You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
E R^i = R^{f}-\operatorname{cov}\left(m, R^{i}\right) R^{f} .
128
+
$$
123
129
124
130
It follows that we can express an **excess return** $E R^{i}-R^{f}$ on asset $i$ relative to the risk-free rate as
125
131
126
-
$$ E R^{i}-R^{f} = -\operatorname{cov}\left(m, R^{i}\right) R^{f}
132
+
$$
133
+
E R^{i}-R^{f} = -\operatorname{cov}\left(m, R^{i}\right) R^{f}
127
134
$$ (eq:EMR3)
128
135
129
136
@@ -135,7 +142,7 @@ Equation {eq}`eq:EMR3` can be rearranged to display important parts of asset pri
135
142
We can obtain the celebrated **expected-return-Beta -representation** for gross return $R^i$ simply by rearranging excess return equation {eq}`eq:EMR3` to become
136
143
137
144
$$
138
-
E R^{i}=R^{f}+\left(\underbrace{\frac{\operatorname{cov}\left(R^{i}, m\right)}{\operatorname{var}(m)}}_{\quad\quad\beta_{i,m} = \\ \text{regression coefficient}}\right)\left(\underbrace{-\frac{\operatorname{var}(m)}{E(m)}}_{\quad\lambda_{m} =\\ \text{price of risk}}\right)
145
+
E R^{i}=R^{f}+\left(\underbrace{\frac{\operatorname{cov}\left(R^{i}, m\right)}{\operatorname{var}(m)}}_{\quad\quad\beta_{i,m} = \text{regression coefficient}}\right)\left(\underbrace{-\frac{\operatorname{var}(m)}{E(m)}}_{\quad\lambda_{m} = \text{price of risk}}\right)
139
146
$$
140
147
141
148
or
@@ -157,11 +164,15 @@ To interpret this representation it helps to provide the following widely used e
The mathematical structure of the mean-variance frontier described by inequality {eq}`eq:ERM6` implies
263
287
that
@@ -285,7 +309,8 @@ that
285
309
286
310
- for any mean-variance-efficient return $R^{m v}$ that is on the frontier but that is **not** $R^{f}$, there exists a **single-beta representation** for any return $R^i$ that takes the form:
287
311
288
-
$$ E R^{i}=R^{f}+\beta_{i, R^{m v}}\left[E\left(R^{m v}\right)-R^{f}\right]
312
+
$$
313
+
E R^{i}=R^{f}+\beta_{i, R^{m v}}\left[E\left(R^{m v}\right)-R^{f}\right]
289
314
$$ (eq:EMR7)
290
315
291
316
- The special case of a single-beta representation {eq}`eq:EMR7` with $ R^{i}=R^{m v}$ is
@@ -308,7 +333,8 @@ Two representations are often used in empirical work.
308
333
One is a **time-series regression** of gross return $R_t^i$ on multiple
309
334
risk factors $f_t^j, j = a, b, \ldots $ that is designed to uncover exposures of return $R^i$ to each of a set of **risk-factors** $f_t^j, j = a, b, \ldots, $:
@@ -362,7 +388,9 @@ The basic idea is to implement the following two steps.
362
388
$E R^i$ over some period and then estimate the **cross-section regression**
363
389
364
390
365
-
$$\underbrace{E\left(R^{i}\right)}_{\text{average return over time series}}=\gamma+\underbrace{\beta_{i, a}}_{\text{regressor}\quad} \underbrace{\lambda_{a}}_{\text{regression}\\\text{coefficient}}+\underbrace{\beta_{i, b}}_{\text{regressor}\quad} \underbrace{\lambda_{b}}_{\text{regression}\\\text{coefficient}}+\cdots+\underbrace{\alpha_{i}}_{\text{pricing errors}}, i=1, \ldots, I; \quad \underbrace{\alpha_i \perp \beta_{i,j},j = a, b, \ldots}_{\text{least squares orthogonality condition}}$$
391
+
$$
392
+
\underbrace{E\left(R^{i}\right)}_{\text{average return over time series}}=\gamma+\underbrace{\beta_{i, a}}_{\text{regressor}\quad} \underbrace{\lambda_{a}}_{\text{regression}\text{coefficient}}+\underbrace{\beta_{i, b}}_{\text{regressor}\quad} \underbrace{\lambda_{b}}_{\text{regression}\text{coefficient}}+\cdots+\underbrace{\alpha_{i}}_{\text{pricing errors}}, i=1, \ldots, I; \quad \underbrace{\alpha_i \perp \beta_{i,j},j = a, b, \ldots}_{\text{least squares orthogonality condition}}
393
+
$$
366
394
367
395
- estimate $\gamma, \lambda_{a}, \lambda_{b}, \ldots$ by an appropriate regression technique, being thoughtful about recognizing that the regressors have been generated by a step 1 regression.
0 commit comments