Skip to content

Commit 5de0765

Browse files
committed
clean up the use of //
1 parent 12ddd33 commit 5de0765

File tree

1 file changed

+11
-11
lines changed

1 file changed

+11
-11
lines changed

lectures/match_transport.md

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ Given a *cost function* $c:X \times Y \rightarrow \mathbb{R}$, the (discrete) *o
6464

6565
$$
6666
\begin{aligned}
67-
\min_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}c_{xy}\\
67+
\min_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}c_{xy} \\
6868
\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
6969
& \sum_{y \in Y} \mu_{xy} = m_y
7070
\end{aligned}
@@ -106,7 +106,7 @@ Hence, our problem is
106106

107107
$$
108108
\begin{aligned}
109-
\min_{\mu \in \mathbb{Z}_+^{X \times Y}}& \sum_{(x,y) \in X \times Y} \mu_{xy}|x-y|^{1/\zeta}\\
109+
\min_{\mu \in \mathbb{Z}_+^{X \times Y}}& \sum_{(x,y) \in X \times Y} \mu_{xy}|x-y|^{1/\zeta} \\
110110
\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
111111
& \sum_{y \in Y} \mu_{xy} = m_y
112112
\end{aligned}
@@ -1625,8 +1625,8 @@ example_3.plot_matching(matching_NAM, title = 'NAM',
16251625
Let us recall our formulation
16261626

16271627
$$
1628-
\begin{aligned}
1629-
V_P = \min_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}c_{xy}\\
1628+
\begin{aligned}
1629+
V_P = \min_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}c_{xy} \\
16301630
\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
16311631
& \sum_{y \in Y} \mu_{xy} = m_y
16321632
\end{aligned}
@@ -1637,8 +1637,8 @@ The *dual problem* is
16371637

16381638
$$
16391639
\begin{aligned}
1640-
V_D = \max_{\phi,\psi}& \sum_{x \in X }n_x \phi_x + \sum_{y \in Y} m_y \psi_y\\
1641-
\text{s.t. }& \phi_x + \psi_y \leq c_{xy} \\
1640+
V_D = \max_{\phi,\psi}& \sum_{x \in X }n_x \phi_x + \sum_{y \in Y} m_y \psi_y \\
1641+
\text{s.t. }& \phi_x + \psi_y \leq c_{xy}
16421642
\end{aligned}
16431643
$$
16441644

@@ -1651,16 +1651,16 @@ Assume now that $y_{xy} = \alpha_x + \gamma_y - c_{xy}$ is the output generated
16511651

16521652
$$
16531653
\begin{aligned}
1654-
W_P = \max_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}y_{xy}\\
1654+
W_P = \max_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}y_{xy} \\
16551655
\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
16561656
& \sum_{y \in Y} \mu_{xy} = m_y
16571657
\end{aligned}
16581658
$$
16591659

16601660
$$
16611661
\begin{aligned}
1662-
W_D = \min_{u,v}& \sum_{x \in X }n_x u_x + \sum_{y \in Y} m_y v_y\\
1663-
\text{s.t. }& u_x + v_y \geq y_{xy} \\
1662+
W_D = \min_{u,v}& \sum_{x \in X }n_x u_x + \sum_{y \in Y} m_y v_y \\
1663+
\text{s.t. }& u_x + v_y \geq y_{xy}
16641664
\end{aligned}
16651665
$$
16661666

@@ -2099,8 +2099,8 @@ Having computed the dual variables of the off-diagonal types, we compute the dua
20992099

21002100
$$
21012101
\begin{aligned}
2102-
\phi_{x} = \min_{y \in Y^{OD}} \{ c_{xy} -\psi_{y} \} \\
2103-
\psi_{y} = \min_{x \in X^{OD}} \{ c_{xy} -\phi_{x}\}
2102+
\phi_{x} = \min_{y \in Y^{OD}} \{ c_{xy} -\psi_{y} \} \\
2103+
\psi_{y} = \min_{x \in X^{OD}} \{ c_{xy} -\phi_{x} \}
21042104
\end{aligned}
21052105
$$
21062106

0 commit comments

Comments
 (0)