@@ -92,7 +92,7 @@ Rather than directly deploying the {cite}`PCL` machinery here, we shall instead
9292* Therefore, equilibrium
9393 prices and quantities in Townsend's original model equal those in a pooling equilibrium.
9494
95- ### A Sequence of Models
95+ ### A sequence of models
9696
9797We proceed by describing a sequence of models of two industries that are linked in a
9898single way:
@@ -118,7 +118,7 @@ Technically, this lecture deploys concepts and tools that appear
118118in [ First Look at Kalman Filter] ( https://python-intro.quantecon.org/kalman.html ) and
119119[ Rational Expectations Equilibrium] ( https://python-intro.quantecon.org/rational_expectations.html ) .
120120
121- ## The Setting
121+ ## The setting
122122
123123We cast all variables in terms of deviations from means.
124124
@@ -290,7 +290,7 @@ received by firms in industry $-i$.
290290We shall verify this assertion by using a guess and verify tactic that involves running a least
291291squares regression and inspecting its $R^2$. [ ^ footnote0 ]
292292
293- ## Equilibrium Conditions
293+ ## Equilibrium conditions
294294
295295It is convenient to solve a firm’s problem without
296296uncertainty by forming the Lagrangian:
@@ -687,7 +687,7 @@ k_{t+1}^i & = \tilde \lambda k_t^i + {1 \over \lambda - \rho} \hat \theta_{t+
687687\theta_{t+1} & = \rho \theta_t + v_t . \end{aligned}
688688```
689689
690- ### Two Noisy Signals
690+ ### Two noisy signals
691691
692692We now construct a ** pooling equilibrium** by assuming that at time $t$ a firm in
693693industry $i$ receives a vector $w_t$ of * two* noisy signals
@@ -774,7 +774,7 @@ k_{t+1}^i & = \tilde \lambda k_t^i + {1 \over \lambda - \rho}\hat \theta_{t+1}
774774Below, by using a guess-and-verify tactic, we shall show that outcomes in this ** pooling equilibrium** equal those in an equilibrium under the alternative
775775information structure that interested Townsend {cite}` townsend ` but that originally seemed too challenging to compute. [ ^ footnote5 ]
776776
777- ## Guess-and-Verify Tactic
777+ ## Guess-and-verify tactic
778778
779779As a preliminary step we shall take our recursive representation {eq}` sol0a `
780780of an equilibrium in industry $i$ with one noisy signal
@@ -798,9 +798,9 @@ structure.
798798
799799We proceed to analyze first the one-noisy-signal structure and then the two-noisy-signal structure.
800800
801- ## Equilibrium with One Noisy Signal on $\theta_t$
801+ ## Equilibrium with one noisy signal on $\theta_t$
802802
803- ### Step 1: Solve for $\tilde{\lambda}$ and $\lambda$
803+ ### Step 1: solve for $\tilde{\lambda}$ and $\lambda$
804804
8058051 . Cast
806806 $\left(\lambda-1\right)\left(\lambda-\frac{1}{\beta}\right)=b\lambda$
@@ -812,7 +812,7 @@ We proceed to analyze first the one-noisy-signal structure and then the two-nois
812812Note that
813813$p\left(\lambda\right)=\lambda^{2}-\left(1+b+\frac{1}{\beta}\right)\lambda+\frac{1}{\beta}$.
814814
815- ### Step 2: Solve for $p$
815+ ### Step 2: solve for $p$
816816
8178171 . Cast
818818 $p=\sigma_ {v}^{2}+\frac{p\rho^{2}\sigma_ {e}^{2}}{2p+\sigma_ {e}^{2}}$
838838\end{aligned}
839839$$
840840
841- ### Step 3: Represent the system using ` quantecon.LinearStateSpace `
841+ ### Step 3: represent the system using ` quantecon.LinearStateSpace `
842842
843843We use the following representation for constructing the
844844` quantecon.LinearStateSpace ` instance.
@@ -1004,7 +1004,7 @@ x, y = lss.simulate(ts_length, random_state=1)
10041004np.max(np.abs(np.array([[1., b, 0., 0., 1., 0.]]) @ x - x[3])) < 1e-12
10051005```
10061006
1007- ### Step 4: Compute impulse response functions
1007+ ### Step 4: compute impulse response functions
10081008
10091009To compute impulse response functions of $k_t^i$, we use the ` impulse_response ` method of the
10101010` quantecon.LinearStateSpace ` class and plot outcomes.
@@ -1025,7 +1025,7 @@ Image(fig1.to_image(format="png"))
10251025# notebook locally
10261026```
10271027
1028- ### Step 5: Compute stationary covariance matrices and population regressions
1028+ ### Step 5: compute stationary covariance matrices and population regressions
10291029
10301030We compute stationary covariance matrices by
10311031calling the ` stationary_distributions ` method of
@@ -1094,7 +1094,7 @@ reg_res = model.fit()
10941094np.abs(reg_res.rsquared - 1.) < 1e-6
10951095```
10961096
1097- ## Equilibrium with Two Noisy Signals on $\theta_t$
1097+ ## Equilibrium with two noisy signals on $\theta_t$
10981098
10991099Steps 1, 4, and 5 are identical to those for the one-noisy-signal structure.
11001100
@@ -1330,7 +1330,7 @@ R_squared = reg_coeffs @ Σ_x[2:6, 2:6] @ reg_coeffs / Σ_x[1, 1]
13301330R_squared
13311331```
13321332
1333- ## Key Step
1333+ ## Key step
13341334
13351335Now we come to the key step for verifying that equilibrium outcomes for prices and quantities are identical
13361336in the pooling equilibrium original model that led Townsend to deduce an infinite-dimensional state space.
@@ -1457,7 +1457,7 @@ Image(fig3.to_image(format="png"))
14571457# notebook locally
14581458```
14591459
1460- ## Comparison of All Signal Structures
1460+ ## Comparison of all signal structures
14611461
14621462It is enlightening side by side to plot impulse response functions for capital for the two
14631463 noisy-signal information structures and the noiseless signal on $\theta$ that we have just presented.
@@ -1529,7 +1529,7 @@ $\epsilon_t^i$ in industry $i$ generates a response in $k_t^{-i}$ in the two-noi
15291529
15301530
15311531
1532- ## Notes on History of the Problem
1532+ ## Notes on history of the problem
15331533
15341534To truncate what he saw as an intractable, infinite dimensional state space,
15351535Townsend constructed an approximating model in which the common hidden Markov demand shock
0 commit comments