@@ -51,7 +51,7 @@ import matplotlib.pyplot as plt
5151from quantecon import DLE
5252```
5353
54- ## Common Structure
54+ ## Common structure
5555
5656Our example economies have the following features
5757
114114
115115and the scalar $\beta$.
116116
117- ## A Planning Problem
117+ ## A planning problem
118118
119119The first welfare theorem asserts that a competitive equilibrium
120120allocation solves the following planning problem.
191191x_{t+1} = A^ox_t + Cw_{t+1}
192192$$
193193
194- ## Example Economies
194+ ## Example economies
195195
196196Each of the example economies shown here will share a number of
197197components. In particular, for each we will consider preferences of the
@@ -389,7 +389,7 @@ print(econ1.css, econ1.iss, econ1.kss)
389389However, the near-unity endogenous eigenvalue means that these steady
390390state values are of little relevance.
391391
392- ### Example 2: Altered Growth Condition
392+ ### Example 2: altered growth condition
393393
394394We generate our next economy by making two alterations to the parameters
395395of Example 1.
@@ -460,7 +460,7 @@ than 1.
460460econ2.endo, econ2.exo
461461```
462462
463- ### Example 3: A Jones-Manuelli (1990) Economy
463+ ### Example 3: a Jones-Manuelli (1990) economy
464464
465465For our third economy, we choose parameter values with the aim of
466466generating * sustained* growth in consumption, investment and capital.
@@ -539,7 +539,7 @@ The other unit eigenvalue results from setting $\lambda = -1$.
539539To show the importance of both of these for generating growth, we
540540consider the following experiments.
541541
542- ### Example 3.1: Varying Sensitivity
542+ ### Example 3.1: varying sensitivity
543543
544544Next we raise $\lambda$ to -0.7
545545
@@ -566,7 +566,7 @@ eigenvalues is now less than 1.
566566econ4.endo, econ4.exo
567567```
568568
569- ### Example 3.2: More Impatience
569+ ### Example 3.2: more impatience
570570
571571Next let's lower $\beta$ to 0.94
572572
0 commit comments