Skip to content

Commit aa45849

Browse files
committed
Remove ipywidgets
1 parent 7b8393c commit aa45849

File tree

1 file changed

+9
-38
lines changed

1 file changed

+9
-38
lines changed

lectures/matsuyama.md

Lines changed: 9 additions & 38 deletions
Original file line numberDiff line numberDiff line change
@@ -3,8 +3,10 @@ jupytext:
33
text_representation:
44
extension: .md
55
format_name: myst
6+
format_version: 0.13
7+
jupytext_version: 1.16.4
68
kernelspec:
7-
display_name: Python 3
9+
display_name: Python 3 (ipykernel)
810
language: python
911
name: python3
1012
---
@@ -38,11 +40,10 @@ In particular, as trade costs fall and international competition increases, inno
3840

3941
Let's start with some imports:
4042

41-
```{code-cell} ipython
43+
```{code-cell} ipython3
4244
import numpy as np
4345
import matplotlib.pyplot as plt
4446
from numba import jit
45-
from ipywidgets import interact
4647
```
4748

4849
### Background
@@ -335,7 +336,7 @@ These are the `@jit` statements that you see below (review [this lecture](https:
335336

336337
Here's the main body of code
337338

338-
```{code-cell} python3
339+
```{code-cell} ipython3
339340
@jit(nopython=True)
340341
def _hj(j, nk, s1, s2, θ, δ, ρ):
341342
"""
@@ -651,9 +652,9 @@ The time series share parameters but differ in their initial condition.
651652

652653
Here's the function
653654

654-
```{code-cell} python3
655+
```{code-cell} ipython3
655656
def plot_timeseries(n1_0, n2_0, s1=0.5, θ=2.5,
656-
δ=0.7, ρ=0.2, ax=None, title=''):
657+
δ=0.7, ρ=0.2, ax=None, title=''):
657658
"""
658659
Plot a single time series with initial conditions
659660
"""
@@ -735,7 +736,8 @@ Replicate the figure {ref}`shown above <matsrep>` by coloring initial conditions
735736
```{solution-start} matsuyama_ex1
736737
:class: dropdown
737738
```
738-
```{code-cell} python3
739+
740+
```{code-cell} ipython3
739741
def plot_attraction_basis(s1=0.5, θ=2.5, δ=0.7, ρ=0.2, npts=250, ax=None):
740742
if ax is None:
741743
fig, ax = plt.subplots()
@@ -784,36 +786,5 @@ fig.suptitle("Synchronized versus Asynchronized 2-cycles",
784786
plt.show()
785787
```
786788

787-
Additionally, instead of just seeing 4 plots at once, we might want to
788-
manually be able to change $\rho$ and see how it affects the plot
789-
in real-time. Below we use an interactive plot to do this.
790-
791-
Note, interactive plotting requires the [ipywidgets](https://github.com/jupyter-widgets/ipywidgets) module to be installed and enabled.
792-
793-
```{code-cell} python3
794-
def interact_attraction_basis(ρ=0.2, maxiter=250, npts=250):
795-
# Create the figure and axis that we will plot on
796-
fig, ax = plt.subplots(figsize=(12, 10))
797-
798-
# Create model and attraction basis
799-
s1, θ, δ = 0.5, 2.5, 0.75
800-
model = MSGSync(s1, θ, δ, ρ)
801-
ab = model.create_attraction_basis(maxiter=maxiter, npts=npts)
802-
803-
# Color map with colormesh
804-
unitrange = np.linspace(0, 1, npts)
805-
cf = ax.pcolormesh(unitrange, unitrange, ab, cmap="viridis")
806-
cbar_ax = fig.add_axes([0.95, 0.15, 0.05, 0.7])
807-
plt.colorbar(cf, cax=cbar_ax)
808-
plt.show()
809-
return None
810-
```
811-
812-
```{code-cell} python3
813-
fig = interact(interact_attraction_basis,
814-
ρ=(0.0, 1.0, 0.05),
815-
maxiter=(50, 5000, 50),
816-
npts=(25, 750, 25))
817-
```
818789
```{solution-end}
819790
```

0 commit comments

Comments
 (0)