@@ -221,7 +221,7 @@ described in equation {eq}`eq_old6` in quantecon lecture {cite}`Calvo1978` has
221221$\theta$
222222
223223$$
224- - s(\theta, 0 ) \geq - s(\theta, \mu) \quad
224+ s(\theta, 0) \geq s(\theta, \mu) \quad
225225$$
226226
227227This inequality implies that whenever the policy calls for the
@@ -310,8 +310,8 @@ More precisely, a government plan $\vec \mu^A$ with equilibrium inflation sequen
310310:label: eq_old10
311311
312312\begin{aligned}
313- v_j^A & = - s(\theta^A_j, \mu^A_j) + \beta v_{j+1}^A \\
314- & \geq - s(\theta^A_j, 0 ) + \beta v_0^A \equiv v_j^{A,D}, \quad j \geq 0
313+ v_j^A & = s(\theta^A_j, \mu^A_j) + \beta v_{j+1}^A \\
314+ & \geq s(\theta^A_j, 0 ) + \beta v_0^A \equiv v_j^{A,D}, \quad j \geq 0
315315\end{aligned}
316316```
317317
@@ -333,15 +333,15 @@ a sufficient condition for another plan $\vec \mu$ associated with inflation $\v
333333:label: eq_old100a
334334
335335\begin{aligned}
336- v_j & = - s( \theta_j, \mu_j) + \beta v_{j+1} \\
337- & \geq - s( \theta_j, 0) + \beta v_0^A \quad \forall j \geq 0
336+ v_j & = s( \theta_j, \mu_j) + \beta v_{j+1} \\
337+ & \geq s( \theta_j, 0) + \beta v_0^A \quad \forall j \geq 0
338338\end{aligned}
339339```
340340
341341For this condition to be satisfied it is necessary and sufficient that
342342
343343$$
344- - s( \theta_j, 0) - ( - s( \theta_j, \mu_j) ) < \beta ( v_{j+1} - v_0^A )
344+ s( \theta_j, 0) - s( \theta_j, \mu_j) < \beta ( v_{j+1} - v_0^A )
345345$$
346346
347347The left side of the above inequality is the government's * gain* from deviating from the plan, while the right side is the government's * loss* from deviating
389389The value of $\{ \theta_t^A,\mu_t^A \} _ {t=0}^\infty$ at time $0$ is
390390
391391$$
392- v^A_0 = - \sum_{t=0}^{T_A-1} \beta^t s(\theta_t^A,\mu_t^A) +\beta^{T_A} J(\theta^R_0)
392+ v^A_0 = \sum_{t=0}^{T_A-1} \beta^t s(\theta_t^A,\mu_t^A) +\beta^{T_A} J(\theta^R_0)
393393$$
394394
395395For an appropriate $T_A$, this plan can be verified to be self-enforcing and therefore credible.
@@ -601,7 +601,7 @@ self-enforcing plan $\vec \mu^A$ by setting $\mu_t = 0$ and
601601then restarting the plan at $v^A_0$ at $t+1$:
602602
603603$$
604- v_t^{A,D} = - s( \theta_j, 0) + \beta v_0^A
604+ v_t^{A,D} = s( \theta_j, 0) + \beta v_0^A
605605$$
606606
607607In the above graph $v_t^A > v_t^{A,D}$, which confirms that $\vec \mu^A$ is a self-enforcing plan.
@@ -617,7 +617,7 @@ Given that plan $\vec \mu^A$ is self-enforcing, we can check that
617617the Ramsey plan $\vec \mu^R$ is credible by verifying that:
618618
619619$$
620- v^R_t \geq - s(\theta^R_t,0) + \beta v^A_0 , \quad \forall t \geq 0
620+ v^R_t \geq s(\theta^R_t,0) + \beta v^A_0 , \quad \forall t \geq 0
621621$$
622622
623623``` {code-cell} ipython3
0 commit comments