diff --git a/lectures/lqramsey.md b/lectures/lqramsey.md index 4be84fa9..f370ccc6 100644 --- a/lectures/lqramsey.md +++ b/lectures/lqramsey.md @@ -3,8 +3,10 @@ jupytext: text_representation: extension: .md format_name: myst + format_version: 0.13 + jupytext_version: 1.16.7 kernelspec: - display_name: Python 3 + display_name: Python 3 (ipykernel) language: python name: python3 --- @@ -25,10 +27,9 @@ kernelspec: In addition to what's in Anaconda, this lecture will need the following libraries: -```{code-cell} ipython ---- -tags: [hide-output] ---- +```{code-cell} ipython3 +:tags: [hide-output] + !pip install --upgrade quantecon ``` @@ -73,7 +74,7 @@ We cover only the key features of the problem in this lecture, leaving you to re We'll need the following imports: -```{code-cell} ipython +```{code-cell} ipython3 import sys import numpy as np import matplotlib.pyplot as plt @@ -583,7 +584,7 @@ The following code provides functions for Description and clarifications are given below -```{code-cell} python3 +```{code-cell} ipython3 # Set up a namedtuple to store data on the model economy Economy = namedtuple('economy', ('β', # Discount factor @@ -694,7 +695,7 @@ def compute_paths(T, econ): a0 = 0.5 * (F @ (x_vals.T @ Sm.T)**2)[0] H = ((Sb - Sd + Sg) @ x_vals) * ((Sg - Ss) @ x_vals) b0 = 0.5 * (F @ H.T)[0] - a0, b0 = float(a0), float(b0) + a0, b0 = float(a0[0]), float(b0[0]) else: H = Sm.T @ Sm a0 = 0.5 * var_quadratic_sum(A, C, H, β, x0) @@ -889,7 +890,7 @@ with $\rho = 0.7$, $\mu_g = 0.35$ and $C_g = \mu_g \sqrt{1 - \rho^2} / 10$. Here's the code -```{code-cell} python3 +```{code-cell} ipython3 # == Parameters == # β = 1 / 1.05 ρ, mg = .7, .35 @@ -915,7 +916,7 @@ The legends on the figures indicate the variables being tracked. Most obvious from the figure is tax smoothing in the sense that tax revenue is much less variable than government expenditure. -```{code-cell} python3 +```{code-cell} ipython3 gen_fig_2(path) ``` @@ -931,7 +932,7 @@ See the original [manuscript](https://lectures.quantecon.org/_downloads/firenze. Our second example adopts a discrete Markov specification for the exogenous process -```{code-cell} python3 +```{code-cell} ipython3 # == Parameters == # β = 1 / 1.05 P = np.array([[0.8, 0.2, 0.0], @@ -961,7 +962,7 @@ gen_fig_1(path) The call `gen_fig_2(path)` generates -```{code-cell} python3 +```{code-cell} ipython3 gen_fig_2(path) ``` @@ -997,7 +998,7 @@ Produce the corresponding figures. :class: dropdown ``` -```{code-cell} python3 +```{code-cell} ipython3 # == Parameters == # β = 1 / 1.05 ρ, mg = .95, .35 @@ -1023,10 +1024,11 @@ path = compute_paths(T, economy) gen_fig_1(path) ``` -```{code-cell} python3 +```{code-cell} ipython3 gen_fig_2(path) ``` ```{solution-end} ``` + diff --git a/lectures/troubleshooting.md b/lectures/troubleshooting.md index f7fe0896..35b6dc57 100644 --- a/lectures/troubleshooting.md +++ b/lectures/troubleshooting.md @@ -65,7 +65,5 @@ One way to give feedback is to raise an issue through our [issue tracker](https: Please be as specific as possible. Tell us where the problem is and as much detail about your local set up as you can provide. -Another feedback option is to use our [discourse forum](https://discourse.quantecon.org/). - Finally, you can provide direct feedback to [contact@quantecon.org](mailto:contact@quantecon.org)