Skip to content

Commit 13a3c05

Browse files
committed
deploy: 341ec14
1 parent a85e366 commit 13a3c05

File tree

93 files changed

+3635
-3633
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

93 files changed

+3635
-3633
lines changed

.buildinfo

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: 58751540f8e36d9bc3930cff3edafa9e
3+
config: e006c22a5a26fcb42101f827b641f2a6
44
tags: 645f666f9bcd5a90fca523b33c5a78b7
Binary file not shown.
32.2 KB
Loading
19.3 KB
Loading
Binary file not shown.
Binary file not shown.
19.1 KB
Loading
Binary file not shown.
13.6 KB
Loading

_notebooks/about_py.ipynb

Lines changed: 35 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "markdown",
5-
"id": "3e2c971d",
5+
"id": "bccdc720",
66
"metadata": {},
77
"source": [
88
"\n",
@@ -19,7 +19,7 @@
1919
},
2020
{
2121
"cell_type": "markdown",
22-
"id": "971fb999",
22+
"id": "22da50aa",
2323
"metadata": {},
2424
"source": [
2525
"# About These Lectures\n",
@@ -31,7 +31,7 @@
3131
},
3232
{
3333
"cell_type": "markdown",
34-
"id": "5901c54f",
34+
"id": "641434b6",
3535
"metadata": {},
3636
"source": [
3737
"## Overview\n",
@@ -55,7 +55,7 @@
5555
},
5656
{
5757
"cell_type": "markdown",
58-
"id": "29bf6bc0",
58+
"id": "c29f395f",
5959
"metadata": {},
6060
"source": [
6161
"### Can’t I Just Use LLMs?\n",
@@ -79,7 +79,7 @@
7979
},
8080
{
8181
"cell_type": "markdown",
82-
"id": "fb3a5c5f",
82+
"id": "463193b8",
8383
"metadata": {},
8484
"source": [
8585
"### Isn’t MATLAB Better?\n",
@@ -102,7 +102,7 @@
102102
},
103103
{
104104
"cell_type": "markdown",
105-
"id": "7f03e393",
105+
"id": "71fa4501",
106106
"metadata": {},
107107
"source": [
108108
"## Introducing Python\n",
@@ -120,7 +120,7 @@
120120
},
121121
{
122122
"cell_type": "markdown",
123-
"id": "44965c89",
123+
"id": "64ba0f87",
124124
"metadata": {},
125125
"source": [
126126
"### Common Uses\n",
@@ -152,7 +152,7 @@
152152
},
153153
{
154154
"cell_type": "markdown",
155-
"id": "c24661a2",
155+
"id": "7d53dcb9",
156156
"metadata": {},
157157
"source": [
158158
"### Relative Popularity\n",
@@ -175,7 +175,7 @@
175175
},
176176
{
177177
"cell_type": "markdown",
178-
"id": "1df39b8e",
178+
"id": "775ba724",
179179
"metadata": {},
180180
"source": [
181181
"### Features\n",
@@ -193,7 +193,7 @@
193193
},
194194
{
195195
"cell_type": "markdown",
196-
"id": "ed1b530a",
196+
"id": "0d76993e",
197197
"metadata": {},
198198
"source": [
199199
"### Syntax and Design\n",
@@ -211,7 +211,7 @@
211211
},
212212
{
213213
"cell_type": "markdown",
214-
"id": "affbed36",
214+
"id": "71cf4983",
215215
"metadata": {
216216
"hide-output": false
217217
},
@@ -269,7 +269,7 @@
269269
},
270270
{
271271
"cell_type": "markdown",
272-
"id": "fd15b7cc",
272+
"id": "ced3f595",
273273
"metadata": {},
274274
"source": [
275275
"This Java code opens an imaginary file called `data.csv` and computes the mean\n",
@@ -283,7 +283,7 @@
283283
{
284284
"cell_type": "code",
285285
"execution_count": null,
286-
"id": "105e0f19",
286+
"id": "873c4b4e",
287287
"metadata": {
288288
"hide-output": false
289289
},
@@ -305,7 +305,7 @@
305305
},
306306
{
307307
"cell_type": "markdown",
308-
"id": "18a6780f",
308+
"id": "e2c5c88f",
309309
"metadata": {},
310310
"source": [
311311
"### The AI Connection\n",
@@ -327,7 +327,7 @@
327327
},
328328
{
329329
"cell_type": "markdown",
330-
"id": "c26027ac",
330+
"id": "061134e9",
331331
"metadata": {},
332332
"source": [
333333
"## Scientific Programming with Python\n",
@@ -354,7 +354,7 @@
354354
},
355355
{
356356
"cell_type": "markdown",
357-
"id": "5e47162e",
357+
"id": "2f5503f7",
358358
"metadata": {},
359359
"source": [
360360
"### NumPy\n",
@@ -371,7 +371,7 @@
371371
{
372372
"cell_type": "code",
373373
"execution_count": null,
374-
"id": "bda364c9",
374+
"id": "fa1bae38",
375375
"metadata": {
376376
"hide-output": false
377377
},
@@ -383,7 +383,7 @@
383383
},
384384
{
385385
"cell_type": "markdown",
386-
"id": "d6c313d0",
386+
"id": "f0366d3b",
387387
"metadata": {},
388388
"source": [
389389
"This array is very small so it’s fine to work with pure Python.\n",
@@ -393,15 +393,15 @@
393393
"For this we need to use libraries for working with arrays.\n",
394394
"\n",
395395
"For Python, the most important matrix and array processing library is\n",
396-
"[NumPy](https://www.numpy.org/) library.\n",
396+
"[NumPy](https://numpy.org/) library.\n",
397397
"\n",
398398
"For example, let’s build a NumPy array with 100 elements"
399399
]
400400
},
401401
{
402402
"cell_type": "code",
403403
"execution_count": null,
404-
"id": "c956f0af",
404+
"id": "2eea9a64",
405405
"metadata": {
406406
"hide-output": false
407407
},
@@ -415,7 +415,7 @@
415415
},
416416
{
417417
"cell_type": "markdown",
418-
"id": "9a9cf553",
418+
"id": "3a5bc551",
419419
"metadata": {},
420420
"source": [
421421
"Now let’s transform this array by applying functions to it."
@@ -424,7 +424,7 @@
424424
{
425425
"cell_type": "code",
426426
"execution_count": null,
427-
"id": "a4b5d512",
427+
"id": "453f0473",
428428
"metadata": {
429429
"hide-output": false
430430
},
@@ -436,7 +436,7 @@
436436
},
437437
{
438438
"cell_type": "markdown",
439-
"id": "64c9d73e",
439+
"id": "32e7da1e",
440440
"metadata": {},
441441
"source": [
442442
"Now we can easily take the inner product of `b` and `c`."
@@ -445,7 +445,7 @@
445445
{
446446
"cell_type": "code",
447447
"execution_count": null,
448-
"id": "9e109f70",
448+
"id": "55ec7c76",
449449
"metadata": {
450450
"hide-output": false
451451
},
@@ -456,7 +456,7 @@
456456
},
457457
{
458458
"cell_type": "markdown",
459-
"id": "d5cc8859",
459+
"id": "d30ae172",
460460
"metadata": {},
461461
"source": [
462462
"We can also do many other tasks, like\n",
@@ -471,7 +471,7 @@
471471
},
472472
{
473473
"cell_type": "markdown",
474-
"id": "57983fe5",
474+
"id": "69e18595",
475475
"metadata": {},
476476
"source": [
477477
"### NumPy Alternatives\n",
@@ -497,12 +497,12 @@
497497
},
498498
{
499499
"cell_type": "markdown",
500-
"id": "c6f120f0",
500+
"id": "308ba2d8",
501501
"metadata": {},
502502
"source": [
503503
"### SciPy\n",
504504
"\n",
505-
"The [SciPy](https://www.scipy.org) library is built on top of NumPy and provides additional functionality.\n",
505+
"The [SciPy](https://scipy.org/) library is built on top of NumPy and provides additional functionality.\n",
506506
"\n",
507507
"\n",
508508
"<a id='tuple-unpacking-example'></a>\n",
@@ -512,7 +512,7 @@
512512
{
513513
"cell_type": "code",
514514
"execution_count": null,
515-
"id": "1c86ba4a",
515+
"id": "4bd7721c",
516516
"metadata": {
517517
"hide-output": false
518518
},
@@ -528,7 +528,7 @@
528528
},
529529
{
530530
"cell_type": "markdown",
531-
"id": "ca9e5693",
531+
"id": "8b5b1059",
532532
"metadata": {},
533533
"source": [
534534
"SciPy includes many of the standard routines used in\n",
@@ -548,7 +548,7 @@
548548
},
549549
{
550550
"cell_type": "markdown",
551-
"id": "904ce964",
551+
"id": "6023eeba",
552552
"metadata": {},
553553
"source": [
554554
"### Graphics\n",
@@ -594,7 +594,7 @@
594594
},
595595
{
596596
"cell_type": "markdown",
597-
"id": "61cd6440",
597+
"id": "4450ddc5",
598598
"metadata": {},
599599
"source": [
600600
"### Networks and Graphs\n",
@@ -628,7 +628,7 @@
628628
{
629629
"cell_type": "code",
630630
"execution_count": null,
631-
"id": "147d60a1",
631+
"id": "5d551c5b",
632632
"metadata": {
633633
"hide-output": false
634634
},
@@ -663,7 +663,7 @@
663663
},
664664
{
665665
"cell_type": "markdown",
666-
"id": "fbc87b65",
666+
"id": "ff6f395e",
667667
"metadata": {},
668668
"source": [
669669
"### Other Scientific Libraries\n",
@@ -698,7 +698,7 @@
698698
}
699699
],
700700
"metadata": {
701-
"date": 1756348328.8648312,
701+
"date": 1756362393.2715633,
702702
"filename": "about_py.md",
703703
"kernelspec": {
704704
"display_name": "Python",

0 commit comments

Comments
 (0)