@@ -388,7 +388,7 @@ The proof is now complete.
388388It is common in applications to start with $n \times k$ matrix $X$ with linearly independent columns and let
389389
390390$$
391- S := \mathop{\mathrm{span}} X := \mathop{\mathrm{span}} \{\col_1 X, \ldots, \col_k X \}
391+ S := \mathop{\mathrm{span}} X := \mathop{\mathrm{span}} \{\mathop{\mathrm{col}}_i X, \ldots, \mathop{\mathrm{col}}_k X \}
392392$$
393393
394394Then the columns of $X$ form a basis of $S$.
@@ -403,7 +403,7 @@ In this context, $P$ is often called the **projection matrix**
403403
404404Suppose that $U$ is $n \times k$ with orthonormal columns.
405405
406- Let $u_i := \mathop{\mathrm{col}} U_i $ for each $i$, let $S := \mathop{\mathrm{span}} U$ and let $y \in \mathbb R^n$.
406+ Let $u_i := \mathop{\mathrm{col}}_ i U $ for each $i$, let $S := \mathop{\mathrm{span}} U$ and let $y \in \mathbb R^n$.
407407
408408We know that the projection of $y$ onto $S$ is
409409
@@ -665,9 +665,9 @@ The following result uses the preceding algorithm to produce a useful decomposit
665665
666666``` {prf:proof} Let
667667
668- * $x_j := \col_j (X)$
668+ * $x_j := \mathop{\mathrm{col}}_j (X)$
669669* $\{u_1, \ldots, u_k\}$ be orthonormal with the same span as $\{x_1, \ldots, x_k\}$ (to be constructed using Gram--Schmidt)
670- * $Q$ be formed from cols $u_i$
670+ * $Q$ be formed from columns $u_i$
671671
672672Since $x_j \in \mathop{\mathrm{span}}\{u_1, \ldots, u_j\}$, we have
673673
@@ -808,7 +808,7 @@ def gram_schmidt(X):
808808 U = np.empty((n, k))
809809 I = np.eye(n)
810810
811- # The first col of U is just the normalized first col of X
811+ # The first columns of U is just the normalized first columns of X
812812 v1 = X[:,0]
813813 U[:, 0] = v1 / np.sqrt(np.sum(v1 * v1))
814814
@@ -817,7 +817,7 @@ def gram_schmidt(X):
817817 b = X[:, i] # The vector we're going to project
818818 Z = X[:, 0:i] # First i-1 columns of X
819819
820- # Project onto the orthogonal complement of the col span of Z
820+ # Project onto the orthogonal complement of the columns span of Z
821821 M = I - Z @ np.linalg.inv(Z.T @ Z) @ Z.T
822822 u = M @ b
823823
0 commit comments