Skip to content

Commit fd28089

Browse files
authored
changes in source knowing forecasts (#89)
1 parent 70278cc commit fd28089

File tree

1 file changed

+22
-22
lines changed

1 file changed

+22
-22
lines changed

lectures/knowing_forecasts_of_others.md

Lines changed: 22 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -520,7 +520,7 @@ In particular, assume that
520520
:label: kf1&2
521521
522522
\begin{aligned}
523-
w_t & = \theta_t + e_t \label{kf1} \\
523+
w_t & = \theta_t + e_t \\
524524
\theta_{t+1} & = \rho \theta_t + v_t
525525
\end{aligned}
526526
```
@@ -684,14 +684,14 @@ industry $i$ receives a vector $w_t$ of *two* noisy signals
684684
on $\theta_t$:
685685

686686
$$
687-
\begin{eqnarray*}
688-
\theta_{t+1} & = & \rho\theta_{t}+v_{t} \label{kf20} \\
689-
w_{t} & = & \begin{bmatrix}1\\
687+
\begin{aligned}
688+
\theta_{t+1} & = \rho\theta_{t}+v_{t} \\
689+
w_{t} & = \begin{bmatrix}1 \\
690690
1
691691
\end{bmatrix}\theta_{t}+\begin{bmatrix}e_{1t} \\
692692
e_{2t}
693-
\end{bmatrix} \label{kf21}
694-
\end{eqnarray*}
693+
\end{bmatrix}
694+
\end{aligned}
695695
$$
696696

697697
To justify that we are constructing is a **pooling equilibrium** we can
@@ -833,15 +833,15 @@ We use the following representation for constructing the
833833
`quantecon.LinearStateSpace` instance.
834834

835835
$$
836-
\begin{eqnarray*}
836+
\begin{aligned}
837837
\underbrace{\left[\begin{array}{c}
838838
e_{t+1}\\
839839
k_{t+1}^{i}\\
840840
\tilde{\theta}_{t+1}\\
841841
P_{t+1}\\
842842
\theta_{t+1}\\
843843
v_{t+1}
844-
\end{array}\right]}_{x_{t+1}} & = & \underbrace{\left[\begin{array}{cccccc}
844+
\end{array}\right]}_{x_{t+1}} & = \underbrace{\left[\begin{array}{cccccc}
845845
0 & 0 & 0 & 0 & 0 & 0\\
846846
\frac{\kappa}{\lambda-\rho} & \tilde{\lambda} & \frac{-1}{\lambda-\rho}\frac{\kappa\sigma_{e}^{2}}{p} & 0 & \frac{\rho}{\lambda-\rho} & 0\\
847847
-\kappa & 0 & \frac{\kappa\sigma_{e}^{2}}{p} & 0 & 0 & 1\\
@@ -870,7 +870,7 @@ z_{2,t+1}
870870
P_{t}\\
871871
e_{t}+\theta_{t}\\
872872
e_{t}
873-
\end{array}\right]}_{y_{t}} & = & \underbrace{\left[\begin{array}{cccccc}
873+
\end{array}\right]}_{y_{t}} & = \underbrace{\left[\begin{array}{cccccc}
874874
0 & 0 & 0 & 1 & 0 & 0\\
875875
1 & 0 & 0 & 0 & 1 & 0\\
876876
1 & 0 & 0 & 0 & 0 & 0
@@ -890,9 +890,9 @@ v_{t}
890890
z_{1,t+1}\\
891891
z_{2,t+1}\\
892892
w_{t+1}
893-
\end{array}\right] & \sim & \mathcal{N}\left(0,I\right)\\
894-
\kappa & = & \frac{\rho p}{p+\sigma_{e}^{2}}
895-
\end{eqnarray*}
893+
\end{array}\right] & \sim \mathcal{N}\left(0,I\right)\\
894+
\kappa & = \frac{\rho p}{p+\sigma_{e}^{2}}
895+
\end{aligned}
896896
$$
897897

898898
This representation includes extraneous variables such as $P_{t}$ in the
@@ -1097,7 +1097,7 @@ a firm receives in Townsend's original model.
10971097
For this purpose, we include equilibrium goods prices from both industries appear in the state vector:
10981098

10991099
$$
1100-
\begin{eqnarray*}
1100+
\begin{aligned}
11011101
\underbrace{\left[\begin{array}{c}
11021102
e_{1,t+1}\\
11031103
e_{2,t+1}\\
@@ -1107,7 +1107,7 @@ P_{t+1}^{1}\\
11071107
P_{t+1}^{2}\\
11081108
\theta_{t+1}\\
11091109
v_{t+1}
1110-
\end{array}\right]}_{x_{t+1}} & = & \underbrace{\left[\begin{array}{cccccccc}
1110+
\end{array}\right]}_{x_{t+1}} & = \underbrace{\left[\begin{array}{cccccccc}
11111111
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
11121112
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
11131113
\frac{\kappa}{\lambda-\rho} & \frac{\kappa}{\lambda-\rho} & \tilde{\lambda} & \frac{-1}{\lambda-\rho}\frac{\kappa\sigma_{e}^{2}}{p} & 0 & 0 & \frac{\rho}{\lambda-\rho} & 0\\
@@ -1146,7 +1146,7 @@ e_{1,t}+\theta_{t}\\
11461146
e_{2,t}+\theta_{t}\\
11471147
e_{1,t}\\
11481148
e_{2,t}
1149-
\end{array}\right]}_{y_{t}} & = & \underbrace{\left[\begin{array}{cccccccc}
1149+
\end{array}\right]}_{y_{t}} & = \underbrace{\left[\begin{array}{cccccccc}
11501150
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\
11511151
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\
11521152
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\
@@ -1175,9 +1175,9 @@ z_{1,t+1}\\
11751175
z_{2,t+1}\\
11761176
z_{3,t+1}\\
11771177
w_{t+1}
1178-
\end{array}\right] & \sim & \mathcal{N}\left(0,I\right)\\
1179-
\kappa & = & \frac{\rho p}{2p+\sigma_{e}^{2}}
1180-
\end{eqnarray*}
1178+
\end{array}\right] & \sim \mathcal{N}\left(0,I\right)\\
1179+
\kappa & = \frac{\rho p}{2p+\sigma_{e}^{2}}
1180+
\end{aligned}
11811181
$$
11821182

11831183
```{code-cell} python3
@@ -1387,17 +1387,17 @@ equilibrium hidden-state reconstruction error variance in the two-signal model:
13871387

13881388
```{code-cell} python3
13891389
display(Latex('$\\textbf{Reconstruction error variances}$'))
1390-
display(Latex(f'One-noise structure: ${round(p_one, 6)}$'))
1391-
display(Latex(f'Two-noise structure: ${round(p_two, 6)}$'))
1390+
display(Latex(f'One-noise structure: {round(p_one, 6)}'))
1391+
display(Latex(f'Two-noise structure: {round(p_two, 6)}'))
13921392
```
13931393

13941394
Kalman gains for the two
13951395
structures are
13961396

13971397
```{code-cell} python3
13981398
display(Latex('$\\textbf{Kalman Gains}$'))
1399-
display(Latex(f'One noisy-signal structure: ${round(κ_one, 6)}$'))
1400-
display(Latex(f'Two noisy-signals structure: ${round(κ_two, 6)}$'))
1399+
display(Latex(f'One noisy-signal structure: {round(κ_one, 6)}'))
1400+
display(Latex(f'Two noisy-signals structure: {round(κ_two, 6)}'))
14011401
```
14021402

14031403
## Notes on History of the Problem

0 commit comments

Comments
 (0)