@@ -190,9 +190,7 @@ Firm 1 seeks a maximum with respect to
190190$\{ q_ {1t+1}, v_ {1t} \} _ {t=0}^\infty$ and a minimum with respect to
191191$\{ \lambda_t\} _ {t=0}^\infty$.
192192
193- We approach this problem using methods described in Ljungqvist and
194- Sargent RMT5 chapter 2, appendix A and Macroeconomic Theory, 2nd
195- edition, chapter IX.
193+ We approach this problem using methods described in {cite}` Ljungqvist2012 ` , chapter 2, appendix A and {cite}` Sargent1987 ` , chapter IX.
196194
197195First-order conditions for this problem are
198196
@@ -237,8 +235,7 @@ It satisfies **two boundary conditions:**
237235- a terminal condition requiring that
238236 $\lim_ {T \rightarrow + \infty} \beta^T q_ {1t}^2 < + \infty$
239237
240- Using the lag operators described in chapter IX of * Macroeconomic
241- Theory, Second edition (1987)* , difference equation
238+ Using the lag operators described in {cite}` Sargent1987 ` , chapter IX, difference equation
242239{eq}` sstack1 ` can be written as
243240
244241$$
@@ -1370,7 +1367,16 @@ v2_direct_alt = - z[:, 0].T @ lq1.P @ z[:, 0] + lq1.d
13701367(np.abs(v2_direct - v2_direct_alt) < tol2).all()
13711368```
13721369
1373- ## MPE vs. Stackelberg
1370+ ## Comparing Markov Perfect Equilibrium and Stackelberg Outcome
1371+
1372+ It is enlightening to compare equilbrium quantities for firms 1 and 2 under two alternative
1373+ settings:
1374+
1375+ * A Markov perfect equilibrium like that described in [ this lecture] ( https://python.quantecon.org/markov_perf.html )
1376+ * A Stackelberg equilbrium
1377+
1378+ The following code performs the required computations.
1379+
13741380
13751381``` {code-cell} python3
13761382vt_MPE = np.zeros(n)
0 commit comments