Skip to content

Commit 6fd167c

Browse files
committed
remove begin equations
1 parent 293ec2e commit 6fd167c

File tree

1 file changed

+2
-11
lines changed

1 file changed

+2
-11
lines changed

lectures/match_transport.md

Lines changed: 2 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -57,13 +57,11 @@ Given a *cost function* $c:X \times Y \rightarrow \mathbb{R}$, the (discrete) *o
5757

5858

5959
$$
60-
\begin{equation}
6160
\begin{aligned}
6261
\min_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}c_{xy}\\
6362
\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
6463
& \sum_{y \in Y} \mu_{xy} = m_y
6564
\end{aligned}
66-
\end{equation}
6765
$$
6866

6967
Given our discreteness assumptions about $n$ and $m$, the problem admits an integer solution $\mu \in \mathbb{Z}_+^{X \times Y}$, i.e. $\mu_{xy}$ is a non-negative integer for each $x\in X, y\in Y$.
@@ -101,13 +99,11 @@ In the following implementation we assume that the cost function is $c_{xy} = |x
10199
Hence, our problem is
102100

103101
$$
104-
\begin{equation}
105102
\begin{aligned}
106103
\min_{\mu \in \mathbb{Z}_+^{X \times Y}}& \sum_{(x,y) \in X \times Y} \mu_{xy}|x-y|^{1/\zeta}\\
107104
\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
108105
& \sum_{y \in Y} \mu_{xy} = m_y
109106
\end{aligned}
110-
\end{equation}
111107
$$
112108

113109
The following class takes as inputs sets of types $X,Y \subset \mathbb{R},$ marginals $n, m $ with positive integer entries such that $\sum_{x \in X} n_x = \sum_{y \in Y} m_y $ and cost parameter $\zeta>1$.
@@ -1555,13 +1551,11 @@ example_3.plot_matching(matching_NAM, title = 'NAM', figsize = (5,5), add_labels
15551551
Let us recall our formulation
15561552

15571553
$$
1558-
\begin{equation}
15591554
\begin{aligned}
15601555
V_P = \min_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}c_{xy}\\
15611556
\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
15621557
& \sum_{y \in Y} \mu_{xy} = m_y
15631558
\end{aligned}
1564-
\end{equation}
15651559
$$
15661560

15671561
The *dual problem* is
@@ -1584,21 +1578,18 @@ Since the dual is feasible and bounded, $V_P = V_D$ (*strong duality* prevails)
15841578
Assume now that $y_{xy} = \alpha_x + \gamma_y - c_{xy}$ is the output generated by matching $x$ and $y.$ It includes the sum of $x$ and $y$ specific amenities/outputs minus the cost $c_{xy}.$ Then, we have can formulate the following problem and its dual
15851579

15861580
$$
1587-
\begin{equation*}
15881581
\begin{aligned}
15891582
W_P = \max_{\mu \geq 0}& \sum_{(x,y) \in X \times Y} \mu_{xy}y_{xy}\\
15901583
\text{s.t. }& \sum_{x \in X} \mu_{xy} = n_x \\
15911584
& \sum_{y \in Y} \mu_{xy} = m_y
15921585
\end{aligned}
1593-
\end{equation*}
15941586
$$
15951587

1596-
$$ \begin{equation}
1588+
$$
15971589
\begin{aligned}
1598-
= W_D = \min_{u,v}& \sum_{x \in X }n_x u_x + \sum_{y \in Y} m_y v_y\\
1590+
W_D = \min_{u,v}& \sum_{x \in X }n_x u_x + \sum_{y \in Y} m_y v_y\\
15991591
\text{s.t. }& u_x + v_y \geq y_{xy} \\
16001592
\end{aligned}
1601-
\end{equation}
16021593
$$
16031594

16041595

0 commit comments

Comments
 (0)