|
| 1 | +""" |
| 2 | +Hardware benchmark script for CI runners. |
| 3 | +Compares CPU and GPU performance to diagnose slowdowns. |
| 4 | +Works on both CPU-only (GitHub Actions) and GPU (RunsOn) runners. |
| 5 | +""" |
| 6 | +import time |
| 7 | +import platform |
| 8 | +import os |
| 9 | + |
| 10 | +def get_cpu_info(): |
| 11 | + """Get CPU information.""" |
| 12 | + print("=" * 60) |
| 13 | + print("SYSTEM INFORMATION") |
| 14 | + print("=" * 60) |
| 15 | + print(f"Platform: {platform.platform()}") |
| 16 | + print(f"Processor: {platform.processor()}") |
| 17 | + print(f"Python: {platform.python_version()}") |
| 18 | + |
| 19 | + # Try to get CPU frequency |
| 20 | + try: |
| 21 | + with open('/proc/cpuinfo', 'r') as f: |
| 22 | + for line in f: |
| 23 | + if 'model name' in line: |
| 24 | + print(f"CPU Model: {line.split(':')[1].strip()}") |
| 25 | + break |
| 26 | + except: |
| 27 | + pass |
| 28 | + |
| 29 | + # Try to get CPU frequency |
| 30 | + try: |
| 31 | + with open('/proc/cpuinfo', 'r') as f: |
| 32 | + for line in f: |
| 33 | + if 'cpu MHz' in line: |
| 34 | + print(f"CPU MHz: {line.split(':')[1].strip()}") |
| 35 | + break |
| 36 | + except: |
| 37 | + pass |
| 38 | + |
| 39 | + # CPU count |
| 40 | + print(f"CPU Count: {os.cpu_count()}") |
| 41 | + |
| 42 | + # Check for GPU |
| 43 | + try: |
| 44 | + import subprocess |
| 45 | + result = subprocess.run(['nvidia-smi', '--query-gpu=name,memory.total', '--format=csv,noheader'], |
| 46 | + capture_output=True, text=True, timeout=5) |
| 47 | + if result.returncode == 0: |
| 48 | + print(f"GPU: {result.stdout.strip()}") |
| 49 | + else: |
| 50 | + print("GPU: None detected") |
| 51 | + except: |
| 52 | + print("GPU: None detected (nvidia-smi not available)") |
| 53 | + |
| 54 | + print() |
| 55 | + |
| 56 | +def benchmark_cpu_pure_python(): |
| 57 | + """Pure Python CPU benchmark.""" |
| 58 | + print("=" * 60) |
| 59 | + print("CPU BENCHMARK: Pure Python") |
| 60 | + print("=" * 60) |
| 61 | + |
| 62 | + # Integer computation |
| 63 | + start = time.perf_counter() |
| 64 | + total = sum(i * i for i in range(10_000_000)) |
| 65 | + elapsed = time.perf_counter() - start |
| 66 | + print(f"Integer sum (10M iterations): {elapsed:.3f} seconds") |
| 67 | + |
| 68 | + # Float computation |
| 69 | + start = time.perf_counter() |
| 70 | + total = 0.0 |
| 71 | + for i in range(1_000_000): |
| 72 | + total += (i * 0.1) ** 0.5 |
| 73 | + elapsed = time.perf_counter() - start |
| 74 | + print(f"Float sqrt (1M iterations): {elapsed:.3f} seconds") |
| 75 | + print() |
| 76 | + |
| 77 | +def benchmark_cpu_numpy(): |
| 78 | + """NumPy CPU benchmark.""" |
| 79 | + import numpy as np |
| 80 | + |
| 81 | + print("=" * 60) |
| 82 | + print("CPU BENCHMARK: NumPy") |
| 83 | + print("=" * 60) |
| 84 | + |
| 85 | + # Matrix multiplication |
| 86 | + n = 3000 |
| 87 | + A = np.random.randn(n, n) |
| 88 | + B = np.random.randn(n, n) |
| 89 | + |
| 90 | + start = time.perf_counter() |
| 91 | + C = A @ B |
| 92 | + elapsed = time.perf_counter() - start |
| 93 | + print(f"Matrix multiply ({n}x{n}): {elapsed:.3f} seconds") |
| 94 | + |
| 95 | + # Element-wise operations |
| 96 | + x = np.random.randn(50_000_000) |
| 97 | + |
| 98 | + start = time.perf_counter() |
| 99 | + y = np.cos(x**2) + np.sin(x) |
| 100 | + elapsed = time.perf_counter() - start |
| 101 | + print(f"Element-wise ops (50M elements): {elapsed:.3f} seconds") |
| 102 | + print() |
| 103 | + |
| 104 | +def benchmark_gpu_jax(): |
| 105 | + """JAX benchmark (GPU if available, otherwise CPU).""" |
| 106 | + try: |
| 107 | + import jax |
| 108 | + import jax.numpy as jnp |
| 109 | + |
| 110 | + devices = jax.devices() |
| 111 | + default_backend = jax.default_backend() |
| 112 | + |
| 113 | + # Check if GPU is available |
| 114 | + has_gpu = any('cuda' in str(d).lower() or 'gpu' in str(d).lower() for d in devices) |
| 115 | + |
| 116 | + print("=" * 60) |
| 117 | + if has_gpu: |
| 118 | + print("JAX BENCHMARK: GPU") |
| 119 | + else: |
| 120 | + print("JAX BENCHMARK: CPU (no GPU detected)") |
| 121 | + print("=" * 60) |
| 122 | + |
| 123 | + print(f"JAX devices: {devices}") |
| 124 | + print(f"Default backend: {default_backend}") |
| 125 | + print(f"GPU Available: {has_gpu}") |
| 126 | + print() |
| 127 | + |
| 128 | + # Warm-up JIT compilation |
| 129 | + print("Warming up JIT compilation...") |
| 130 | + n = 1000 |
| 131 | + key = jax.random.PRNGKey(0) |
| 132 | + A = jax.random.normal(key, (n, n)) |
| 133 | + B = jax.random.normal(key, (n, n)) |
| 134 | + |
| 135 | + @jax.jit |
| 136 | + def matmul(a, b): |
| 137 | + return jnp.dot(a, b) |
| 138 | + |
| 139 | + # Warm-up run (includes compilation) |
| 140 | + start = time.perf_counter() |
| 141 | + C = matmul(A, B).block_until_ready() |
| 142 | + warmup_time = time.perf_counter() - start |
| 143 | + print(f"Warm-up (includes JIT compile, {n}x{n}): {warmup_time:.3f} seconds") |
| 144 | + |
| 145 | + # Actual benchmark (compiled) |
| 146 | + start = time.perf_counter() |
| 147 | + C = matmul(A, B).block_until_ready() |
| 148 | + elapsed = time.perf_counter() - start |
| 149 | + print(f"Matrix multiply compiled ({n}x{n}): {elapsed:.3f} seconds") |
| 150 | + |
| 151 | + # Larger matrix |
| 152 | + n = 3000 |
| 153 | + A = jax.random.normal(key, (n, n)) |
| 154 | + B = jax.random.normal(key, (n, n)) |
| 155 | + |
| 156 | + # Warm-up for new size |
| 157 | + start = time.perf_counter() |
| 158 | + C = matmul(A, B).block_until_ready() |
| 159 | + warmup_time = time.perf_counter() - start |
| 160 | + print(f"Warm-up (recompile for {n}x{n}): {warmup_time:.3f} seconds") |
| 161 | + |
| 162 | + # Benchmark compiled |
| 163 | + start = time.perf_counter() |
| 164 | + C = matmul(A, B).block_until_ready() |
| 165 | + elapsed = time.perf_counter() - start |
| 166 | + print(f"Matrix multiply compiled ({n}x{n}): {elapsed:.3f} seconds") |
| 167 | + |
| 168 | + # Element-wise GPU benchmark |
| 169 | + x = jax.random.normal(key, (50_000_000,)) |
| 170 | + |
| 171 | + @jax.jit |
| 172 | + def elementwise_ops(x): |
| 173 | + return jnp.cos(x**2) + jnp.sin(x) |
| 174 | + |
| 175 | + # Warm-up |
| 176 | + start = time.perf_counter() |
| 177 | + y = elementwise_ops(x).block_until_ready() |
| 178 | + warmup_time = time.perf_counter() - start |
| 179 | + print(f"Element-wise warm-up (50M): {warmup_time:.3f} seconds") |
| 180 | + |
| 181 | + # Compiled |
| 182 | + start = time.perf_counter() |
| 183 | + y = elementwise_ops(x).block_until_ready() |
| 184 | + elapsed = time.perf_counter() - start |
| 185 | + print(f"Element-wise compiled (50M): {elapsed:.3f} seconds") |
| 186 | + |
| 187 | + print() |
| 188 | + |
| 189 | + except ImportError as e: |
| 190 | + print(f"JAX not available: {e}") |
| 191 | + except Exception as e: |
| 192 | + print(f"JAX benchmark failed: {e}") |
| 193 | + |
| 194 | +def benchmark_numba(): |
| 195 | + """Numba CPU benchmark.""" |
| 196 | + try: |
| 197 | + import numba |
| 198 | + import numpy as np |
| 199 | + |
| 200 | + print("=" * 60) |
| 201 | + print("CPU BENCHMARK: Numba") |
| 202 | + print("=" * 60) |
| 203 | + |
| 204 | + @numba.jit(nopython=True) |
| 205 | + def numba_sum(n): |
| 206 | + total = 0 |
| 207 | + for i in range(n): |
| 208 | + total += i * i |
| 209 | + return total |
| 210 | + |
| 211 | + # Warm-up (compilation) |
| 212 | + start = time.perf_counter() |
| 213 | + result = numba_sum(10_000_000) |
| 214 | + warmup_time = time.perf_counter() - start |
| 215 | + print(f"Integer sum warm-up (includes compile): {warmup_time:.3f} seconds") |
| 216 | + |
| 217 | + # Compiled run |
| 218 | + start = time.perf_counter() |
| 219 | + result = numba_sum(10_000_000) |
| 220 | + elapsed = time.perf_counter() - start |
| 221 | + print(f"Integer sum compiled (10M): {elapsed:.3f} seconds") |
| 222 | + |
| 223 | + @numba.jit(nopython=True, parallel=True) |
| 224 | + def numba_parallel_sum(arr): |
| 225 | + total = 0.0 |
| 226 | + for i in numba.prange(len(arr)): |
| 227 | + total += arr[i] ** 2 |
| 228 | + return total |
| 229 | + |
| 230 | + arr = np.random.randn(50_000_000) |
| 231 | + |
| 232 | + # Warm-up |
| 233 | + start = time.perf_counter() |
| 234 | + result = numba_parallel_sum(arr) |
| 235 | + warmup_time = time.perf_counter() - start |
| 236 | + print(f"Parallel sum warm-up (50M): {warmup_time:.3f} seconds") |
| 237 | + |
| 238 | + # Compiled |
| 239 | + start = time.perf_counter() |
| 240 | + result = numba_parallel_sum(arr) |
| 241 | + elapsed = time.perf_counter() - start |
| 242 | + print(f"Parallel sum compiled (50M): {elapsed:.3f} seconds") |
| 243 | + |
| 244 | + print() |
| 245 | + |
| 246 | + except ImportError as e: |
| 247 | + print(f"Numba not available: {e}") |
| 248 | + except Exception as e: |
| 249 | + print(f"Numba benchmark failed: {e}") |
| 250 | + |
| 251 | +if __name__ == "__main__": |
| 252 | + print("\n" + "=" * 60) |
| 253 | + print("HARDWARE BENCHMARK FOR CI RUNNER") |
| 254 | + print("=" * 60 + "\n") |
| 255 | + |
| 256 | + get_cpu_info() |
| 257 | + benchmark_cpu_pure_python() |
| 258 | + benchmark_cpu_numpy() |
| 259 | + benchmark_numba() |
| 260 | + benchmark_gpu_jax() |
| 261 | + |
| 262 | + print("=" * 60) |
| 263 | + print("BENCHMARK COMPLETE") |
| 264 | + print("=" * 60) |
0 commit comments