Skip to content

Commit 8a30544

Browse files
committed
Update knowing_forecasts_of_others.md
1 parent 50516e5 commit 8a30544

File tree

1 file changed

+15
-15
lines changed

1 file changed

+15
-15
lines changed

lectures/knowing_forecasts_of_others.md

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ Rather than directly deploying the {cite}`PCL` machinery here, we shall instead
9292
* Therefore, equilibrium
9393
prices and quantities in Townsend's original model equal those in a pooling equilibrium.
9494

95-
### A Sequence of Models
95+
### A sequence of models
9696

9797
We proceed by describing a sequence of models of two industries that are linked in a
9898
single way:
@@ -118,7 +118,7 @@ Technically, this lecture deploys concepts and tools that appear
118118
in [First Look at Kalman Filter](https://python-intro.quantecon.org/kalman.html) and
119119
[Rational Expectations Equilibrium](https://python-intro.quantecon.org/rational_expectations.html).
120120

121-
## The Setting
121+
## The setting
122122

123123
We cast all variables in terms of deviations from means.
124124

@@ -290,7 +290,7 @@ received by firms in industry $-i$.
290290
We shall verify this assertion by using a guess and verify tactic that involves running a least
291291
squares regression and inspecting its $R^2$. [^footnote0]
292292

293-
## Equilibrium Conditions
293+
## Equilibrium conditions
294294

295295
It is convenient to solve a firm’s problem without
296296
uncertainty by forming the Lagrangian:
@@ -687,7 +687,7 @@ k_{t+1}^i & = \tilde \lambda k_t^i + {1 \over \lambda - \rho} \hat \theta_{t+
687687
\theta_{t+1} & = \rho \theta_t + v_t . \end{aligned}
688688
```
689689

690-
### Two Noisy Signals
690+
### Two noisy signals
691691

692692
We now construct a **pooling equilibrium** by assuming that at time $t$ a firm in
693693
industry $i$ receives a vector $w_t$ of *two* noisy signals
@@ -774,7 +774,7 @@ k_{t+1}^i & = \tilde \lambda k_t^i + {1 \over \lambda - \rho}\hat \theta_{t+1}
774774
Below, by using a guess-and-verify tactic, we shall show that outcomes in this **pooling equilibrium** equal those in an equilibrium under the alternative
775775
information structure that interested Townsend {cite}`townsend` but that originally seemed too challenging to compute. [^footnote5]
776776

777-
## Guess-and-Verify Tactic
777+
## Guess-and-verify tactic
778778

779779
As a preliminary step we shall take our recursive representation {eq}`sol0a`
780780
of an equilibrium in industry $i$ with one noisy signal
@@ -798,9 +798,9 @@ structure.
798798

799799
We proceed to analyze first the one-noisy-signal structure and then the two-noisy-signal structure.
800800

801-
## Equilibrium with One Noisy Signal on $\theta_t$
801+
## Equilibrium with one noisy signal on $\theta_t$
802802

803-
### Step 1: Solve for $\tilde{\lambda}$ and $\lambda$
803+
### Step 1: solve for $\tilde{\lambda}$ and $\lambda$
804804

805805
1. Cast
806806
$\left(\lambda-1\right)\left(\lambda-\frac{1}{\beta}\right)=b\lambda$
@@ -812,7 +812,7 @@ We proceed to analyze first the one-noisy-signal structure and then the two-nois
812812
Note that
813813
$p\left(\lambda\right)=\lambda^{2}-\left(1+b+\frac{1}{\beta}\right)\lambda+\frac{1}{\beta}$.
814814

815-
### Step 2: Solve for $p$
815+
### Step 2: solve for $p$
816816

817817
1. Cast
818818
$p=\sigma_{v}^{2}+\frac{p\rho^{2}\sigma_{e}^{2}}{2p+\sigma_{e}^{2}}$
@@ -838,7 +838,7 @@ $$
838838
\end{aligned}
839839
$$
840840

841-
### Step 3: Represent the system using `quantecon.LinearStateSpace`
841+
### Step 3: represent the system using `quantecon.LinearStateSpace`
842842

843843
We use the following representation for constructing the
844844
`quantecon.LinearStateSpace` instance.
@@ -1004,7 +1004,7 @@ x, y = lss.simulate(ts_length, random_state=1)
10041004
np.max(np.abs(np.array([[1., b, 0., 0., 1., 0.]]) @ x - x[3])) < 1e-12
10051005
```
10061006

1007-
### Step 4: Compute impulse response functions
1007+
### Step 4: compute impulse response functions
10081008

10091009
To compute impulse response functions of $k_t^i$, we use the `impulse_response` method of the
10101010
`quantecon.LinearStateSpace` class and plot outcomes.
@@ -1025,7 +1025,7 @@ Image(fig1.to_image(format="png"))
10251025
# notebook locally
10261026
```
10271027

1028-
### Step 5: Compute stationary covariance matrices and population regressions
1028+
### Step 5: compute stationary covariance matrices and population regressions
10291029

10301030
We compute stationary covariance matrices by
10311031
calling the `stationary_distributions` method of
@@ -1094,7 +1094,7 @@ reg_res = model.fit()
10941094
np.abs(reg_res.rsquared - 1.) < 1e-6
10951095
```
10961096

1097-
## Equilibrium with Two Noisy Signals on $\theta_t$
1097+
## Equilibrium with two noisy signals on $\theta_t$
10981098

10991099
Steps 1, 4, and 5 are identical to those for the one-noisy-signal structure.
11001100

@@ -1330,7 +1330,7 @@ R_squared = reg_coeffs @ Σ_x[2:6, 2:6] @ reg_coeffs / Σ_x[1, 1]
13301330
R_squared
13311331
```
13321332

1333-
## Key Step
1333+
## Key step
13341334

13351335
Now we come to the key step for verifying that equilibrium outcomes for prices and quantities are identical
13361336
in the pooling equilibrium original model that led Townsend to deduce an infinite-dimensional state space.
@@ -1457,7 +1457,7 @@ Image(fig3.to_image(format="png"))
14571457
# notebook locally
14581458
```
14591459

1460-
## Comparison of All Signal Structures
1460+
## Comparison of all signal structures
14611461

14621462
It is enlightening side by side to plot impulse response functions for capital for the two
14631463
noisy-signal information structures and the noiseless signal on $\theta$ that we have just presented.
@@ -1529,7 +1529,7 @@ $\epsilon_t^i$ in industry $i$ generates a response in $k_t^{-i}$ in the two-noi
15291529

15301530

15311531

1532-
## Notes on History of the Problem
1532+
## Notes on history of the problem
15331533

15341534
To truncate what he saw as an intractable, infinite dimensional state space,
15351535
Townsend constructed an approximating model in which the common hidden Markov demand shock

0 commit comments

Comments
 (0)