You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Verify that this equation is a regression equation.
441
+
442
+
### Exercise 2
443
+
444
+
Give a formula for the regression coefficient $\beta_{i, R^m}$.
445
+
446
+
### Exercise 3
447
+
448
+
Recall our earlier discussions of a **direct problem** and an **inverse problem**.
449
+
450
+
* A direct problem is about simulating a particular model.
451
+
* An inverse problem is about using data to **estimate** or **choose** a particular model from a manifold of models.
452
+
453
+
Please assume the parameter values set below and then simulate 2000 observations from the theory specified
454
+
above for 5 assets, $i = 1, \ldots, 5$.
455
+
456
+
\begin{align*}
457
+
E\left[R^f\right] &= 0.02 \\
458
+
\sigma_f &= 0.00 \\
459
+
\xi &= 0.06 \\
460
+
\lambda &= 0.04 \\
461
+
\beta_{1, R^m} &= 0.2 \\
462
+
\sigma_1 &= 0.04 \\
463
+
\beta_{2, R^m} &= .4 \\
464
+
\sigma_2 &= 0.04 \\
465
+
\beta_{3, R^m} &= .6 \\
466
+
\sigma_3 &= 0.04 \\
467
+
\beta_{4, R^m} &= .8 \\
468
+
\sigma_4 &= 0.04 \\
469
+
\beta_{5, R^m} &= 1.0 \\
470
+
\sigma_5 &= 0.04
471
+
\end{align*}
472
+
473
+
## Exercises (Intermediate)
474
+
475
+
Now come some even more fun parts!
476
+
477
+
Our theory implies that there exist values of two scalars, $a$ and $b$, such that a legitimate stochastic discount factor is:
478
+
479
+
$$
480
+
m_t = a + b R^m_t
481
+
$$
482
+
483
+
The parameters $a, b$ must satisfy the following equations:
484
+
485
+
\begin{align*}
486
+
E[(a + b R_t^m) R^m_t)] &= 1 \\
487
+
E[(a + b R_t^m) R^f_t)] &= 1
488
+
\end{align*}
489
+
490
+
### Exercise 4
491
+
492
+
Using the equations above, find a system of two **linear** equations that you can solve for $a$ and $b$ as functions of the parameters $(\lambda, \xi, E[R_f])$.
493
+
494
+
Write a function that can solve these equations.
495
+
496
+
Please check the **condition number** of a key matrix that must be inverted to determine a, b
497
+
498
+
### Exercise 5
499
+
500
+
Using the estimates of the parameters that you generated above, compute the implied stochastic discount factor.
501
+
502
+
503
+
504
+
## Solutions (Introductory)
505
+
506
+
### Solution to Exercise 1
507
+
508
+
To verify that it is a **regression equation** we must show that the residual is orthogonal to the regressor.
509
+
510
+
Our assumptions about mutual orthogonality imply that
Now that we have a panel of data, we'd like to solve the inverse problem by assuming the theory specified above and estimating the coefficients given above.
579
+
580
+
```{code-cell} ipython3
581
+
# Code for the inverse problem
582
+
```
583
+
584
+
**Inverse Problem:**
585
+
586
+
We will solve the inverse problem by simple OLS regressions.
587
+
588
+
1. estimate $E\left[R^f\right]$ and $\sigma_f$
589
+
590
+
```{code-cell} ipython3
591
+
ERf_hat, σf_hat = simple_ols(np.ones(T), Rf)
592
+
```
593
+
594
+
```{code-cell} ipython3
595
+
ERf_hat, σf_hat
596
+
```
597
+
598
+
Let's compare these with the _true_ population parameter values.
0 commit comments