@@ -520,7 +520,7 @@ In particular, assume that
520520:label: kf1&2
521521
522522\begin{aligned}
523- w_t & = \theta_t + e_t \label{kf1} \ \
523+ w_t & = \theta_t + e_t \\
524524 \theta_{t+1} & = \rho \theta_t + v_t
525525 \end{aligned}
526526```
@@ -684,14 +684,14 @@ industry $i$ receives a vector $w_t$ of *two* noisy signals
684684on $\theta_t$:
685685
686686$$
687- \begin{eqnarray* }
688- \theta_{t+1} & = & \rho\theta_{t}+v_{t} \label{kf20 } \\
689- w_{t} & = & \begin{bmatrix}1\\
687+ \begin{aligned }
688+ \theta_{t+1} & = \rho\theta_{t}+v_{t} \\
689+ w_{t} & = \begin{bmatrix}1 \\
6906901
691691\end{bmatrix}\theta_{t}+\begin{bmatrix}e_{1t} \\
692692e_{2t}
693- \end{bmatrix} \label{kf21}
694- \end{eqnarray* }
693+ \end{bmatrix}
694+ \end{aligned }
695695$$
696696
697697To justify that we are constructing is a ** pooling equilibrium** we can
@@ -833,15 +833,15 @@ We use the following representation for constructing the
833833` quantecon.LinearStateSpace ` instance.
834834
835835$$
836- \begin{eqnarray* }
836+ \begin{aligned }
837837\underbrace{\left[\begin{array}{c}
838838e_{t+1}\\
839839k_{t+1}^{i}\\
840840\tilde{\theta}_{t+1}\\
841841P_{t+1}\\
842842\theta_{t+1}\\
843843v_{t+1}
844- \end{array}\right]}_{x_{t+1}} & = & \underbrace{\left[\begin{array}{cccccc}
844+ \end{array}\right]}_{x_{t+1}} & = \underbrace{\left[\begin{array}{cccccc}
8458450 & 0 & 0 & 0 & 0 & 0\\
846846\frac{\kappa}{\lambda-\rho} & \tilde{\lambda} & \frac{-1}{\lambda-\rho}\frac{\kappa\sigma_{e}^{2}}{p} & 0 & \frac{\rho}{\lambda-\rho} & 0\\
847847-\kappa & 0 & \frac{\kappa\sigma_{e}^{2}}{p} & 0 & 0 & 1\\
@@ -870,7 +870,7 @@ z_{2,t+1}
870870P_{t}\\
871871e_{t}+\theta_{t}\\
872872e_{t}
873- \end{array}\right]}_{y_{t}} & = & \underbrace{\left[\begin{array}{cccccc}
873+ \end{array}\right]}_{y_{t}} & = \underbrace{\left[\begin{array}{cccccc}
8748740 & 0 & 0 & 1 & 0 & 0\\
8758751 & 0 & 0 & 0 & 1 & 0\\
8768761 & 0 & 0 & 0 & 0 & 0
@@ -890,9 +890,9 @@ v_{t}
890890z_{1,t+1}\\
891891z_{2,t+1}\\
892892w_{t+1}
893- \end{array}\right] & \sim & \mathcal{N}\left(0,I\right)\\
894- \kappa & = & \frac{\rho p}{p+\sigma_{e}^{2}}
895- \end{eqnarray* }
893+ \end{array}\right] & \sim \mathcal{N}\left(0,I\right)\\
894+ \kappa & = \frac{\rho p}{p+\sigma_{e}^{2}}
895+ \end{aligned }
896896$$
897897
898898This representation includes extraneous variables such as $P_ {t}$ in the
@@ -1097,7 +1097,7 @@ a firm receives in Townsend's original model.
10971097For this purpose, we include equilibrium goods prices from both industries appear in the state vector:
10981098
10991099$$
1100- \begin{eqnarray* }
1100+ \begin{aligned }
11011101\underbrace{\left[\begin{array}{c}
11021102e_{1,t+1}\\
11031103e_{2,t+1}\\
@@ -1107,7 +1107,7 @@ P_{t+1}^{1}\\
11071107P_{t+1}^{2}\\
11081108\theta_{t+1}\\
11091109v_{t+1}
1110- \end{array}\right]}_{x_{t+1}} & = & \underbrace{\left[\begin{array}{cccccccc}
1110+ \end{array}\right]}_{x_{t+1}} & = \underbrace{\left[\begin{array}{cccccccc}
111111110 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
111211120 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
11131113\frac{\kappa}{\lambda-\rho} & \frac{\kappa}{\lambda-\rho} & \tilde{\lambda} & \frac{-1}{\lambda-\rho}\frac{\kappa\sigma_{e}^{2}}{p} & 0 & 0 & \frac{\rho}{\lambda-\rho} & 0\\
@@ -1146,7 +1146,7 @@ e_{1,t}+\theta_{t}\\
11461146e_{2,t}+\theta_{t}\\
11471147e_{1,t}\\
11481148e_{2,t}
1149- \end{array}\right]}_{y_{t}} & = & \underbrace{\left[\begin{array}{cccccccc}
1149+ \end{array}\right]}_{y_{t}} & = \underbrace{\left[\begin{array}{cccccccc}
115011500 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\
115111510 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\
115211521 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\
@@ -1175,9 +1175,9 @@ z_{1,t+1}\\
11751175z_{2,t+1}\\
11761176z_{3,t+1}\\
11771177w_{t+1}
1178- \end{array}\right] & \sim & \mathcal{N}\left(0,I\right)\\
1179- \kappa & = & \frac{\rho p}{2p+\sigma_{e}^{2}}
1180- \end{eqnarray* }
1178+ \end{array}\right] & \sim \mathcal{N}\left(0,I\right)\\
1179+ \kappa & = \frac{\rho p}{2p+\sigma_{e}^{2}}
1180+ \end{aligned }
11811181$$
11821182
11831183``` {code-cell} python3
@@ -1387,17 +1387,17 @@ equilibrium hidden-state reconstruction error variance in the two-signal model:
13871387
13881388``` {code-cell} python3
13891389display(Latex('$\\textbf{Reconstruction error variances}$'))
1390- display(Latex(f'One-noise structure: $ {round(p_one, 6)}$ '))
1391- display(Latex(f'Two-noise structure: $ {round(p_two, 6)}$ '))
1390+ display(Latex(f'One-noise structure: {round(p_one, 6)}'))
1391+ display(Latex(f'Two-noise structure: {round(p_two, 6)}'))
13921392```
13931393
13941394Kalman gains for the two
13951395structures are
13961396
13971397``` {code-cell} python3
13981398display(Latex('$\\textbf{Kalman Gains}$'))
1399- display(Latex(f'One noisy-signal structure: $ {round(κ_one, 6)}$ '))
1400- display(Latex(f'Two noisy-signals structure: $ {round(κ_two, 6)}$ '))
1399+ display(Latex(f'One noisy-signal structure: {round(κ_one, 6)}'))
1400+ display(Latex(f'Two noisy-signals structure: {round(κ_two, 6)}'))
14011401```
14021402
14031403## Notes on History of the Problem
0 commit comments