Skip to content

Commit d030ce7

Browse files
Tom's Dec 23 edits of calvo lecture
1 parent d78dbb8 commit d030ce7

File tree

1 file changed

+68
-47
lines changed

1 file changed

+68
-47
lines changed

lectures/calvo.md

Lines changed: 68 additions & 47 deletions
Original file line numberDiff line numberDiff line change
@@ -277,26 +277,26 @@ is:
277277
```{math}
278278
:label: eq_old6
279279
280-
-s(\theta_t, \mu_t) \equiv - r(x_t,\mu_t) = \begin{bmatrix} 1 \\ \theta_t \end{bmatrix}' \begin{bmatrix} u_0 & -\frac{u_1 \alpha}{2} \\ -\frac{u_1 \alpha}{2} & -\frac{u_2 \alpha^2}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \theta_t \end{bmatrix} - \frac{c}{2} \mu_t^2 = - x_t'Rx_t - Q \mu_t^2
280+
s(\theta_t, \mu_t) \equiv - r(x_t,\mu_t) = \begin{bmatrix} 1 \\ \theta_t \end{bmatrix}' \begin{bmatrix} u_0 & -\frac{u_1 \alpha}{2} \\ -\frac{u_1 \alpha}{2} & -\frac{u_2 \alpha^2}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \theta_t \end{bmatrix} - \frac{c}{2} \mu_t^2 = - x_t'Rx_t - Q \mu_t^2
281281
```
282282
283283
The government's time $0$ value is
284284
285285
```{math}
286286
:label: eq_old7
287287
288-
v_0 = - \sum_{t=0}^\infty \beta^t r(x_t,\mu_t) = - \sum_{t=0}^\infty \beta^t s(\theta_t,\mu_t)
288+
v_0 = - \sum_{t=0}^\infty \beta^t r(x_t,\mu_t) = \sum_{t=0}^\infty \beta^t s(\theta_t,\mu_t)
289289
```
290290
291291
where $\beta \in (0,1)$ is a discount factor.
292292
293293
The government's time $t$ continuation value $v_t$ is
294294
295295
$$
296-
v_t = - \sum_{j=0}^\infty \beta^j s(\theta_{t+j}, \mu_{t+j}) .
296+
v_t = \sum_{j=0}^\infty \beta^j s(\theta_{t+j}, \mu_{t+j}) .
297297
$$
298298
299-
We can represent dependence of $v_0$ on $(\vec \theta, \vec \mu)$ recursively via the difference equation
299+
We can represent dependence of $v_0$ on $(\vec \theta, \vec \mu)$ recursively via the difference equatin
300300
301301
```{math}
302302
:label: eq_old8
@@ -310,7 +310,7 @@ that according to equation {eq}`eq_old3` would bring forth a constant inflation
310310
Under that policy,
311311
312312
$$
313-
v_t = V(\bar \mu) = - \frac{s(\bar \mu, \bar \mu)}{1-\beta}
313+
v_t = V(\bar \mu) = \frac{s(\bar \mu, \bar \mu)}{1-\beta}
314314
$$ (eq:barvdef)
315315
316316
for all $t \geq 0$.
@@ -337,7 +337,7 @@ $\vec v = \{v_t\}_{t=0}^\infty \in L^2$ that satisfies the
337337
recursion
338338
339339
$$
340-
v_t = - s(\theta_t,\mu_t) + \beta v_{t+1}
340+
v_t = s(\theta_t,\mu_t) + \beta v_{t+1}
341341
$$ (eq_new100)
342342
343343
where we have called $s(\theta_t, \mu_t) = r(x_t, \mu_t)$, as
@@ -580,22 +580,29 @@ Subproblem 2 does that.
580580
The value of the Ramsey problem is
581581
582582
$$
583-
V^R = \max_{\theta} J(\theta)
583+
V^R = \max_{x_0} J(x_0)
584584
$$
585585
586-
where $V^R$ is the maximum value of $v_0$ defined in equation {eq}`eq_old7`.
587586
588-
We have taken the liberty of abusing notation slightly by writing $J(x)$ as $J(\theta)$
589587
590-
* notice that $x = \begin{bmatrix} 1 \cr \theta \end{bmatrix}$, so $\theta$ is the only component of $x$ that can possibly vary
588+
We abuse notation slightly by writing $J(x)$ as $J(\theta)$ and rewrite the above equation as
589+
```{note}
590+
Since $x = \begin{bmatrix} 1 \cr \theta \end{bmatrix}$, it follows that $\theta$ is the only component of $x$ that can possibly vary.
591+
```
592+
593+
$$
594+
V^R = \max_{\theta_0} J(\theta_0)
595+
$$
596+
597+
Evidently, $V^R$ is the maximum value of $v_0$ defined in equation {eq}`eq_old7`.
591598
592599
Value function $J(\theta_0)$ satisfies
593600
594601
$$
595602
J(\theta_0) = -\begin{bmatrix} 1 & \theta_0 \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} 1 \\ \theta_0 \end{bmatrix} = -P_{11} - 2 P_{21} \theta_0 - P_{22} \theta_0^2
596603
$$
597604
598-
Maximizing $J(\theta_0)$ with respect to $\theta_0$ yields the FOC:
605+
The first-order necessary condition for maximizing $J(\theta_0)$ with respect to $\theta_0$ is
599606
600607
$$
601608
- 2 P_{21} - 2 P_{22} \theta_0 =0
@@ -678,7 +685,7 @@ Variation of $ \vec \mu^R, \vec \theta^R, \vec v^R $ over time are symptoms o
678685
679686
## Multiple roles of $\theta_t$
680687
681-
The inflation rate $\theta_t$ plays three roles simultaneously:
688+
The inflation rate $\theta_t$ plays three roles:
682689
683690
- In equation {eq}`eq_old3`, $\theta_t$ is the actual rate of inflation
684691
between $t$ and $t+1$.
@@ -709,44 +716,44 @@ that, relative to a Ramsey plan, alter either
709716
710717
## Constrained-to-Constant-Growth-Rate Ramsey Plan
711718
712-
We now describe a model in which we restrict the Ramsey planner's choice set.
713719
714-
Instead of choosing a sequence of money growth rates $\vec \mu \in {\bf L}^2$, we restrict the
715-
government to choose a time-invariant money growth rate $\bar \mu$.
720+
In order to highlight an aspect of a Ramsey plan associated with its time inconsistency, i.e., the feature that optimal settings of the policy instrument vary over time, we now study the consequences of arbitrarily restricting the Ramsey planner to choose a time-invariant money growth rate $\bar \mu$ so that
716721
717-
We created this version of the model to highlight an aspect of a Ramsey plan associated with its time inconsistency, namely, the feature that optimal settings of the policy instrument vary over time.
722+
$$
723+
\mu_t = \bar \mu, \quad \forall t \geq 0.
724+
$$
718725
719-
Thus, instead of allowing the government at time $0$ to choose a different $\mu_t$ for each $t \geq 0$, we now assume that a government at time $0$ once and for all chooses a *constant* sequence $\mu_t = \bar \mu$ for all $t \geq 0$.
720726
721727
We assume that the government knows the perfect foresight outcome implied by equation {eq}`eq_old2` that $\theta_t = \bar \mu$ when $\mu_t = \bar \mu$ for all $t \geq 0$.
722728
723-
The government chooses $\bar \mu$ to maximize
729+
It follows that the value of such a plan is given by $V(\bar \mu)$ defined above inequation {eq}`eq:barvdef`.
724730
725731
726-
$$
727-
V^{CR}(\bar \mu) = V(\bar \mu)
728-
$$
729732
730-
where $V(\bar \mu)$ is defined in equation {eq}`eq:barvdef`.
733+
Then our restricted Ramsey planner chooses $\bar \mu$ to maximize $V(\bar \mu)$.
731734
732-
We can express $V^{CR}(\bar \mu)$ as
735+
736+
737+
738+
739+
We can express $V(\bar \mu)$ as
733740
734741
735742
$$
736-
V^{CR} (\bar \mu) = (1-\beta)^{-1} \left[ U (-\alpha \bar \mu) - \frac{c}{2} (\bar \mu)^2 \right]
743+
V (\bar \mu) = (1-\beta)^{-1} \left[ U (-\alpha \bar \mu) - \frac{c}{2} (\bar \mu)^2 \right]
737744
$$ (eq:vcrformula20)
738745
739746
With the quadratic form {eq}`eq_old5` for the utility function $U$, the
740747
maximizing $\bar \mu$ is
741748
742749
$$
743-
\mu^{CR} = - \frac{\alpha u_1}{\alpha^2 u_2 + c }
750+
\mu^{CR} = \max_{\bar \mu} V (\bar \mu) = - \frac{\alpha u_1}{\alpha^2 u_2 + c }
744751
$$ (eq:muRamseyconstrained)
745752
746753
The optimal value attained by a *constrained to constant $\mu$* Ramsey planner is
747754
748755
$$
749-
V^{CR}(\mu^{CR}) = v^{CR} = (1-\beta)^{-1} \left[ U (-\alpha \mu^{CR}) - \frac{c}{2} (\mu^{CR})^2 \right]
756+
V(\mu^{CR}) \equiv V^{CR} = (1-\beta)^{-1} \left[ U (-\alpha \mu^{CR}) - \frac{c}{2} (\mu^{CR})^2 \right]
750757
$$ (eq:vcrformula)
751758
752759
@@ -781,7 +788,7 @@ Given $\bar \mu$, the time $t$ government chooses $\mu_t$ to
781788
maximize:
782789
783790
$$
784-
Q(\mu_t, \bar \mu) = U(-\alpha \theta_t) - \frac{c}{2} \mu_t^2 + \beta V(\bar \mu)
791+
H(\mu_t, \bar \mu) = U(-\alpha \theta_t) - \frac{c}{2} \mu_t^2 + \beta V(\bar \mu)
785792
$$ (eq_Markov3)
786793
787794
where $V(\bar \mu)$ is given by formula {eq}`eq:barvdef` for the time $0$ value $v_0$ of
@@ -792,12 +799,12 @@ Substituting {eq}`eq_Markov2` into {eq}`eq_Markov3` and expanding gives:
792799
793800
$$
794801
\begin{aligned}
795-
Q(\mu_t, \bar \mu) & = u_0 + u_1\left(-\frac{\alpha^2}{1+\alpha} \bar \mu - \frac{\alpha}{1+\alpha} \mu_t\right) - \frac{u_2}{2}\left(-\frac{\alpha^2}{1+\alpha} \bar \mu - \frac{\alpha}{1+\alpha} \mu_t\right)^2 \\
802+
H(\mu_t, \bar \mu) & = u_0 + u_1\left(-\frac{\alpha^2}{1+\alpha} \bar \mu - \frac{\alpha}{1+\alpha} \mu_t\right) - \frac{u_2}{2}\left(-\frac{\alpha^2}{1+\alpha} \bar \mu - \frac{\alpha}{1+\alpha} \mu_t\right)^2 \\
796803
& \quad \quad \quad - \frac{c}{2} \mu_t^2 + \beta V(\bar \mu)
797804
\end{aligned}
798805
$$ (eq:Vmutemp)
799806
800-
The first-order necessary condition for maximing $Q(\mu_t, \bar \mu)$ with respect to $\mu_t$ is:
807+
The first-order necessary condition for maximizing $H(\mu_t, \bar \mu)$ with respect to $\mu_t$ is:
801808
802809
$$
803810
- \frac{\alpha}{1+\alpha} u_1 - u_2(-\frac{\alpha^2}{1+\alpha} \bar \mu - \frac{\alpha}{1+\alpha} \mu_t)(- \frac{\alpha}{1+\alpha}) - c \mu_t = 0
@@ -836,7 +843,7 @@ $$ (eq:Markovperfectmu)
836843
The value of a Markov perfect equilibrium is
837844
838845
$$
839-
V^{MPE} = -\frac{s(\mu^{MPE}, \mu^{MPE})}{1-\beta}
846+
V^{MPE} = \frac{s(\mu^{MPE}, \mu^{MPE})}{1-\beta}
840847
$$ (eq:VMPE)
841848
842849
or
@@ -1109,12 +1116,13 @@ Notice that for $\theta \in \left(\theta_\infty^R, \theta_0^R \right]$
11091116
It follows that under the Ramsey plan $\{\theta_t\}$ and $\{\mu_t\}$ both converge monotonically from above to $\theta_\infty^R$.
11101117
11111118
1112-
The next code plots the Ramsey planner's value function $J(\theta)$, which we know is maximized at $\theta^R_0$, the promised inflation that the Ramsey planner sets
1113-
at time $t=0$.
1119+
The next code plots the Ramsey planner's value function $J(\theta)$.
1120+
1121+
We know that $J (\theta)$ is maximized at $\theta^R_0$, the best time $0$ promised inflation rate.
11141122
1115-
The figure also plots the limiting value $\theta_\infty^R$ to which the promised inflation rate $\theta_t$ converges under the Ramsey plan.
1123+
The figure also plots the limiting value $\theta_\infty^R$, the limiting value of promised inflation rate $\theta_t$ under the Ramsey plan as $t \rightarrow +\infty$.
11161124
1117-
In addition, the figure indicates an MPE inflation rate $\theta^{MPE}$, $\theta^{CR}$, and a bliss inflation $\theta^*$.
1125+
The figure also indicates an MPE inflation rate $\theta^{MPE}$, the inflation $\theta^{CR}$ under a Ramsey plan constrained to a constant money creation rate, and a bliss inflation $\theta^*$.
11181126
11191127
```{code-cell} ipython3
11201128
:tags: [hide-input]
@@ -1164,9 +1172,9 @@ of a constrained Ramsey planner who must choose a constant
11641172
$\mu$.
11651173
11661174
A time-invariant $\mu$ implies a time-invariant $\theta$, we take the liberty of
1167-
labeling this value function $V^{CR}(\theta)$.
1175+
labeling this value function $V(\theta)$.
11681176
1169-
We'll use the code to plot $J(\theta)$ and $V^{CR}(\theta)$ for several values of the discount factor $\beta$ and the cost of $\mu_t^2$ parameter $c$.
1177+
We'll use the code to plot $J(\theta)$ and $V(\theta)$ for several values of the discount factor $\beta$ and the cost parameter $c$ that multiplies $\mu_t^2$ in the Ramsey planner's one-period payoff function.
11701178
11711179
In all of the graphs below, we disarm the Proposition 1 equivalence results by setting $c >0$.
11721180
@@ -1175,11 +1183,11 @@ The graphs reveal interesting relationships among $\theta$'s associated with var
11751183
* $\theta_0^R < \theta^{MPE} $: the initial Ramsey inflation rate exceeds the MPE inflation rate
11761184
* $\theta_\infty^R < \theta^{CR} <\theta_0^R$: the initial Ramsey deflation rate, and the associated tax distortion cost $c \mu_0^2$ is less than the limiting Ramsey inflation rate $\theta_\infty^R$ and the associated tax distortion cost $\mu_\infty^2$
11771185
* $\theta^* < \theta^R_\infty$: the limiting Ramsey inflation rate exceeds the bliss level of inflation
1178-
* $J(\theta) \geq V^{CR}(\theta)$
1179-
* $J(\theta_\infty^R) = V^{CR}(\theta_\infty^R)$
1186+
* $J(\theta) \geq V(\theta)$
1187+
* $J(\theta_\infty^R) = V(\theta_\infty^R)$
11801188
11811189
Before doing anything else, let's write code to verify our claim that
1182-
$J(\theta_\infty^R) = V^{CR}(\theta_\infty^R)$.
1190+
$J(\theta_\infty^R) = V(\theta_\infty^R)$.
11831191
11841192
Here is the code.
11851193
@@ -1189,9 +1197,9 @@ np.allclose(clq.J_θ(θ_inf),
11891197
clq.V_θ(θ_inf))
11901198
```
11911199
1192-
So our claim that $J(\theta_\infty^R) = V^{CR}(\theta_\infty^R)$ is verified numerically.
1200+
So we have verified our claim that $J(\theta_\infty^R) = V(\theta_\infty^R)$.
11931201
1194-
Since $J(\theta_\infty^R) = V^{CR}(\theta_\infty^R)$ occurs at a tangency point at which
1202+
Since $J(\theta_\infty^R) = V(\theta_\infty^R)$ occurs at a tangency point at which
11951203
$J(\theta)$ is increasing in $\theta$, it follows that
11961204
11971205
$$
@@ -1200,8 +1208,8 @@ $$ (eq:comparison2)
12001208
12011209
with strict inequality when $c > 0$.
12021210
1203-
Thus, the limiting continuation value of continuation Ramsey planners is worse that the
1204-
constant value attained by a constrained-to-constant $\mu_t$ Ramsey planner.
1211+
Thus, the value of the plan that sets the money growth rate $\mu_t = \theta_\infty^R$ for all $t \geq 0$ is worse than the
1212+
value attained by a Ramsey planner who is constrained to set a constant $\mu_t$.
12051213
12061214
Now let's write some code to plot outcomes under our three timing protocols.
12071215
@@ -1225,7 +1233,7 @@ def compare_ramsey_CR(clq, ax):
12251233
ax.set_ylim([l_J, u_J])
12261234
12271235
# Plot J(θ) and v^CR(θ)
1228-
CR_line, = ax.plot(clq.θ_space, clq.CR_space, lw=2, label=r"$V^{CR}(\theta)$")
1236+
CR_line, = ax.plot(clq.θ_space, clq.CR_space, lw=2, label=r"$V(\theta)$")
12291237
J_line, = ax.plot(clq.θ_space, clq.J_space, lw=2, label=r"$J(\theta)$")
12301238
12311239
# Mark key points
@@ -1315,14 +1323,27 @@ def generate_table(clqs, dig=3):
13151323
display(Math(latex_code))
13161324
```
13171325
1318-
The figure below confirms the key points we discussed above
1326+
For some default parameter values, the next figure plots the Ramsey planner's
1327+
continuation value function $J(\theta)$ (orange curve) and the restricted-to-constant-$\mu$ Ramsey
1328+
planner's value function $V(\theta)$ (blue curve).
1329+
1330+
The figure uses colored arrows to indicate locations of $\theta^*, \theta_\infty^R,
1331+
\theta^{CR}, \theta_0^R$, and $\theta^{MPE}$, ordered as they are from
1332+
left to right, on the $\theta$ axis.
1333+
1334+
* the maximizer $\theta_0^R$ of $J(\theta)$ occurs at the top of the orange curve
1335+
* the maximizer $\theta^{CR}$ of $V(\theta)$ occurs at the top of the blue curve
1336+
* the "timeless perspective" inflation and money creation rate $\theta_\infty^R$ occurs where $J(\theta)$ is tangent to $V(\theta)$
1337+
* the Markov perfect inflation and money creation rate $\theta^{MPE}$ exceeds $\theta_0^R$.
1338+
1339+
13191340
13201341
```{code-cell} ipython3
13211342
fig, ax = plt.subplots()
13221343
plt_clqs(ChangLQ(β=0.8, c=2), ax)
13231344
```
13241345
1325-
Now we experiment with different $\beta$ values and check how the graph changes
1346+
Now we experiment with different $\beta$ values and check how outcomes change
13261347
13271348
```{code-cell} ipython3
13281349
# Compare different β values
@@ -1343,7 +1364,7 @@ The horizontal dotted lines indicate values
13431364
$V(\mu_\infty^R), V(\mu^{CR}), V(\mu^{MPE}) $ of time-invariant money
13441365
growth rates $\mu_\infty^R, \mu^{CR}$ and $\mu^{MPE}$, respectfully.
13451366
1346-
Notice how $J(\theta)$ and $V^{CR}(\theta)$ are tangent and increasing at
1367+
Notice how $J(\theta)$ and $V(\theta)$ are tangent and increasing at
13471368
$\theta = \theta_\infty^R$, which implies that $\theta^{CR} > \theta_\infty^R$
13481369
and $J(\theta^{CR}) > J(\theta_\infty^R)$.
13491370

0 commit comments

Comments
 (0)