (x_vals.T @ Sm.T)**2)[0]
695696 H = ((Sb - Sd + Sg) @ x_vals) * ((Sg - Ss) @ x_vals)
696697 b0 = 0.5 * (F @ H.T)[0]
697- a0, b0 = float(a0), float(b0)
698+ a0, b0 = float(a0[0] ), float(b0[0] )
698699 else:
699700 H = Sm.T @ Sm
700701 a0 = 0.5 * var_quadratic_sum(A, C, H, β, x0)
@@ -889,7 +890,7 @@ with $\rho = 0.7$, $\mu_g = 0.35$ and $C_g = \mu_g \sqrt{1 - \rho^2} / 10$.
889890
890891Here's the code
891892
892- ``` {code-cell} python3
893+ ``` {code-cell} ipython3
893894# == Parameters == #
894895β = 1 / 1.05
895896ρ, mg = .7, .35
@@ -915,7 +916,7 @@ The legends on the figures indicate the variables being tracked.
915916Most obvious from the figure is tax smoothing in the sense that tax revenue is
916917much less variable than government expenditure.
917918
918- ``` {code-cell} python3
919+ ``` {code-cell} ipython3
919920gen_fig_2(path)
920921```
921922
@@ -931,7 +932,7 @@ See the original [manuscript](https://lectures.quantecon.org/_downloads/firenze.
931932
932933Our second example adopts a discrete Markov specification for the exogenous process
933934
934- ``` {code-cell} python3
935+ ``` {code-cell} ipython3
935936# == Parameters == #
936937β = 1 / 1.05
937938P = np.array([[0.8, 0.2, 0.0],
@@ -961,7 +962,7 @@ gen_fig_1(path)
961962
962963The call ` gen_fig_2(path) ` generates
963964
964- ``` {code-cell} python3
965+ ``` {code-cell} ipython3
965966gen_fig_2(path)
966967```
967968
@@ -997,7 +998,7 @@ Produce the corresponding figures.
997998:class: dropdown
998999```
9991000
1000- ``` {code-cell} python3
1001+ ``` {code-cell} ipython3
10011002# == Parameters == #
10021003β = 1 / 1.05
10031004ρ, mg = .95, .35
@@ -1023,10 +1024,11 @@ path = compute_paths(T, economy)
10231024gen_fig_1(path)
10241025```
10251026
1026- ``` {code-cell} python3
1027+ ``` {code-cell} ipython3
10271028gen_fig_2(path)
10281029```
10291030
10301031``` {solution-end}
10311032```
10321033
1034+
0 commit comments