Skip to content

Commit 61ab3cf

Browse files
committed
deploy: 4f25b05
1 parent d33f76d commit 61ab3cf

File tree

88 files changed

+6155
-3893
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

88 files changed

+6155
-3893
lines changed

.buildinfo

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: e006c22a5a26fcb42101f827b641f2a6
3+
config: 57d298bffe94eddeead2dae3d884f4bc
44
tags: 645f666f9bcd5a90fca523b33c5a78b7
13.6 KB
Loading
Binary file not shown.
31.4 KB
Loading
Binary file not shown.

_notebooks/about_py.ipynb

Lines changed: 33 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "markdown",
5-
"id": "299b83d2",
5+
"id": "e627cfbd",
66
"metadata": {},
77
"source": [
88
"\n",
@@ -19,7 +19,7 @@
1919
},
2020
{
2121
"cell_type": "markdown",
22-
"id": "d9b29395",
22+
"id": "3aee5e42",
2323
"metadata": {},
2424
"source": [
2525
"# About These Lectures\n",
@@ -31,7 +31,7 @@
3131
},
3232
{
3333
"cell_type": "markdown",
34-
"id": "ee7984a9",
34+
"id": "fbc33cd8",
3535
"metadata": {},
3636
"source": [
3737
"## Overview\n",
@@ -55,7 +55,7 @@
5555
},
5656
{
5757
"cell_type": "markdown",
58-
"id": "204c3495",
58+
"id": "b0a03c77",
5959
"metadata": {},
6060
"source": [
6161
"### Can’t I Just Use LLMs?\n",
@@ -79,7 +79,7 @@
7979
},
8080
{
8181
"cell_type": "markdown",
82-
"id": "0f1a1cf2",
82+
"id": "b976772f",
8383
"metadata": {},
8484
"source": [
8585
"### Isn’t MATLAB Better?\n",
@@ -102,7 +102,7 @@
102102
},
103103
{
104104
"cell_type": "markdown",
105-
"id": "1866c1c3",
105+
"id": "64446acd",
106106
"metadata": {},
107107
"source": [
108108
"## Introducing Python\n",
@@ -120,7 +120,7 @@
120120
},
121121
{
122122
"cell_type": "markdown",
123-
"id": "b19209f5",
123+
"id": "7e9549c4",
124124
"metadata": {},
125125
"source": [
126126
"### Common Uses\n",
@@ -152,7 +152,7 @@
152152
},
153153
{
154154
"cell_type": "markdown",
155-
"id": "d33d0109",
155+
"id": "18829d1c",
156156
"metadata": {},
157157
"source": [
158158
"### Relative Popularity\n",
@@ -175,7 +175,7 @@
175175
},
176176
{
177177
"cell_type": "markdown",
178-
"id": "e0dc0c80",
178+
"id": "5ccaa579",
179179
"metadata": {},
180180
"source": [
181181
"### Features\n",
@@ -193,7 +193,7 @@
193193
},
194194
{
195195
"cell_type": "markdown",
196-
"id": "0ddfe742",
196+
"id": "2c309971",
197197
"metadata": {},
198198
"source": [
199199
"### Syntax and Design\n",
@@ -211,7 +211,7 @@
211211
},
212212
{
213213
"cell_type": "markdown",
214-
"id": "76f9d4b7",
214+
"id": "aaf8bb3d",
215215
"metadata": {
216216
"hide-output": false
217217
},
@@ -269,7 +269,7 @@
269269
},
270270
{
271271
"cell_type": "markdown",
272-
"id": "cd07e078",
272+
"id": "5cc142db",
273273
"metadata": {},
274274
"source": [
275275
"This Java code opens an imaginary file called `data.csv` and computes the mean\n",
@@ -283,7 +283,7 @@
283283
{
284284
"cell_type": "code",
285285
"execution_count": null,
286-
"id": "e54e7f5a",
286+
"id": "1f4c6f0e",
287287
"metadata": {
288288
"hide-output": false
289289
},
@@ -305,7 +305,7 @@
305305
},
306306
{
307307
"cell_type": "markdown",
308-
"id": "c570d66c",
308+
"id": "a5818c4f",
309309
"metadata": {},
310310
"source": [
311311
"### The AI Connection\n",
@@ -327,7 +327,7 @@
327327
},
328328
{
329329
"cell_type": "markdown",
330-
"id": "810b9edc",
330+
"id": "cbfdfc35",
331331
"metadata": {},
332332
"source": [
333333
"## Scientific Programming with Python\n",
@@ -354,7 +354,7 @@
354354
},
355355
{
356356
"cell_type": "markdown",
357-
"id": "7ccf0794",
357+
"id": "882534ac",
358358
"metadata": {},
359359
"source": [
360360
"### NumPy\n",
@@ -371,7 +371,7 @@
371371
{
372372
"cell_type": "code",
373373
"execution_count": null,
374-
"id": "b01ab099",
374+
"id": "ef736bd4",
375375
"metadata": {
376376
"hide-output": false
377377
},
@@ -383,7 +383,7 @@
383383
},
384384
{
385385
"cell_type": "markdown",
386-
"id": "09c5c59a",
386+
"id": "5f5a9723",
387387
"metadata": {},
388388
"source": [
389389
"This array is very small so it’s fine to work with pure Python.\n",
@@ -401,7 +401,7 @@
401401
{
402402
"cell_type": "code",
403403
"execution_count": null,
404-
"id": "95ca5acf",
404+
"id": "a51666d2",
405405
"metadata": {
406406
"hide-output": false
407407
},
@@ -415,7 +415,7 @@
415415
},
416416
{
417417
"cell_type": "markdown",
418-
"id": "740da7df",
418+
"id": "5a82aec9",
419419
"metadata": {},
420420
"source": [
421421
"Now let’s transform this array by applying functions to it."
@@ -424,7 +424,7 @@
424424
{
425425
"cell_type": "code",
426426
"execution_count": null,
427-
"id": "0222da6a",
427+
"id": "6be857e7",
428428
"metadata": {
429429
"hide-output": false
430430
},
@@ -436,7 +436,7 @@
436436
},
437437
{
438438
"cell_type": "markdown",
439-
"id": "348f61e9",
439+
"id": "f72c59ef",
440440
"metadata": {},
441441
"source": [
442442
"Now we can easily take the inner product of `b` and `c`."
@@ -445,7 +445,7 @@
445445
{
446446
"cell_type": "code",
447447
"execution_count": null,
448-
"id": "af183b73",
448+
"id": "ef708946",
449449
"metadata": {
450450
"hide-output": false
451451
},
@@ -456,7 +456,7 @@
456456
},
457457
{
458458
"cell_type": "markdown",
459-
"id": "6524a9f4",
459+
"id": "ae80a8a0",
460460
"metadata": {},
461461
"source": [
462462
"We can also do many other tasks, like\n",
@@ -471,7 +471,7 @@
471471
},
472472
{
473473
"cell_type": "markdown",
474-
"id": "4ae23efe",
474+
"id": "00600caf",
475475
"metadata": {},
476476
"source": [
477477
"### NumPy Alternatives\n",
@@ -497,7 +497,7 @@
497497
},
498498
{
499499
"cell_type": "markdown",
500-
"id": "3d4ff868",
500+
"id": "1606acfd",
501501
"metadata": {},
502502
"source": [
503503
"### SciPy\n",
@@ -512,7 +512,7 @@
512512
{
513513
"cell_type": "code",
514514
"execution_count": null,
515-
"id": "91c9ecf7",
515+
"id": "0cdcfd34",
516516
"metadata": {
517517
"hide-output": false
518518
},
@@ -528,7 +528,7 @@
528528
},
529529
{
530530
"cell_type": "markdown",
531-
"id": "44598e2f",
531+
"id": "688df24e",
532532
"metadata": {},
533533
"source": [
534534
"SciPy includes many of the standard routines used in\n",
@@ -548,7 +548,7 @@
548548
},
549549
{
550550
"cell_type": "markdown",
551-
"id": "c5bc9c87",
551+
"id": "88fec8b0",
552552
"metadata": {},
553553
"source": [
554554
"### Graphics\n",
@@ -594,7 +594,7 @@
594594
},
595595
{
596596
"cell_type": "markdown",
597-
"id": "5933259d",
597+
"id": "83a413d3",
598598
"metadata": {},
599599
"source": [
600600
"### Networks and Graphs\n",
@@ -628,7 +628,7 @@
628628
{
629629
"cell_type": "code",
630630
"execution_count": null,
631-
"id": "702b36ba",
631+
"id": "1c089ad9",
632632
"metadata": {
633633
"hide-output": false
634634
},
@@ -663,7 +663,7 @@
663663
},
664664
{
665665
"cell_type": "markdown",
666-
"id": "2840d363",
666+
"id": "382e6e2c",
667667
"metadata": {},
668668
"source": [
669669
"### Other Scientific Libraries\n",
@@ -698,7 +698,7 @@
698698
}
699699
],
700700
"metadata": {
701-
"date": 1763777710.9840705,
701+
"date": 1763884022.4286826,
702702
"filename": "about_py.md",
703703
"kernelspec": {
704704
"display_name": "Python",

0 commit comments

Comments
 (0)