|
2 | 2 | "cells": [ |
3 | 3 | { |
4 | 4 | "cell_type": "markdown", |
5 | | - "id": "06337e27", |
| 5 | + "id": "f2814124", |
6 | 6 | "metadata": {}, |
7 | 7 | "source": [ |
8 | 8 | "\n", |
|
19 | 19 | }, |
20 | 20 | { |
21 | 21 | "cell_type": "markdown", |
22 | | - "id": "535b4205", |
| 22 | + "id": "0d2d5a90", |
23 | 23 | "metadata": {}, |
24 | 24 | "source": [ |
25 | 25 | "# About These Lectures\n", |
|
31 | 31 | }, |
32 | 32 | { |
33 | 33 | "cell_type": "markdown", |
34 | | - "id": "6ce80200", |
| 34 | + "id": "ae7cbd53", |
35 | 35 | "metadata": {}, |
36 | 36 | "source": [ |
37 | 37 | "## Overview\n", |
|
55 | 55 | }, |
56 | 56 | { |
57 | 57 | "cell_type": "markdown", |
58 | | - "id": "5f5f26f8", |
| 58 | + "id": "39dcb6d0", |
59 | 59 | "metadata": {}, |
60 | 60 | "source": [ |
61 | 61 | "### Can’t I Just Use ChatGPT?\n", |
|
77 | 77 | }, |
78 | 78 | { |
79 | 79 | "cell_type": "markdown", |
80 | | - "id": "6f33e126", |
| 80 | + "id": "414660c1", |
81 | 81 | "metadata": {}, |
82 | 82 | "source": [ |
83 | 83 | "### Isn’t MATLAB Better?\n", |
|
96 | 96 | }, |
97 | 97 | { |
98 | 98 | "cell_type": "markdown", |
99 | | - "id": "1aca5bb8", |
| 99 | + "id": "52b5adee", |
100 | 100 | "metadata": {}, |
101 | 101 | "source": [ |
102 | 102 | "## What’s Python?\n", |
|
114 | 114 | }, |
115 | 115 | { |
116 | 116 | "cell_type": "markdown", |
117 | | - "id": "50998d5f", |
| 117 | + "id": "09b5c274", |
118 | 118 | "metadata": {}, |
119 | 119 | "source": [ |
120 | 120 | "### Common Uses\n", |
|
146 | 146 | }, |
147 | 147 | { |
148 | 148 | "cell_type": "markdown", |
149 | | - "id": "745a94ad", |
| 149 | + "id": "210aec9c", |
150 | 150 | "metadata": {}, |
151 | 151 | "source": [ |
152 | 152 | "### Relative Popularity\n", |
|
171 | 171 | }, |
172 | 172 | { |
173 | 173 | "cell_type": "markdown", |
174 | | - "id": "acfaea52", |
| 174 | + "id": "2a4e1225", |
175 | 175 | "metadata": {}, |
176 | 176 | "source": [ |
177 | 177 | "### Features\n", |
|
196 | 196 | }, |
197 | 197 | { |
198 | 198 | "cell_type": "markdown", |
199 | | - "id": "783cafe3", |
| 199 | + "id": "10d9b58b", |
200 | 200 | "metadata": {}, |
201 | 201 | "source": [ |
202 | 202 | "### Syntax and Design\n", |
|
214 | 214 | }, |
215 | 215 | { |
216 | 216 | "cell_type": "markdown", |
217 | | - "id": "823ec05d", |
| 217 | + "id": "1592a0c2", |
218 | 218 | "metadata": { |
219 | 219 | "hide-output": false |
220 | 220 | }, |
|
272 | 272 | }, |
273 | 273 | { |
274 | 274 | "cell_type": "markdown", |
275 | | - "id": "9a7c4d52", |
| 275 | + "id": "d2d3d147", |
276 | 276 | "metadata": {}, |
277 | 277 | "source": [ |
278 | 278 | "This Java code opens an imaginary file called `data.csv` and computes the mean\n", |
|
289 | 289 | { |
290 | 290 | "cell_type": "code", |
291 | 291 | "execution_count": null, |
292 | | - "id": "55fa263a", |
| 292 | + "id": "3af7fcbb", |
293 | 293 | "metadata": { |
294 | 294 | "hide-output": false |
295 | 295 | }, |
|
311 | 311 | }, |
312 | 312 | { |
313 | 313 | "cell_type": "markdown", |
314 | | - "id": "9b7caf82", |
| 314 | + "id": "03b8c0f6", |
315 | 315 | "metadata": {}, |
316 | 316 | "source": [ |
317 | 317 | "The simplicity of Python and its neat design are a big factor in its popularity." |
318 | 318 | ] |
319 | 319 | }, |
320 | 320 | { |
321 | 321 | "cell_type": "markdown", |
322 | | - "id": "7efd87e9", |
| 322 | + "id": "db2232ff", |
323 | 323 | "metadata": {}, |
324 | 324 | "source": [ |
325 | 325 | "### The AI Connection\n", |
|
346 | 346 | }, |
347 | 347 | { |
348 | 348 | "cell_type": "markdown", |
349 | | - "id": "5412bd7d", |
| 349 | + "id": "b4e21900", |
350 | 350 | "metadata": {}, |
351 | 351 | "source": [ |
352 | 352 | "## Scientific Programming with Python\n", |
|
375 | 375 | }, |
376 | 376 | { |
377 | 377 | "cell_type": "markdown", |
378 | | - "id": "432b7fd4", |
| 378 | + "id": "242b96e3", |
379 | 379 | "metadata": {}, |
380 | 380 | "source": [ |
381 | 381 | "### NumPy\n", |
|
392 | 392 | { |
393 | 393 | "cell_type": "code", |
394 | 394 | "execution_count": null, |
395 | | - "id": "4e345eca", |
| 395 | + "id": "8826eec3", |
396 | 396 | "metadata": { |
397 | 397 | "hide-output": false |
398 | 398 | }, |
|
404 | 404 | }, |
405 | 405 | { |
406 | 406 | "cell_type": "markdown", |
407 | | - "id": "6f0800fc", |
| 407 | + "id": "46c6bd14", |
408 | 408 | "metadata": {}, |
409 | 409 | "source": [ |
410 | 410 | "This array is very small so it’s fine to work with pure Python.\n", |
|
422 | 422 | { |
423 | 423 | "cell_type": "code", |
424 | 424 | "execution_count": null, |
425 | | - "id": "c5d2e7d2", |
| 425 | + "id": "7f0cdd46", |
426 | 426 | "metadata": { |
427 | 427 | "hide-output": false |
428 | 428 | }, |
|
436 | 436 | }, |
437 | 437 | { |
438 | 438 | "cell_type": "markdown", |
439 | | - "id": "14543427", |
| 439 | + "id": "134dbf25", |
440 | 440 | "metadata": {}, |
441 | 441 | "source": [ |
442 | 442 | "Now let’s transform this array by applying functions to it." |
|
445 | 445 | { |
446 | 446 | "cell_type": "code", |
447 | 447 | "execution_count": null, |
448 | | - "id": "aed0d2a1", |
| 448 | + "id": "8bf176e7", |
449 | 449 | "metadata": { |
450 | 450 | "hide-output": false |
451 | 451 | }, |
|
457 | 457 | }, |
458 | 458 | { |
459 | 459 | "cell_type": "markdown", |
460 | | - "id": "c2cb36d1", |
| 460 | + "id": "b02176f6", |
461 | 461 | "metadata": {}, |
462 | 462 | "source": [ |
463 | 463 | "Now we can easily take the inner product of `b` and `c`." |
|
466 | 466 | { |
467 | 467 | "cell_type": "code", |
468 | 468 | "execution_count": null, |
469 | | - "id": "f07ffe92", |
| 469 | + "id": "e129418b", |
470 | 470 | "metadata": { |
471 | 471 | "hide-output": false |
472 | 472 | }, |
|
477 | 477 | }, |
478 | 478 | { |
479 | 479 | "cell_type": "markdown", |
480 | | - "id": "c0359cf7", |
| 480 | + "id": "1e864b03", |
481 | 481 | "metadata": {}, |
482 | 482 | "source": [ |
483 | 483 | "We can also do many other tasks, like\n", |
|
492 | 492 | }, |
493 | 493 | { |
494 | 494 | "cell_type": "markdown", |
495 | | - "id": "dd3d20b8", |
| 495 | + "id": "2b3b6473", |
496 | 496 | "metadata": {}, |
497 | 497 | "source": [ |
498 | 498 | "### NumPy Alternatives\n", |
|
515 | 515 | }, |
516 | 516 | { |
517 | 517 | "cell_type": "markdown", |
518 | | - "id": "f175e3be", |
| 518 | + "id": "ef8d6c30", |
519 | 519 | "metadata": {}, |
520 | 520 | "source": [ |
521 | 521 | "### SciPy\n", |
|
530 | 530 | { |
531 | 531 | "cell_type": "code", |
532 | 532 | "execution_count": null, |
533 | | - "id": "d355f0b9", |
| 533 | + "id": "b9f13426", |
534 | 534 | "metadata": { |
535 | 535 | "hide-output": false |
536 | 536 | }, |
|
546 | 546 | }, |
547 | 547 | { |
548 | 548 | "cell_type": "markdown", |
549 | | - "id": "2d79d288", |
| 549 | + "id": "e3bac800", |
550 | 550 | "metadata": {}, |
551 | 551 | "source": [ |
552 | 552 | "SciPy includes many of the standard routines used in\n", |
|
566 | 566 | }, |
567 | 567 | { |
568 | 568 | "cell_type": "markdown", |
569 | | - "id": "0bc4bea0", |
| 569 | + "id": "0ca3efdd", |
570 | 570 | "metadata": {}, |
571 | 571 | "source": [ |
572 | 572 | "### Graphics\n", |
|
612 | 612 | }, |
613 | 613 | { |
614 | 614 | "cell_type": "markdown", |
615 | | - "id": "7b8d24bd", |
| 615 | + "id": "1e95e695", |
616 | 616 | "metadata": {}, |
617 | 617 | "source": [ |
618 | 618 | "### Networks and Graphs\n", |
|
648 | 648 | { |
649 | 649 | "cell_type": "code", |
650 | 650 | "execution_count": null, |
651 | | - "id": "2d3cd715", |
| 651 | + "id": "f597df40", |
652 | 652 | "metadata": { |
653 | 653 | "hide-output": false |
654 | 654 | }, |
|
683 | 683 | }, |
684 | 684 | { |
685 | 685 | "cell_type": "markdown", |
686 | | - "id": "52cb77ee", |
| 686 | + "id": "b262269e", |
687 | 687 | "metadata": {}, |
688 | 688 | "source": [ |
689 | 689 | "### Other Scientific Libraries\n", |
|
718 | 718 | } |
719 | 719 | ], |
720 | 720 | "metadata": { |
721 | | - "date": 1741667555.2308238, |
| 721 | + "date": 1741668125.8724172, |
722 | 722 | "filename": "about_py.md", |
723 | 723 | "kernelspec": { |
724 | 724 | "display_name": "Python", |
|
0 commit comments