Skip to content

Commit a9cdec4

Browse files
committed
deploy: 65e3b70
1 parent bb75a51 commit a9cdec4

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

51 files changed

+3223
-3223
lines changed

_notebooks/about_py.ipynb

Lines changed: 34 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "markdown",
5-
"id": "06337e27",
5+
"id": "f2814124",
66
"metadata": {},
77
"source": [
88
"\n",
@@ -19,7 +19,7 @@
1919
},
2020
{
2121
"cell_type": "markdown",
22-
"id": "535b4205",
22+
"id": "0d2d5a90",
2323
"metadata": {},
2424
"source": [
2525
"# About These Lectures\n",
@@ -31,7 +31,7 @@
3131
},
3232
{
3333
"cell_type": "markdown",
34-
"id": "6ce80200",
34+
"id": "ae7cbd53",
3535
"metadata": {},
3636
"source": [
3737
"## Overview\n",
@@ -55,7 +55,7 @@
5555
},
5656
{
5757
"cell_type": "markdown",
58-
"id": "5f5f26f8",
58+
"id": "39dcb6d0",
5959
"metadata": {},
6060
"source": [
6161
"### Can’t I Just Use ChatGPT?\n",
@@ -77,7 +77,7 @@
7777
},
7878
{
7979
"cell_type": "markdown",
80-
"id": "6f33e126",
80+
"id": "414660c1",
8181
"metadata": {},
8282
"source": [
8383
"### Isn’t MATLAB Better?\n",
@@ -96,7 +96,7 @@
9696
},
9797
{
9898
"cell_type": "markdown",
99-
"id": "1aca5bb8",
99+
"id": "52b5adee",
100100
"metadata": {},
101101
"source": [
102102
"## What’s Python?\n",
@@ -114,7 +114,7 @@
114114
},
115115
{
116116
"cell_type": "markdown",
117-
"id": "50998d5f",
117+
"id": "09b5c274",
118118
"metadata": {},
119119
"source": [
120120
"### Common Uses\n",
@@ -146,7 +146,7 @@
146146
},
147147
{
148148
"cell_type": "markdown",
149-
"id": "745a94ad",
149+
"id": "210aec9c",
150150
"metadata": {},
151151
"source": [
152152
"### Relative Popularity\n",
@@ -171,7 +171,7 @@
171171
},
172172
{
173173
"cell_type": "markdown",
174-
"id": "acfaea52",
174+
"id": "2a4e1225",
175175
"metadata": {},
176176
"source": [
177177
"### Features\n",
@@ -196,7 +196,7 @@
196196
},
197197
{
198198
"cell_type": "markdown",
199-
"id": "783cafe3",
199+
"id": "10d9b58b",
200200
"metadata": {},
201201
"source": [
202202
"### Syntax and Design\n",
@@ -214,7 +214,7 @@
214214
},
215215
{
216216
"cell_type": "markdown",
217-
"id": "823ec05d",
217+
"id": "1592a0c2",
218218
"metadata": {
219219
"hide-output": false
220220
},
@@ -272,7 +272,7 @@
272272
},
273273
{
274274
"cell_type": "markdown",
275-
"id": "9a7c4d52",
275+
"id": "d2d3d147",
276276
"metadata": {},
277277
"source": [
278278
"This Java code opens an imaginary file called `data.csv` and computes the mean\n",
@@ -289,7 +289,7 @@
289289
{
290290
"cell_type": "code",
291291
"execution_count": null,
292-
"id": "55fa263a",
292+
"id": "3af7fcbb",
293293
"metadata": {
294294
"hide-output": false
295295
},
@@ -311,15 +311,15 @@
311311
},
312312
{
313313
"cell_type": "markdown",
314-
"id": "9b7caf82",
314+
"id": "03b8c0f6",
315315
"metadata": {},
316316
"source": [
317317
"The simplicity of Python and its neat design are a big factor in its popularity."
318318
]
319319
},
320320
{
321321
"cell_type": "markdown",
322-
"id": "7efd87e9",
322+
"id": "db2232ff",
323323
"metadata": {},
324324
"source": [
325325
"### The AI Connection\n",
@@ -346,7 +346,7 @@
346346
},
347347
{
348348
"cell_type": "markdown",
349-
"id": "5412bd7d",
349+
"id": "b4e21900",
350350
"metadata": {},
351351
"source": [
352352
"## Scientific Programming with Python\n",
@@ -375,7 +375,7 @@
375375
},
376376
{
377377
"cell_type": "markdown",
378-
"id": "432b7fd4",
378+
"id": "242b96e3",
379379
"metadata": {},
380380
"source": [
381381
"### NumPy\n",
@@ -392,7 +392,7 @@
392392
{
393393
"cell_type": "code",
394394
"execution_count": null,
395-
"id": "4e345eca",
395+
"id": "8826eec3",
396396
"metadata": {
397397
"hide-output": false
398398
},
@@ -404,7 +404,7 @@
404404
},
405405
{
406406
"cell_type": "markdown",
407-
"id": "6f0800fc",
407+
"id": "46c6bd14",
408408
"metadata": {},
409409
"source": [
410410
"This array is very small so it’s fine to work with pure Python.\n",
@@ -422,7 +422,7 @@
422422
{
423423
"cell_type": "code",
424424
"execution_count": null,
425-
"id": "c5d2e7d2",
425+
"id": "7f0cdd46",
426426
"metadata": {
427427
"hide-output": false
428428
},
@@ -436,7 +436,7 @@
436436
},
437437
{
438438
"cell_type": "markdown",
439-
"id": "14543427",
439+
"id": "134dbf25",
440440
"metadata": {},
441441
"source": [
442442
"Now let’s transform this array by applying functions to it."
@@ -445,7 +445,7 @@
445445
{
446446
"cell_type": "code",
447447
"execution_count": null,
448-
"id": "aed0d2a1",
448+
"id": "8bf176e7",
449449
"metadata": {
450450
"hide-output": false
451451
},
@@ -457,7 +457,7 @@
457457
},
458458
{
459459
"cell_type": "markdown",
460-
"id": "c2cb36d1",
460+
"id": "b02176f6",
461461
"metadata": {},
462462
"source": [
463463
"Now we can easily take the inner product of `b` and `c`."
@@ -466,7 +466,7 @@
466466
{
467467
"cell_type": "code",
468468
"execution_count": null,
469-
"id": "f07ffe92",
469+
"id": "e129418b",
470470
"metadata": {
471471
"hide-output": false
472472
},
@@ -477,7 +477,7 @@
477477
},
478478
{
479479
"cell_type": "markdown",
480-
"id": "c0359cf7",
480+
"id": "1e864b03",
481481
"metadata": {},
482482
"source": [
483483
"We can also do many other tasks, like\n",
@@ -492,7 +492,7 @@
492492
},
493493
{
494494
"cell_type": "markdown",
495-
"id": "dd3d20b8",
495+
"id": "2b3b6473",
496496
"metadata": {},
497497
"source": [
498498
"### NumPy Alternatives\n",
@@ -515,7 +515,7 @@
515515
},
516516
{
517517
"cell_type": "markdown",
518-
"id": "f175e3be",
518+
"id": "ef8d6c30",
519519
"metadata": {},
520520
"source": [
521521
"### SciPy\n",
@@ -530,7 +530,7 @@
530530
{
531531
"cell_type": "code",
532532
"execution_count": null,
533-
"id": "d355f0b9",
533+
"id": "b9f13426",
534534
"metadata": {
535535
"hide-output": false
536536
},
@@ -546,7 +546,7 @@
546546
},
547547
{
548548
"cell_type": "markdown",
549-
"id": "2d79d288",
549+
"id": "e3bac800",
550550
"metadata": {},
551551
"source": [
552552
"SciPy includes many of the standard routines used in\n",
@@ -566,7 +566,7 @@
566566
},
567567
{
568568
"cell_type": "markdown",
569-
"id": "0bc4bea0",
569+
"id": "0ca3efdd",
570570
"metadata": {},
571571
"source": [
572572
"### Graphics\n",
@@ -612,7 +612,7 @@
612612
},
613613
{
614614
"cell_type": "markdown",
615-
"id": "7b8d24bd",
615+
"id": "1e95e695",
616616
"metadata": {},
617617
"source": [
618618
"### Networks and Graphs\n",
@@ -648,7 +648,7 @@
648648
{
649649
"cell_type": "code",
650650
"execution_count": null,
651-
"id": "2d3cd715",
651+
"id": "f597df40",
652652
"metadata": {
653653
"hide-output": false
654654
},
@@ -683,7 +683,7 @@
683683
},
684684
{
685685
"cell_type": "markdown",
686-
"id": "52cb77ee",
686+
"id": "b262269e",
687687
"metadata": {},
688688
"source": [
689689
"### Other Scientific Libraries\n",
@@ -718,7 +718,7 @@
718718
}
719719
],
720720
"metadata": {
721-
"date": 1741667555.2308238,
721+
"date": 1741668125.8724172,
722722
"filename": "about_py.md",
723723
"kernelspec": {
724724
"display_name": "Python",

0 commit comments

Comments
 (0)