@@ -64,7 +64,7 @@ Given a *cost function* $c:X \times Y \rightarrow \mathbb{R}$, the (discrete) *o
6464
6565$$
6666\begin{aligned}
67- \min_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}c_{xy}\\
67+ \min_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}c_{xy} \\
6868\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
6969& \sum_{y \in Y} \mu_{xy} = m_y
7070\end{aligned}
@@ -106,7 +106,7 @@ Hence, our problem is
106106
107107$$
108108\begin{aligned}
109- \min_{\mu \in \mathbb{Z}_+^{X \times Y}}& \sum_{(x,y) \in X \times Y} \mu_{xy}|x-y|^{1/\zeta}\\
109+ \min_{\mu \in \mathbb{Z}_+^{X \times Y}}& \sum_{(x,y) \in X \times Y} \mu_{xy}|x-y|^{1/\zeta} \\
110110\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
111111& \sum_{y \in Y} \mu_{xy} = m_y
112112\end{aligned}
@@ -1625,8 +1625,8 @@ example_3.plot_matching(matching_NAM, title = 'NAM',
16251625Let us recall our formulation
16261626
16271627$$
1628- \begin{aligned}
1629- V_P = \min_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}c_{xy}\\
1628+ \begin{aligned}
1629+ V_P = \min_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}c_{xy} \\
16301630\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
16311631& \sum_{y \in Y} \mu_{xy} = m_y
16321632\end{aligned}
@@ -1637,8 +1637,8 @@ The *dual problem* is
16371637
16381638$$
16391639\begin{aligned}
1640- V_D = \max_{\phi,\psi}& \sum_{x \in X }n_x \phi_x + \sum_{y \in Y} m_y \psi_y\\
1641- \text{s.t. }& \phi_x + \psi_y \leq c_{xy} \\
1640+ V_D = \max_{\phi,\psi}& \sum_{x \in X }n_x \phi_x + \sum_{y \in Y} m_y \psi_y \\
1641+ \text{s.t. }& \phi_x + \psi_y \leq c_{xy}
16421642\end{aligned}
16431643$$
16441644
@@ -1651,16 +1651,16 @@ Assume now that $y_{xy} = \alpha_x + \gamma_y - c_{xy}$ is the output generated
16511651
16521652$$
16531653 \begin{aligned}
1654- W_P = \max_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}y_{xy}\\
1654+ W_P = \max_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}y_{xy} \\
16551655\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
16561656& \sum_{y \in Y} \mu_{xy} = m_y
16571657\end{aligned}
16581658$$
16591659
16601660$$
16611661\begin{aligned}
1662- W_D = \min_{u,v}& \sum_{x \in X }n_x u_x + \sum_{y \in Y} m_y v_y\\
1663- \text{s.t. }& u_x + v_y \geq y_{xy} \\
1662+ W_D = \min_{u,v}& \sum_{x \in X }n_x u_x + \sum_{y \in Y} m_y v_y \\
1663+ \text{s.t. }& u_x + v_y \geq y_{xy}
16641664\end{aligned}
16651665$$
16661666
@@ -2099,8 +2099,8 @@ Having computed the dual variables of the off-diagonal types, we compute the dua
20992099
21002100$$
21012101\begin{aligned}
2102- \phi_{x} = \min_{y \in Y^{OD}} \{ c_{xy} -\psi_{y} \} \\
2103- \psi_{y} = \min_{x \in X^{OD}} \{ c_{xy} -\phi_{x}\}
2102+ \phi_{x} = \min_{y \in Y^{OD}} \{ c_{xy} -\psi_{y} \} \\
2103+ \psi_{y} = \min_{x \in X^{OD}} \{ c_{xy} -\phi_{x} \}
21042104\end{aligned}
21052105$$
21062106
0 commit comments