We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 9a65ef5 commit a2d9e7bCopy full SHA for a2d9e7b
lectures/calvo.md
@@ -131,11 +131,11 @@ or
131
132
Because $\alpha > 0$, $0 < \frac{\alpha}{1+\alpha} < 1$.
133
134
-**Definition:** For a scalar $x_t$, let $L^2$ be the space of sequences
135
-$\{x_t\}_{t=0}^\infty$ satisfying
+**Definition:** For a scalar $b_t$, let $L^2$ be the space of sequences
+$\{b_t\}_{t=0}^\infty$ satisfying
136
137
$$
138
-\sum_{t=0}^\infty x_t^2 < +\infty
+\sum_{t=0}^\infty b_t^2 < +\infty
139
140
141
We say that a sequence that belongs to $L^2$ is **square summable**.
0 commit comments